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ABSTRACT. Let f(z) = h(z) + g(z) be an univalent sense-preserving harmonic map-
ping in the open unit disc D = {z| |z| < 1}. If f satisfies the condition |w(z)| =
‘ 9'(z)
h'(z)
[4]. The class of such mappings is denoted by Sp ().
The aim of this paper is to give some properties of the solution of non-linear
partial differential equation f; = w(z)f, under the condition |w| < k (0 < k < 1),
k2(by —
w(z) < #, h(z) € C and h(z) € K. The proofs of this paper are based on
— b1z
the idea of Robinson [5].

<k (0 <k <1),then f is called k—quasiconformal harmonic mapping in D

1. INTRODUCTION

Let Q be the family of functions ¢(z) regular in the open unit disc ID that satisfy the
conditions ¢(0) = 0, |¢(z)| < 1 for all z € D.

[ee]
Next, let A denote the class of analytic functions of the form s(z) = z + Z cp2™ in
n=2

the open unit disc D. Let P designate the class of functions p(z) =1+ p1z + _z_)QzQ +...
which are analytic, have positive real part in I and such that p(z) is in P if and only if

1+ ¢(2)
p(z) = 7— =
®=14)
for some function ¢(z) € Q2 and every z € D.
Moreover, let C denote the family of functions s(z) € A, such that s(2) is in C if and

only if
3” (z)

s'(z)
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for some p(z) € P and all z € . A function s;(z) from A that satisfies the condition

£ S1(2)

s5(2)

where s3(2) € C, is called a close-to-convex function [2]. The class of all such functions is

denoted by K. Let Fy(z) and F5(2) be elements of A. If there exists a function ¢(z) € Q

such that Fi(z) = Fy(¢(z)) for every z € D, then we say that Fi(z) is subordinate to

F5(z) and we write Fy(z) < Fo(z). Specially, if F»(z) is univalent in D, then Fj(z) <

F3(z) if and only if F1(D) C F2(D) and F;(0) = F3(0) implies F1(D,) C F2(D,), where
D, ={z| |z] <r, 0<7r <1} (subordination and Lindeldf principle [2]).

Finally, a planar harmonic mapping in the open unit disc D is a complex-valued har-

monic function f, which maps D onto the some planar domain f(D). Since D is a simply

>0,

connected domain the mapping f has a canonical decomposition f(z) = h(z) + g(z),
where h(z) and g(z) are analytic in ID and have the following power series expansions

x> [ee]
h(z) = Z anz", 9(z) = Z bpz™,
n=0 n=0

where ap,b, € C, n =0,1,2,.... As usual, we call h(z) the analytic part of f and g(z)
the co-analytic part of f. An elegant and complete account of the theory of the harmonic
mappings is given Duren’s monograph [1]. Lewi proved in 1936 that the harmonic function
f is locally univalent if and only if its Jacobian

Jp = [W(2)]° = |g'(2)?
is different from zero in D. In view of this result, locally univalent harmonic mappings
in the open unit disc I) are either sense-preserving if |¢'(2)| < |h'(z)| or sense-reversing if
9'(2)] > |#'(2)] in D.
In this paper we will restrict ourselves to the study of sense-preserving harmonic map-

pings. We will also note that f(2) = h(z)+g(z) is sense-preserving in D if and only if h'(z)

does not vanish in I and the second dilation w(z) = ijg)) has the property |w(z)| < 1 for
all z € . Therefore the class of all sense-preserving harmonic mappings in the open unit
disc D with ag = by = 0 and a; = 1 will be denoted by Sg. Thus, Sy contains standard
class S of univalent functions. The family of all mappings Sy with additional property
g'(0) =0, i.e., by = 0, is denoted by S%. Hence, it is clear that S C S% C Sy. For the

aim of this paper we will need the following lemma and theorems.

Lemma 1.1. ([3]) Let ¢(z) be a non-constant analytic function in the open unit disc
D with ¢(0) = 0. If |¢(2)| attains its mazemum value on the circle |z| = r at zg, then

zo - ¢'(2z0) = m¢(z0), m > L.

!
1
Theorem 1.1. ([2]) Let s(z) be an element of C. Then Re (ZZ((zZ))> > 5

Theorem 1.2. Let s(z) be an element of C. Then,

L <s(z)) < —,

147 1—7r
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2. MAIN RESULTS

Theorem 2.1. Let f(z) = h(z) + g(2) be an element of Sy and h(z) € C. Then the
solution of the non-linear elliptic partial differential equation f- = w(z)f, under the

condition |w(z)| <k (0<k < 1), w(z) < % 18
o) Kli-9)

h(z) k2 —big(z) #lz) € 0

kz(bl — Z)

Proof. We consider the linear transformation w = . This transformation maps

k2 — blz
|z| < k onto itself and

( ) (blz+b222+...)/ b1+2b22+3b322+
w(z) = =
(z4+a2z2+...) 1+ 2a2z + 3a32%2 + ...

