
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scienti�c Journal 5 (2016), no.1, 65�70

ISSN 1857-8365 printed version

ISSN 1857-8438 electronic version, UDC: 517.93:519.63

GALERKIN METHOD FOR FRACTIONAL DIFFUSION EQUATION

MEHMET FATIH UCAR AND HIKMET CAGLAR

Presented at the 11th International Symposium
GEOMETRIC FUNCTION THEORY AND APPLICATIONS

24-27 August 2015, Ohrid, Republic of Macedonia

Abstract. The one-dimensional fractional di�usion equation is studied systemati-
cally using the Galerkin method. The Caputo fractional derivative is used for formu-
lation. An example is solved to assess the accuracy of the method. The numerical
results are obtained for di�erent values (n) of equation. An e�ective and easy-to-use
method for solving such equations is needed.

1. Introduction

Fractional di�usion equations have attracted during the last few decades for modelling

many physical and chemical processes and in engineering. Many authors have presented

the existence and approximations of the solutions to one-dimensional fractional di�usion

equation. In [1] two-step Adomian decomposition method is used analytical solution for

the space fractional di�usion equation. Mingrong Cui [2] proposed high-order compact

�nite di�erence scheme and analysis the condition for stability. Finite di�erence method

is presented for this problem and some examples are given in [3]. Also in [4] a class

of initial-boundary value fractional di�usion equations with variable coe�cients on a

�nite domain are examined using numerical method and analysis of stability, consistency

and convergence. The analytical solutions of the space fractional di�usion equations are

presented by modi�ed decomposition method [5]. Ray examined the analytical solutions

of the space fractional di�usion equations by two-step Adomian decomposition method

[6]. In this paper, we consider one-dimensional fractional di�usion equation:

@u(x; t)

@t
= d(x)

@�u(x; t)

@x�
+ q(x; t)(1.1)

with initial condition u(x; 0) = f(x), 0 � x � 1 and boundary conditions u(0; t) =

g0(t), u(1; t) = g1(t), t � 0 where d(x) represents the di�usion coe�cent and q(x; t)

the source/sink function. Sources provide energy or material to the system where sinks
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absorb energy or material. Eq. (1:1) becomes the classical di�usion equation for � = 2.

It models a superdi�use �ow for 1 < � < 2 and a classical advective �ow for � = 1 [4].

In this paper, �nite element Galerkin method is considered for numerical solution of

one-dimensional fractional di�usion equation.

The paper has been organized as follows: In section 3, Caputo fractional derivative is

given brie�y. In section 4, �nite element Galerkin method is investigated and analysis of

the method is given. A numerical example is given in section 5 and conclusion is given

in section 6.

2. Caputo Fractional Derivative

There are various kind of fractional derivatives that widely used ones are the Grunwald-

Letnikov, the Riemann-Liouville and the Caputo fractional derivatives. Caputo fractional

derivative is a regularization in the time origin for the Riemann-Liouville derivative [7, 8].

A nice comparison of these de�nitions from the view point of their applications in physics

and engineering can be found in [9]. In this study, we use the Caputo fractional derivative

that is de�ned as follow [10]:

D�
�xf(x) = Jm��Dmf(x) =

1

�(m� �)

Z x

0

(x� t)m���1f (m)(t)dt

for m� 1 < � � m and m 2 N .

3. Galerkin Method

A usual scalar product for two real valued functions u(x) and v(x) is de�ned by <

u; v >=
R T
0
u(x)v(x)dx, u(x) and v(x) are orthogonal if < u; v >= 0. And a norm

associated with this scalar product is de�ned by

kuk =
p
< u; u > = (

Z T

0

ju(x)j2dx) 12 :

Let

(i) Th : 0 = x0 < x1 < ::: < xM < xM+1 = 1 be a partition of (0; 1), hj = xj � xj�1.

(ii) V 0
h = v : v, continuous and piecewise linear function on Th. with v(0) = v(1) = 0

(iii) f'jg, j = 1; :::;M be a basis function for Vh where

'j(x) =

8><
>:

x�xj�1

hj
; xj�1 � x � xj

xj+1�x

hj+1
; xj � x � xj+1

0 ; otherwise

:

To illustrate the application of the Galerkin method, �rstly, we should modify the

equation (1.1). At the grid point (xi; ui), the proposed equation may be discretized by

using Caputo fractional derivative

ui � fi

k
= di

�
1

�(0:2)

Z xi

0

(xi � �)�0:8u
00

i (�)d�

�
+ qi;(3.1)
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where di := d(xi), fi := f(xi) = ui�1, and qi := q(xi; tj). For � = 1:8 the previous

discretization will be as follow:

ui � fi

k
=

di

�(0:2)
I + qi;

where I =
R xi

0 (xi � �)�0:8u
00

i (�)d�. Applying integration by parts two times, we obtain

I =
36

25

Z xi

0

(xi � �)�2:8ui(�)d�:

Expanding ui(�) in Taylor series about a point � = xi and then substituting I in (3.1),

we obtain

ui � fi

k
=

di

�(0:2)

36

25

�
(ui(xi)

Z xi

0

(xi � �)�2:8d�+ u
0

i(xi)

Z xi

0

(xi � �)�1:8d�

+
u
00

i (xi)

2

Z xi

0

(xi � �)�0:8d�)

#
+ qi:

After algebraic manipulations we get

2akx3u
00 � akx2u

0

+ (1� kxb)u� f(x)� k(1 + x)e�tx3 = 0(3.2)

where a = �3�(2:2)
10�(0:2) , b =

�2�(2:2)
15�(0:2) .

