NOTES ON NEW CLASS FOR CERTAIN ANALYTIC FUNCTIONS

KAZUO KUROKI AND SHIGEYOSHI OWA

Presented at the $8^{\text {th }}$ International Symposium GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 27-31 August 2012, Ohrid, Republic of Macedonia.

Abstract

By considering a certain univalent function in the open unit disk \mathbb{U} which maps \mathbb{U} onto the strip domain w with $\alpha<\operatorname{Re} w<\beta$, some properties for a new class of certain analytic functions are discussed.

1. Introduction

Let \mathcal{A} denote the class of functions $f(z)$ of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. The subclass of \mathcal{A} consisting of all univalent functions $f(z)$ in \mathbb{U} is denoted by \mathcal{S}.

A function $f(z) \in \mathcal{A}$ is said to be starlike of order α in \mathbb{U} if it satisfies

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

for some real number α with $0 \leq \alpha<1$. This class is denoted by $\mathcal{S}^{*}(\alpha)$ and $\mathcal{S}^{*}(0)=\mathcal{S}^{*}$. The class $\mathcal{S}^{*}(\alpha)$ was introduced by Robertson [2]. It is well-known that $\mathcal{S}^{*}(\alpha) \subset \mathcal{S}^{*} \subset \mathcal{S}$.

Furthermore, let $\mathcal{M}(\beta)$ be the class of functions $f(z) \in \mathcal{A}$ which satisfy

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)<\beta \quad(z \in \mathbb{U})
$$

for some real number β with $\beta>1$. The class $\mathcal{M}(\beta)$ was investigated by Uralegaddi, Ganigi and Sarangi [4].

[^0]Let $p(z)$ and $q(z)$ be analytic in \mathbb{U}. Then the function $p(z)$ is said to be subordinate to $q(z)$ in \mathbb{U}, written by

$$
\begin{equation*}
p(z) \prec q(z) \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

if there exists a function $w(z)$ which is analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1 \quad(z \in$ $\mathbb{U})$, and such that $p(z)=q(w(z)) \quad(z \in \mathbb{U})$. From the definition of the subordinations, it is easy to show that the subordination (1.1) implies that

$$
\begin{equation*}
p(0)=q(0) \quad \text { and } \quad p(\mathbb{U}) \subset q(\mathbb{U}) \tag{1.2}
\end{equation*}
$$

In particular, if $q(z)$ is univalent in \mathbb{U}, then the subordination (1.1) is equivalent to the condition (1.2).

Remark 1.1. Let $p(z)$ and $q(z)$ be analytic in \mathbb{U}. Then the subordination (1.1) implies that

$$
\begin{equation*}
\left|p^{\prime}(0)\right| \leq\left|q^{\prime}(0)\right| \tag{1.3}
\end{equation*}
$$

and $\left|p^{\prime}(0)\right|=\left|q^{\prime}(0)\right|$ if and only if $p(z)=q(x z)$ for some real number x with $|x|=1$ (cf. [1]).

Motivated by the classes $\mathcal{S}^{*}(\alpha)$ and $\mathcal{M}(\beta)$, we define new class for certain analytic functions. Let $\mathcal{S}(\alpha, \beta)$ denote the class of functions $f(z) \in \mathcal{A}$ which satisfy the inequality

$$
\begin{equation*}
\alpha<\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)<\beta \quad(z \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

for some real number $\alpha(\alpha<1)$ and some real number $\beta(\beta>1)$. Note that α is not necessary to be positive in the class $\mathcal{S}(\alpha, \beta)$.

Remark 1.2. Let $f(z) \in \mathcal{S}(\alpha, \beta)$. If $\alpha \geq 0$, then $f(z)$ is starlike in \mathbb{U}, which implies that $f(z)$ is univalent in \mathbb{U}.

In order to discuss our new class $\mathcal{S}(\alpha, \beta)$, we need to consider a certain univalent function in \mathbb{U} which maps \mathbb{U} onto the strip domain w with $\alpha<\operatorname{Re} w<\beta$.