Therefore, the function

k2 (by — w(z
k% — biw(z)
satisfies the condition of Schwarz lemma, and we have

_de) Ko 2)
YO e e e

k?(by —
On the other hand, the transformation w = # maps |z| = r onto the disc with
—biz
centre '
olr) = k(1 — rg)Rebl’ k(1 —r?)Imb,
k2 — |by|?r2 k2 — [by|?r2
and radius
_ k(K — 1ba|*)r

p(’l")— k2—|b1|2'f‘2 -
Using the subordination principle, we have

(=) k2(1 —r?)b,
1) “mﬁ—{w@'MQ‘W—wmw

k(k? — [by )7
0 15.
< PR PR <r<

Now, we define the function ¢(z) by
g(z) _ k(b1 — ¢(2))
22 W)~ R 5igl)

Then ¢(z) is analytic and ¢(0) = 0. If we take the derivative from (2.2), after brief
calculations we get

g'(z) _ Kb —¢(2) | k(0o + K — 2b1¢(2))2¢'(2) ~ Pl(z)

2.3 = — — . .
e e T e —hete) (%~ 5:9(2)) H(2)
/ 1
On the other hand, since h(z) € C then h(z) satisfies the condition Re (z };l((zz))) > 3
: 1 h
(Theorem 1.1), then z% ) < = (2) = 1 — ¢(z), thus the equality (2.3) can

hz) S 12z zh(2)
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be written in the following form

o 9 R 9() | B(bP R - 20ip(2)edE)
O = W) T e —bez) (P —51(2))? (L= 4)

Now it is easy to realize that the subordination

9(z) _ K- 9(2) _ 9(z) Kb —2)

) T R —big(z) | hE) " Kbz

is equivalent to |¢(2)| < 1 for all z € D. Indeed, if we assume the contrary, then there
exists zg € 0D, such that |¢(z0)] = 1. So, by Jack lemma (Lemma 1.1), zo¢'(20) =
m¢(zp), m > 1. For such z; we have

_ 9'(%0)
w(z0) = h'(20)
k(b — ¢(2 k2(|b1]? + k2 — 2b1¢(20))mo(2
_ 2( 1 7¢( 0)) + (l 1| . il l¢( 02)) ¢( 0) . (1 _¢(ZO)) €W(D7),
k2 — b1¢(z0) (k? — b1¢(20))
but this contradicts with (2.1). So, our assumption is wrong, i.e., |¢(z)| < 1 for every
z € D. O
Remark 2.1. The solution set of the non-linear elliptic partial differential equation
- . k2(by —
fz = w(z)f, under the conditions |w(z)| < k, (0 <k < 1), w(z) < # can be
— b1z

denoted by

5= {f(Z) — h(2)+a(a)| 1) = K0 —90)

(2) k2 —big(2)

Corollary 2.1. Let f(z) = h(2) + g(z) be an element of B. Then
rF(k, |b1], —r) < |g(2)| < rF(k, [ba],7)

for some ¢(z) € Q and every z € ]D)}.

(2.4)
G(k, b1, —7) < |g'(2)| < G(k, |be],7)
k(|by| + kr)

(1—r)(k + [b1]r)

Proof. Since f(z) = h(z) + g(z) € B, we have

k(|by| + kr)

where F(k, |bi|,7) = (L1 —7)2(k+ |by|r)’

and G(k, |bi|,r) =

k(|b1| — kr) < ()| = g'(2) < k(|b1| + kr)
(k + [ba]r) h(z)| = (k+ |ba|r)
(2.5)
k([ba] — kr) _ ‘9(2) k(|b1] + Fr)
(k+[balr) ~ [h(z)| = (k+[ba|r)
Using Theorem 1.2 in the inequalities (2.4) we get (2.5). a

Corollary 2.2. Let f(z) = h(z) + g(z) be an element of B. Then

1
4F2(k’|b1|’r) < |‘]f| <

1
mﬂ(k, |b1],7)



QUASI CONFORMAL HARMONIC MAPPINGS RELATED TO CONVEX FUNCTIONS

where
_ [(k+Efby]) = ([ba] + &)r] [(k — k[ba]) — (|bs| — &?)r]
Fl(k7|b1|:r)_ (k—|b1|r)2
e [+ KfbaD) + (1] + K] [(5 — klba)) + (Il = K2)r]
. 1 1 r — K01 1| — R7)T
Fg(k,|b1|,7’)— (k—|—|b1|’r‘)2 .
Proof. Using Theorem 2.1, we can write
(2.7) Fy(k, [bal,7) < (1= w(2)?) < Fu(k, [ba], 7).
On the other hand
(2.8) Jp = W27 = |g'(2)? = [R'(2)P(1 — lw(2)[*)-

Considering (2.7), (2.8) and Theorem 1.2, after calculations we get (2.6).

Corollary 2.3. Let f(z) = h(2) + g(2) € B. Then

T T

/ k(1 — |b1]) + (|b1] — kQ)pdp <1fl < / k(1 + [b1]) + (Jb1] + k2)p

(29) @t )2k £ [5a]p) (= 22k + [balp)

Proof. Using Theorem 2.1 we obtain

k(1 [ba]) — (|ba] + #%)r k(L + [ba]) + (ba] + &%)

(2.10) k—|bi|r <@+ wl)l) < kE+ |bi|r
and
(2.11) k(1 — [ba]) + (1ba] — &7)r < (1- |w(2)]) < k(1= [B]) = (Jba] = K*)r

k + |b1 |7‘
On the other hand we have

(IR (2) = lg'(2)ldz| < dlf| < (W'(2)] + 19" (2)])|dz| =

k— |b1|7‘

(2.12) [R'(2)|(1 = |w(2)])ldz] < d|f| < [W(2)|(1 + |w(2)])|dz].
Considering (2.10), (2.11) and (2.12), after integration, we get (2.9).
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