QUASI CONFORMAL HARMONIC MAPPINGS RELATED TO CONVEX FUNCTIONS

ARZU YEMISCI

Presented at the 11th International Symposium GEOMETRIC FUNCTION THEORY AND APPLICATIONS 24-27 August 2015, Ohrid, Republic of Macedonia

ABSTRACT. Let $f(z) = h(z) + \overline{g(z)}$ be an univalent sense-preserving harmonic mapping in the open unit disc $\mathbb{D}=\{z\mid |z|<1\}.$ If f satisfies the condition $|\omega(z)|=$ $\left| \frac{g'(\bar{z})}{k'(z)}
ight| < k \ (0 \leq k < 1), ext{ then } f ext{ is called } k- ext{quasiconformal harmonic mapping in } \mathbb{D}$ $\left|\frac{1}{h'(z)}\right| < k \ (0 \le k < 1)$, then f is called k-quasicon [4]. The class of such mappings is denoted by $S_{H(k)}$.

The aim of this paper is to give some properties of the solution of non-linear partial differential equation $\overline{f_{\overline{z}}} = \omega(z) f_z$ under the condition $|\omega| < k$ ($0 \le k < 1$), $\omega(z)\prec rac{k^2(b_1-z)}{k^2-\overline{b_1}z},\ h(z)\in \mathcal{C}\ ext{and}\ h(z)\in \mathcal{K}.$ The proofs of this paper are based on the idea of Robinson [5].

1. INTRODUCTION

Let Ω be the family of functions $\phi(z)$ regular in the open unit disc $\mathbb D$ that satisfy the conditions $\phi(0) = 0$, $|\phi(z)| < 1$ for all $z \in \mathbb{D}$.

Next, let $\mathcal A$ denote the class of analytic functions of the form $s(z) = z + \sum_{n=1}^{\infty} c_n z^n$ in the open unit disc \mathbb{D} . Let \mathcal{P} designate the class of functions $p(z) = 1 + p_1 z + p_2 z^2 + \dots$

which are analytic, have positive real part in $\mathbb D$ and such that p(z) is in $\mathcal P$ if and only if

$$p(z)=rac{1+\phi(z)}{1-\phi(z)}$$

for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$.

Moreover, let C denote the family of functions $s(z) \in A$, such that s(z) is in C if and only if

$$1 + z \frac{s''(z)}{s'(z)} = p(z)$$

²⁰¹⁰ Mathematics Subject Classification. 30C45, 30C55.

Key words and phrases. Convex functions, Close-to-convex functions, Subordination principle, Growth theorem.

A. YEMISCI

for some $p(z) \in \mathcal{P}$ and all $z \in \mathbb{D}$. A function $s_1(z)$ from \mathcal{A} that satisfies the condition

$$Re\frac{s_1'(z)}{s_2'(z)} > 0,$$

where $s_2(z) \in C$, is called a close-to-convex function [2]. The class of all such functions is denoted by \mathcal{K} . Let $F_1(z)$ and $F_2(z)$ be elements of \mathcal{A} . If there exists a function $\phi(z) \in \Omega$ such that $F_1(z) = F_2(\phi(z))$ for every $z \in \mathbb{D}$, then we say that $F_1(z)$ is subordinate to $F_2(z)$ and we write $F_1(z) \prec F_2(z)$. Specially, if $F_2(z)$ is univalent in \mathbb{D} , then $F_1(z) \prec$ $F_2(z)$ if and only if $F_1(\mathbb{D}) \subset F_2(\mathbb{D})$ and $F_1(0) = F_2(0)$ implies $F_1(\mathbb{D}_r) \subset F_2(\mathbb{D}_r)$, where $\mathbb{D}_r = \{z \mid |z| < r, \quad 0 < r < 1\}$ (subordination and Lindelöf principle [2]).