Theorem 1.1. Let α and β be real numbers with $\alpha<1$ and $\beta>1$. Then the function $S_{\alpha, \beta}(z)$ defined by

$$
\begin{equation*}
S_{\alpha, \beta}(z)=1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{i \frac{\pi(1-\alpha)}{\beta-\alpha}} z}{1-e^{-i \frac{\pi(1-\alpha)}{\beta-\alpha} z}}\right) \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

is analytic and univalent in \mathbb{U} with $S_{\alpha, \beta}(0)=1$. In addition, $S_{\alpha, \beta}(z)$ maps \mathbb{U} onto the strip domain w with $\alpha<\operatorname{Re} w<\beta$.

Remark 1.3.

$$
S_{\alpha, \beta}(z)=1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{i \frac{\pi(1-\alpha)}{\beta-\alpha}} z}{1-e^{-i \frac{\pi(1-\alpha)}{\beta-\alpha} z}}\right)=1+\sum_{n=1}^{\infty} B_{n} z^{n}
$$

where

$$
\begin{equation*}
B_{n}=\frac{2(\beta-\alpha)}{n \pi} \sin \frac{n \pi(1-\alpha)}{\beta-\alpha} \quad(n=1,2, \cdots) \tag{1.6}
\end{equation*}
$$

Specially, we note that the coefficient B_{n} defined by (1.6) is the real number. Since

$$
\lim _{\beta \rightarrow+\infty} B_{n}=\lim _{\beta \rightarrow+\infty}\left\{2(1-\alpha) \frac{\sin \frac{n \pi(1-\alpha)}{\beta-\alpha}}{\frac{n \pi(1-\alpha)}{\beta-\alpha}}\right\}=2(1-\alpha)
$$

a simple check gives us that

$$
S_{\alpha, \beta}(z)=1+\sum_{n=1}^{\infty} 2(1-\alpha) z^{n}=\frac{1+(1-2 \alpha) z}{1-z} \quad(\beta \rightarrow+\infty)
$$

which implies that $S_{\alpha, \beta}(z) \quad(\beta \rightarrow+\infty)$ maps \mathbb{U} onto the right half-plane w with $\operatorname{Re} w>$ α.
On the other hand, it is easy to see that

$$
\begin{aligned}
\lim _{\alpha \rightarrow-\infty} B_{n} & =\lim _{\alpha \rightarrow-\infty}\left\{\frac{2(\beta-\alpha)}{n \pi} \sin \left(\frac{n \pi(1-\beta)}{\beta-\alpha}+n \pi\right)\right\} \\
& =\lim _{\alpha \rightarrow-\infty}\left\{\frac{2(\beta-\alpha)}{n \pi}(-1)^{n} \sin \frac{n \pi(1-\beta)}{\beta-\alpha}\right\} \\
& =\lim _{\alpha \rightarrow-\infty}\left\{2(\beta-1)(-1)^{n-1} \frac{\sin \frac{n \pi(1-\beta)}{\beta-\alpha}}{\frac{n \pi(1-\beta)}{\beta-\alpha}}\right\}=2(\beta-1)(-1)^{n-1}
\end{aligned}
$$

Therefore, we find that

$$
S_{\alpha, \beta}(z)=1+\sum_{n=1}^{\infty} 2(\beta-1)(-1)^{n-1} z^{n}=\frac{1-(1-2 \beta) z}{1+z} \quad(\alpha \rightarrow-\infty)
$$

which implies that $S_{\alpha, \beta}(z) \quad(\alpha \rightarrow-\infty)$ maps \mathbb{U} onto the left half-plane w with $\operatorname{Re} w<\beta$.
We give some example for $f(z) \in \mathcal{S}(\alpha, \beta)$ as follows.
Example 1.1. Let us consider the function $f(z)$ given by

$$
\begin{align*}
& f(z)=z \exp \left\{\frac{\beta-\alpha}{\pi} i \int_{0}^{z} \frac{1}{t} \log \left(\frac{1-e^{i \frac{\pi(1-\alpha)}{\beta-\alpha} t}}{1-e^{-i \frac{\pi(1-\alpha)}{\beta-\alpha}} t}\right) d t\right\} \tag{1.7}\\
& \quad=z+\frac{2(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha} z^{2}+\cdots \quad(z \in \mathbb{U})
\end{align*}
$$

with $\alpha<1$ and $\beta>1$. Then we have

$$
\frac{z f^{\prime}(z)}{f(z)}=1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{i \frac{\pi(1-\alpha)}{\beta-\alpha}} z}{1-e^{-i \frac{\pi(1-\alpha)}{\beta-\alpha} z}}\right)=S_{\alpha, \beta}(z) \quad(z \in \mathbb{U})
$$

According to Theorem 1.1, it is clear that the function $f(z)$ given by (1.7) satisfies the inequality (1.4), which implies that $f(z) \in \mathcal{S}(\alpha, \beta)$.

