
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scienti�c Journal 2 (2013), no.2, 71�79

ISSN 1857-8365, UDC: 517.958:517.445

A NUMERICAL STUDY OF ITO EQUATION AND

SAWADA-KOTERA EQUATION BOTH OF TIME-FRACTIONAL TYPE

OLANIYI SAMUEL IYIOLA

Abstract. We consider the Ito equation and the Sawada-Kotera equation both of
time-fractional type in this paper. The approximate solutions of these equations are
calculated in the form of series obtained by q-Homotopy Analysis Method (q-HAM).
The presence of fraction-factor in this method gives it an edge over other existing
analytical methods for nonlinear di�erential equations. Comparisons are made with
Modi�ed Adomian decomposition method MADM, homotopy perturbation method
HPM and the exact solutions. Numerical results are obtained using Mathematica 8.

1. Introduction

The generalized KdV equation is an essential model for several physical phenomena

including waves in nonlinear LC circuit with mutual inductance between neighboring

inductors and shallow-water waves near critical value of surface tension [11]. The need

for analytical solution to this class of model arises due to the absence of general solution,

though the exact solution of the �fth order KdV equation was found for the special case

of solitary waves in [17].

Generally, for the past three decades, fractional calculus has been considered with

great importance due to its various applications in physics, �uid �ow, control theory of

dynamical systems, chemical physics, electrical networks, and so on. The quest of getting

accurate methods for solving resulted nonlinear model involving fractional order is of

utmost concern of many researchers in this �eld today.

Various methods have been put to use successfully to obtain analytical solutions such

as Adomian Decomposition Method (ADM) [1, 16], Variational Iteration Method (VIM)

[8, 13], Homotopy Perturbation Method (HPM) [7, 12, 15]. One of the powerful analytical

approach to solving nonlinear di�erential equations is Homotopy Analysis Method (HAM)

[2, 9]. Recently, a modi�ed HAM called q-Homotopy Analysis Method was introduced

in [5]. It was proven that the presence of fraction factor in this method enables a fast

convergence better than the usual HAM which then makes is more reliable. The Sawada-

Kotera Equation was considered in [4] using HAM, in [2] using modi�ed ADM and in [3]

using HPM.
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To the best of our knowledge, no attempt has been made regarding analytical solutions

of time-fractional Sawada-Kotera Equation and time-fractional Ito Equation using q-

Homotopy Analysis Method. In this paper, we consider these equations subject to some

appropriate initial conditions. We compare the results obtained by our method with the

results obtained using MADM in [2] and HPM in [3], when � = 1 to a�rm the reliability

of the method including numerical values.

2. Preliminaries

This section is devoted to necessary tools for the actualization of the aim of this paper

including de�nitions and some known results. This work adopts Caputo's de�nition to

some concepts of fractional derivatives which is a modi�cation of the Riemann-Liouville's

de�nition and has the advantage of dealing properly with initial value problems. The

initial conditions are given in terms of the �eld variables and their integer order which is

the case in many physical processes.

De�nition 2.1. A real function l is said to be in the space C�, � 2 R, x > 0, if there

exists a real number p(> �) such that

l(x) = xpl1(x);

where l1 2 C[0;1) and it is said to be in the space Cm
� i� l(m) 2 C�, m 2 N.

De�nition 2.2. The Riemann-Liouville's (RL) fractional integral operator of order

� � 0, of a function f 2 L1(a; b) is given as

I�f(t) =
1

�(�)

Z t

0

(t� � )��1f(� )d�; t > 0; � > 0;

where � is the Gamma function and I0f(t) = f(t).

De�nition 2.3. The Riemann-Liouville's (RL) fractional derivative of order 0 <

� < 1, of a function f is

D�
0+f(t) = DI1��0+ f(t):

provided the right-hand side exists where D = d=dt.

De�nition 2.4. The fractional derivative in the Caputo's sense is de�ned as [14],

CD�f(t) = In��Dnf(t) =
1

�(n� �)

Z t

0

(t� � )n���1f (n)(� )d�;

where n� 1 < � � n, n 2 N, t > 0.

Caputo's fractional derivative also has a useful property [6]

I�CD�f(t) = f(t)�

n�1X
k=0

f (k)(0+)
kk

k!
;

where n� 1 < � � n.

Lemma 2.1. Let � � 0, � � 0 and f 2 CL(a; b). Then

I�a I
�f(t) = I�+�a f(t);

for all t 2 (a; b].
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Lemma 2.2. Let t 2 (a; b]. Then

�
I�a (t� a)�

�
(t) =

�(� + 1)

�(� + �+ 1)
(t� a)�+�; � > 0; � > 0:

Remark 2.1. From the de�nitions given above, we observed that the Riemann-

Liouville fractional derivative of a constant function is not equal to zero while that

of Caputo fractional derivative of constant function is zero.

3. Method of Solution (q-HAM)

We consider the following di�erential equation of the form

N
h
D
�
t u(x; t)

i
� f(x; t) = 0

where N is a nonlinear operator, D
�
t denote the Caputo fractional derivative, (x; t) are

independent variables, f(x; t) is a known function and u(x; t) is an unknown function.