Finally, a planar harmonic mapping in the open unit disc \mathbb{D} is a complex-valued harmonic function f, which maps \mathbb{D} onto the some planar domain $f(\mathbb{D})$. Since \mathbb{D} is a simply connected domain the mapping f has a canonical decomposition $f(z) = h(z) + \overline{g(z)}$, where h(z) and g(z) are analytic in \mathbb{D} and have the following power series expansions

$$h(z)=\sum_{n=0}^\infty a_n z^n,\qquad g(z)=\sum_{n=0}^\infty b_n z^n,$$

where $a_n, b_n \in C$, n = 0, 1, 2, ... As usual, we call h(z) the analytic part of f and g(z) the co-analytic part of f. An elegant and complete account of the theory of the harmonic mappings is given Duren's monograph [1]. Lewi proved in 1936 that the harmonic function f is locally univalent if and only if its Jacobian

$$J_f = |h'(z)|^2 - |g'(z)|^2$$

is different from zero in \mathbb{D} . In view of this result, locally univalent harmonic mappings in the open unit disc \mathbb{D} are either sense-preserving if |g'(z)| < |h'(z)| or sense-reversing if |g'(z)| > |h'(z)| in \mathbb{D} .

In this paper we will restrict ourselves to the study of sense-preserving harmonic mappings. We will also note that $f(z) = h(z) + \overline{g(z)}$ is sense-preserving in \mathbb{D} if and only if h'(z)does not vanish in \mathbb{D} and the second dilation $\omega(z) = \frac{g'(z)}{h'(z)}$ has the property $|\omega(z)| < 1$ for all $z \in \mathbb{D}$. Therefore the class of all sense-preserving harmonic mappings in the open unit disc \mathbb{D} with $a_0 = b_0 = 0$ and $a_1 = 1$ will be denoted by S_H . Thus, S_H contains standard class S of univalent functions. The family of all mappings S_H with additional property g'(0) = 0, i.e., $b_1 = 0$, is denoted by S_H^0 . Hence, it is clear that $S \subset S_H^0 \subset S_H$. For the aim of this paper we will need the following lemma and theorems.

Lemma 1.1. ([3]) Let $\phi(z)$ be a non-constant analytic function in the open unit disc \mathbb{D} with $\phi(0) = 0$. If $|\phi(z)|$ attains its maximum value on the circle |z| = r at z_0 , then $z_0 \cdot \phi'(z_0) = m\phi(z_0), m \ge 1$.

Theorem 1.1. ([2]) Let s(z) be an element of C. Then $Re\left(z\frac{s'(z)}{s(z)}\right) > \frac{1}{2}$.

Theorem 1.2. Let s(z) be an element of C. Then,

$$rac{r}{1+r} \leq |s(z)| \leq rac{r}{1-r}, \ rac{1}{(1+r)^2} \leq |s'(z)| \leq rac{1}{(1-r)^2}.$$

2. Main Results

Theorem 2.1. Let $f(z) = h(z) + \overline{g(z)}$ be an element of S_H and $h(z) \in C$. Then the solution of the non-linear elliptic partial differential equation $\overline{f_z} = \omega(z)f_z$ under the condition $|\omega(z)| < k \ (0 \le k < 1), \ \omega(z) \prec \frac{k^2(b_1 - z)}{k^2 - \overline{b_1}z}$ is

$$rac{g(z)}{h(z)}=rac{k^2(b_1-\phi(z))}{k^2-\overline{b_1}\phi(z)}, \hspace{1em} \phi(z)\in \Omega$$

Proof. We consider the linear transformation $w = \frac{k^2(b_1 - z)}{k^2 - b_1 z}$. This transformation maps |z| < k onto itself and

$$\omega(z) = \frac{(b_1 z + b_2 z^2 + \dots)'}{(z + a_2 z^2 + \dots)'} = \frac{b_1 + 2b_2 z + 3b_3 z^2 + \dots}{1 + 2a_2 z + 3a_3 z^2 + \dots} \implies \omega(0) = b_1$$