Applying the function $S_{\alpha, \beta}(z)$ defined by (1.5), we give a necessary and sufficient condition for $f(z) \in \mathcal{A}$ to beling to the class $\mathcal{S}(\alpha, \beta)$.

Lemma 1.1. Let $f(z) \in \mathcal{A}$. Then $f(z) \in \mathcal{S}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{i \frac{\pi(1-\alpha)}{\beta-\alpha} z}}{1-e^{-i \frac{\pi(1-\alpha)}{\beta-\alpha} z}}\right) \quad(z \in \mathbb{U}) \tag{1.8}
\end{equation*}
$$

where $\alpha<1$ and $\beta>1$.
By using the subordination (1.8), we discuss some properties for $f(z) \in \mathcal{S}(\alpha, \beta)$.

2. Some results

Rogosinski [3] proved the coefficient estimates for subordinate functions.
Lemma 2.1. Let $q(z)=\sum_{n=1}^{\infty} B_{n} z^{n}$ be analytic and univalent in \mathbb{U}, and suppose that $q(z)$ maps \mathbb{U} onto a convex domain. If $p(z)=\sum_{n=1}^{\infty} A_{n} z^{n}$ is analytic in \mathbb{U} and satisfies the following subordination

$$
p(z) \prec q(z) \quad(z \in \mathbb{U})
$$

then

$$
\left|A_{n}\right| \leq\left|B_{1}\right| \quad(n=1,2, \cdots)
$$

Applying Lemma 2.1, we deduce some coefficient estimates for $f(z) \in \mathcal{S}(\alpha, \beta)$ bellow.
Theorem 2.1. If the function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{S}(\alpha, \beta)$, then

$$
\left|a_{n}\right| \leq \prod_{k=2}^{n} \frac{k-2+\frac{2(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}}{k-1} \quad(n=2,3, \cdots)
$$

We next give sharp bounds on the second and third coefficients for $f(z) \in \mathcal{S}(\alpha, \beta)$. To obtain some sharp coefficient estimates, we need the following lemma due to Rogosinski [3].

Lemma 2.2. Let $p(z)=\sum_{n=1}^{\infty} A_{n} z^{n}$ and $q(z)=\sum_{n=1}^{\infty} B_{n} z^{n}$ be analytic in \mathbb{U}. If $p(z) \prec q(z)$ $(z \in \mathbb{U})$, then

$$
\sum_{k=1}^{m}\left|A_{k}\right|^{2} \leq \sum_{k=1}^{m}\left|B_{k}\right|^{2} \quad(m=1,2, \cdots)
$$

By Remark 1.1 and Lemma 2.2, we obtain
Theorem 2.2. If the function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{S}(\alpha, \beta)$, then

$$
\left|a_{2}\right| \leq \frac{2(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}
$$

and

$$
\left|a_{3}\right| \leq \frac{\beta-\alpha}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}\left(\cos \frac{\pi(1-\alpha)}{\beta-\alpha}+\frac{2(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}\right) .
$$

Moreover, the equality holds in either inequality if and only if

$$
f(z)=z \exp \left\{\int_{0}^{z} \frac{S_{\alpha, \beta}\left(e^{i \theta} t\right)-1}{t} d t\right\}
$$

for some real number $\theta(0 \leq \theta<2 \pi)$, where $S_{\alpha, \beta}(z)$ is defined by (1.5).

References

[1] A.W.Goodman: Univalent Functions, Vol.I and II, Mariner, Tampa, Florida, 1983.
[2] M.S.Robertson: On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.
[3] W.Rogosinski: On the coefficients of subordinate functions, Proc. London Math. Soc. 48 (1943), 48-82.
[4] B.A.Uralegaddi, M.D.Ganigi, S.M.Sarangi: Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), 225-230.

Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
E-mail address: freedom@sakai.zaq.ne.jp
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
E-mail address: shige21@ican.zaq.ne.jp

[^0]: 2010 Mathematics Subject Classification. 30C45, 30C50.
 Key words and phrases. Analytic function, univalent function, starlike function, subordination, coefficient estimate.