Let apply Galerkin method to the equation (3.2): Find the approximate solution

U(x) 2 V 0
h 8W (x) 2 V 0

h such thatZ 1

0

W
�
2akx3U

00 � akx2U
0

+ (1� kxb)U � f(x)� k(1 + x)e�tx3
�
dx = 0:

So we get Z 1

0

�
2akx3WU

00 � akx2WU
0

+ (1� kxb)WU
�
dx

=

Z 1

0

(Wf(x) +Wk(1 + x)e�tx3)dx:

(3.3)

By applying integration by parts to
R 1
0 2akx3WU

00

dx, we getZ 1

0

2akx3WU
00

dx = [2akx3WU
0

]10 �
Z 1

0

(6akx2WU
0

+ 2akx3W
0

U
0

)dx(3.4)

[2akx3WU
0

]10 = 0 since W (0) = W (1) = 0. By substituting (3.4) in (3.3), we getZ 1

0

�
(1� kxb)WU � 7akx2WU

0 � 2akx3W
0

U
0

�
dx

=

Z 1

0

(Wf(x) +Wk(1 + x)e�tx3)dx:

(3.5)

We may �nd the approximate solution U(x) 2 V 0
h by using basis functions 'j(x) as

U(x) =

nX
j=1

cj'j(x); U 0(x) =

nX
j=1

cj'
0

j(x); W (x) =

nX
i=1

si'i(x); W 0(x) =

nX
i=1

si'
0

i(x):

If we use these identities in (3.5), then we get
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Z 1

0

[
nX
i=1

(1� kxb)si'i(x)
nX
j=1

cj'j(x)�
nX
i=1

7akx2si'i(x)
nX
j=1

cj'
0

j(x)

�
nX
i=1

2akx3si'
0

i(x)

nX
j=1

cj'
0

j(x)]dx

=

Z 1

0

"
nX
i=1

si'i(x)f(x) +

nX
i=1

si'i(x)k(1 + x)e�tx3

#
dx:

For ji� jj > 1 we have
R 1
0
'0j'idx = 0 and

R 1
0
'j'idx = 0 , since if so then we have

that 'j and 'i have non-overlapping supports. So we get

nX
i=1

si

Z 1

0

nX
j=1

cj
�
(1� kxb)'j(x)'i(x)� 7akx2'0j(x)'i(x)� 2akx3'0j(x)'

0

i(x)
�
dx

=

nX
i=1

si

Z 1

0

�
'i(x)f(x) + 'i(x)k(1 + x)e�tx3

�
dx:

The method is described in matrix form in the following way: For i = 2, j = 1; ::; n

�12 =

Z 2h

h

(a1(x)'1'2 + a2(x)'
0

1'2 + a3(x)'
0

1'
0

2)dx;

�22 =

Z 3h

h

(a1(x)'2'2 + a2(x)'
0

2'2 + a3(x)'
0

2'
0

2)dx;

�32 =

Z 3h

2h

(a1(x)'3'2 + a2(x)'
0

3'2 + a3(x)'
0

3'
0

2)dx;

for i = m, j = 1; ::; n

�(m�1)m =

Z mh

(m�1)h

(a1(x)'m�1'm + a2(x)'
0

m�1'm + a3(x)'
0

m�1'
0

m)dx;

�mm =

Z (m+1)h

(m�1)h

(a1(x)'m'm + a2(x)'
0

m'm + a3(x)'
0

m'
0

m)dx;

�(m+1)m =

Z (m+1)h

mh

(a1(x)'m+1'm + a2(x)'
0

m+1'm + a3(x)'
0

m+1'
0

m)dx;

and for i = n� 1, j = 1; ::; n

�(n�2)(n�1) =

Z (n�2)h

(n�1)h

(a1(x)'n�2'n�1 + a2(x)'
0

n�2'n�1 + a3(x)'
0

n�2'
0

n�1)dx;

�(n�1)(n�1) =

Z (n)h

(n�2)h

(a1(x)'n�1'n�1 + a2(x)'
0

n�1'n�1 + a3(x)'
0

n�1'
0

n�1)dx;

�(n)(n�1) =

Z (n�1)h

nh

(a1(x)'n'n�1 + a2(x)'
0

n'n�1 + a3(x)'
0

n'
0

n�1)dx;
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where a1(x) := 1� kxib, a2(x) := �7akx2i and a3(x) := �2akx3i . So we get the matrices:

A =

2
666666666664

1 0 0 0 ::: 0 0

�12 �22 �32 0 ::: 0 0

0 �23 �33 �43 0 ::: 0

: : : : : : :

: : : : : : :

: : : : : : :

0 ::: 0 0 �(n�2)(n�1) �(n�1)(n�1) �n(n�1)
: : : : 0 0 1

3
777777777775
;

B =

2
6666666666664

u(0; t) = 0R 3h
h

'2(f(x) + k(1 + x)e�tx3)dxR 4h
2h '3(f(x) + k(1 + x)e�tx3)dx

:

:

:R (n+1)h
(n�1)h 'n(f(x) + k(1 + x)e�tx3)dx

u(1; t) = e�t

3
7777777777775

C = [c1; c2; :::; cn]
0

and

AC = B:

Finally the approximate solution U is obtained by solving C by using Matlab 9.1. The

maximum absolute errors are listed in Table 1.

Table 1: Maximum absolute errors, k = 0:01

n Galerkin metodu [11] [4]

11 9.242e-04 0.10446 1.822e-03

21 5.762e-04 0.10518 1.168e-03

61 1.723e-04 8.644e-04

121 6.175e-05 6.848e-04

4. Conclusion

In this paper, �nite element method with Galerkin formula is applied for the numerical

solution of the fractional di�usion equation and the maximum absolute errors have shown

in Table 1, which shows that this method approximate the exact solution very well. The

implementation of the present method is more computational than the existing methods.
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