(1� nq)L (�(x; t; q)� u0(x; t)) = qhH(x; t)
�
N [D

�
t �(x; t; q)]� f(x; t)

�
;(3.1)

where n > 1, q 2
�
0; 1

n

�
denotes the so-called embedded parameter, L ia an auxiliary

linear operator with the property L[f ] = 0 when f = 0, h 6= 0 is an auxiliary parameter,

H(x; t) is a non-zero auxiliary function.

It is clearly seen that when q = 0 and q = 1
n
, equation (3.1) becomes

�(x; t; 0) = u0(x; t) and �(x; t;
1

n
) = u(x; t)

respectively. So, as q increases from 0 to 1
n
, the solution �(x; t; q) varies from the initial

guess u0(x; t) to the solution u(x; t).

If u0(x; t), L, h, H(x; t) are chosen appropriately, solution �(x; t; q) of equation(3.1)

exists for q 2
�
0; 1

n

�
.

Taylor series expansion of �(x; t; q) gives

(3.2) �(x; t; r) = u0(x; t) +

1X
m=1

�m(x; t)qm:

where

�m(x; t) =
1

m!

@mF (x; t; q)

@mr
jq=o:

If we assume that the auxiliary linear operator L, the initial guess u0, the auxiliary

parameter h and H(x; t) are properly chosen such that the series (3.2) converges at q = 1
n
,

then we have

u(x; t) = u0(x; t) +

1X
m=1

um(x; t)

�
1

n

�m
:

De�ne

un(x; t) = fu0(x; t); u1(x; t); � � � ; un(x; t)g :

Di�erentiating equation (3.1)m-times with respect to the (embedding) parameter q, then

evaluating at q = 0 and �nally dividing them by m!, we have the so called mth-order
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deformation equation (Lioa [9, 10]) as

(3.3) L [um(x; t)� ��mum�1(x; t)] = hH(x; t) �Rm (~um�1) :

with initial conditions:

u(k)m (x; 0) = 0; k = 0; 1; 2; :::;m� 1:

where

�Rm (~um�1) =
1

(m� 1)!

@m�1
�
N [D

�
t �(x; t; q)]� f(x; t)

�
@qm�1

jq=0

and

��m =

8<
:

0 m 6 1

n otherwise;

Remark 3.1. It should be emphasized that um(x; t) for m > 1, is governed by the

linear operator (3.3) with the linear boundary conditions that come from the original

problem. The existence of the factor
�
1
n

�m
gives more chances for better conver-

gence, faster that the solution obtained by the standard HAM. Of course, when

n = 1, we are in the case of the standard HAM.

4. Applications

Consider the generalized �fth-order KdV equation of time-fractional type

(4.1) D
�
t u+ au2ux + buxuxx + cuuxxx + duxxxxx = 0 t > 0; 0 < � 6 1

with the initial condition

u(x; 0) = f(x; k;�):

To apply q-HAM, we choose the linear operator

L[�(x; t; q)] = D
�
t �(x; t; q)

with property that L[c1] = 0, c1 is constant.

We use initial approximation u0(x; t) = u(x; 0). We can then de�ne the nonlinear

operator as

N [�(x; t; q)] = D
�
t �t(x; t; q) + a (�(x; t; q))

2
�x(x; t; q) + b�x(x; t; q)�xx(x; t; q)

+c�(x; t; q)�xxx(x; t; q) + d�xxxxx(x; t; q):

We construct the zeroth order deformation equation

(1� nq)L [�(x; t; q)� u0(x; t)] = qhH(x; t)N [�(x; t; q)] :

We choose H(x; t) = 1 to obtain the mth-order deformation equation to be

L [um(x; t)� ��mum�1(x; t)] = h �Rm (~um�1) :
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with initial condition for m > 1, um(x; 0) = 0,

��m =

8<
:

0 m 6 1

n otherwise;

and

�Rm (~um�1) = D
�
t u(m�1) + a

m�1X
k=0

kX
j=0

ujuk�ju(m�1�k)x + b

m�1X
k=0

ukxu(m�1�k)xx

+c

m�1X
k=0

uku(m�1�k)xxx + du(m�1)xxxxx:(4.2)

So, the solution to the equation (4.1) for m > 1 becomes

(4.3) um(x; t) = ��mum�1 + hI�
h
�Rm (~um�1)

i
:

Then the series solution expression by q-HAM can be written in the form

(4.4) u(x; t;n;h) �= UM (x; t;n;h) =

MX
j=0

ui(x; t;n;h)

�
1

n

�i

Equation (4.4) is an appropriate solution to the problem (4.1) in terms of convergence

parameter h and n.

Remark 4.1. The fraction factor
�
1
n

�m
highly increase the convergence chances than

that of HAM.

4.1. The Ito time-fractional Equation. Taking a = 2, b = 6, c = 3. and d = 1, we

obtain the Ito time-fractional equation

(4.5) D
�
t u+ 2u2ux + 6uxuxx + 3uuxxx + uxxxxx = 0 t > 0; 0 < � 6 1

with the initial condition

(4.6) u(x; 0) = 20k2 � 30k2 tanh2(kx); taking � = 0:

The exact solution of (4.5) together with condition (4.6) for � = 1 is given as

u(x; t) = 20k2 � 30k2 tanh2(kx� 96k4):

This problem has been solved in [2] using Modi�ed Adomian Decomposition Method(MADM).

We use initial approximation

u0(x; t) = u(x; 0) = 20k2 � 30k2 tanh2(kx):
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Using equations (4.2) and (4.3), taking a = 2, b = 6, c = 3. and d = 1, we therefore

obtain components of the solution using q-HAM successively as follows

u1(x; t) = �570hk7 tanh(kx)sech2(kx)
t�

�(�+ 1)

u2(x; t) =
2880hk7t�sech4(kx)

�
192hk5t2�(�2 + cosh(2kx))

�
�(� + 1)�(2� + 1)

�
2880hk7t�sech4(kx) [(h+ n) sinh(2kx)�(2� + 1)]

�(� + 1)�(2� + 1)
:

In the same way, um(x; t) for m = 3; 4; � � � can be obtained using Mathematica-8.

Then the series solution expression by q-HAM can be written in the form

(4.7) u(x; t;n;h) �= UM (x; t;n;h) =

MX
j=0

uj(x; t;n;h)

�
1

n

�j

Equation (4.7) is an appropriate solution to the problem (4.5) in terms of convergence

parameter h and n.

4.2. The time-fractional Sawada-Kotera Equation. Taking a = 45, b = 15, c = 15.

and d = 1, we obtain the Sawada-Kotera time-fractional equation

(4.8) D
�
t u+ 45u2ux + 15uxuxx + 15uuxxx + uxxxxx = 0 t > 0; 0 < � 6 1

with the initial condition

(4.9) u(x; 0) = 2k2sech2 [k(x� �)] :

The exact solution of (4.8) together with condition (4.9) for � = 1 is given as

u(x; t) = 2k2sech2
�
k(x� 16k4t� �)

�
:

We use initial approximation

u0(x; t) = u(x; 0) = 2k2sech2 [k(x� �)] :

Using equations (4.2) and (4.3), taking a = 45, 15 = 6, c = 15. and d = 1, we therefore

obtain components of the solution using q-HAM successively as follows

u1(x; t) = �64hk7 tanh[k(x� �)]sech2[k(x� �)]
t�

�(� + 1)

u2(x; t) = �64h(n+ h)k7 tanh[k(x� �)]sech2[k(x� �)]
t�

�(� + 1)

+
1024h2t2�k12(cosh[2k(x� �)]� 2)sech4[k(x� �)]

�(2�+ 1)
:

In the same way, um(x; t) for m = 3; 4; � � � can be obtained using Mathematica-9.

Then the series solution expression by q-HAM can be written in the form

(4.10) u(x; t;n;h) �= UM (x; t;n;h) =

MX
j=0

uj(x; t;n;h)

�
1

n

�j
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Equation (4.10) is an appropriate solution to the problem (4.8) in terms of convergence

parameter h and n.

5. Numerical Results and Discussion

5.1. Case of � = 1. We have obtained the numerical results of the two equations con-

sidered in the previous subsection and the comparisons are made with the exact solutions

(� = 1) in the �gures below.

Figure 1. q-HAM solu-

tion of Ito equation with

h = �0:5, n = 1 and

k = 0:2.

Figure 2. Exact solu-

tion of Ito equation with

k = 0:2.

Figure 3. q-HAM so-

lution of Sawada-Kotera

time-fractional equation

with h = �1, n = 1 and

k = 8.

Figure 4. Exact solu-

tion of Sawada-Kotera

time-fractional equation

with k = 8.
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Remark 5.1. It should be noted that apart from less computational e�ort required

to obtain the series solutions of these equations, we have only used two terms U2
(M = 2) to get close as much as possible to the exact solutions.

5.2. Case of � = 0:5. We have presented below some numerical results for � = 0:5 to

show the e�ect of the fractional order in time for both Ito equation and Sawada-Kotera

equation.

Figure 5. q-HAM solu-

tion of Ito equation with

h = �0:5, � = 0:5, n = 1

and k = 0:2.

Figure 6. q-HAM so-

lution of Sawada-Kotera

time-fractional equation

with h = �1, � = 0:5,

n = 1 and k = 8.

6. Conclusion

In this paper, q-HAM has been successfully developed to solve time-fractional type

of both the Ito equation and the Sawada-Kotera equation. The performance of HAM

is greatly improved by q-HAM shown using the two well known equations. The results

show that the convergence rate of q-HAM is faster than that of HAM due to the presence

of fraction factor
�
1
n

�m
.The results of �gure(1) to �gure(6) are in perfect agreement with

those obtained in [2] using MADM, in [3] using HPM and the exact solutions of both

equations under suitable initial conditions but with just two terms of the series solutions

obtained by q-HAM. The e�ciency and accuracy are obvious from the graphs.
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