Therefore, the function

$$\phi(z)=rac{k^2(b_1-\omega(z))}{k^2-\overline{b_1}\omega(z)}$$

satisfies the condition of Schwarz lemma, and we have

$$\omega(z)=rac{g'(z)}{h'(z)}\precrac{k^2(b_1-z)}{k^2-\overline{b_1}z}.$$

On the other hand, the transformation $w=rac{k^2(b_1-z)}{k^2-\overline{b_1}z}$ maps |z|=r onto the disc with centre

$$C(r) = igg(rac{k^2(1-r^2)Reb_1}{k^2-|b_1|^2r^2}, rac{k^2(1-r^2)Imb_1}{k^2-|b_1|^2r^2}igg)$$

and radius

$$ho(r)=rac{k(k^2-|b_1|^2)r}{k^2-|b_1|^2r^2}.$$

Using the subordination principle, we have

$$(2.1) \qquad \omega(\mathbb{D}_r) = \left\{ \frac{g'(z)}{h'(z)} \mid \left| \omega(z) - \frac{k^2(1-r^2)b_1}{k^2 - |b_1|^2 r^2} \right| < \frac{k(k^2 - |b_1|^2)r}{k^2 - |b_1|^2 r^2}, \quad 0 < r < 1 \right\}.$$

Now, we define the function $\phi(z)$ by

(2.2)
$$\frac{g(z)}{h(z)} = \frac{k^2(b_1 - \phi(z))}{k^2 - \overline{b_1}\phi(z)}.$$

Then $\phi(z)$ is analytic and $\phi(0) = 0$. If we take the derivative from (2.2), after brief calculations we get

(2.3)
$$\omega(z) = \frac{g'(z)}{h'(z)} = \frac{k^2(b_1 - \phi(z))}{k^2 - \overline{b_1}\phi(z)} + \frac{k^2(|b_1|^2 + k^2 - 2b_1\phi(z))z\phi'(z)}{(k^2 - \overline{b_1}\phi(z))^2} \cdot \frac{h(z)}{zh'(z)}.$$

On the other hand, since $h(z) \in C$ then h(z) satisfies the condition $Re\left(z\frac{h'(z)}{h(z)}\right) > \frac{1}{2}$ (Theorem 1.1), then $z\frac{h'(z)}{h(z)} < \frac{1}{1-z} \Longrightarrow \frac{h(z)}{zh'(z)} = 1 - \phi(z)$, thus the equality (2.3) can A. YEMISCI

be written in the following form

$$\omega(z) = rac{g'(z)}{h'(z)} = rac{k^2(b_1-\phi(z))}{k^2-\overline{b_1}\phi(z)} + rac{k^2(|b_1|^2+k^2-2b_1\phi(z))z\phi'(z)}{(k^2-\overline{b_1}\phi(z))^2}\cdot(1-\phi(z)).$$

Now it is easy to realize that the subordination

$$\frac{g(z)}{h(z)} = \frac{k^2(b_1 - \phi(z))}{k^2 - \overline{b_1}\phi(z)} \Longleftrightarrow \frac{g(z)}{h(z)} \prec \frac{k^2(b_1 - z)}{k^2 - \overline{b_1}z}$$

is equivalent to $|\phi(z)| < 1$ for all $z \in \mathbb{D}$. Indeed, if we assume the contrary, then there exists $z_0 \in \partial \mathbb{D}_r$ such that $|\phi(z_0)| = 1$. So, by Jack lemma (Lemma 1.1), $z_0 \phi'(z_0) = m\phi(z_0), m \geq 1$. For such z_0 we have

$$egin{aligned} &\omega(z_0)=rac{g'(z_0)}{h'(z_0)}\ &=rac{k^2(b_1-\phi(z_0))}{k^2-\overline{b_1}\phi(z_0)}+rac{k^2(|b_1|^2+k^2-2b_1\phi(z_0))m\phi(z_0)}{(k^2-\overline{b_1}\phi(z_0))^2}\cdot(1-\phi(z_0))
ot\in\omega(\mathbb{D}_r), \end{aligned}$$

but this contradicts with (2.1). So, our assumption is wrong, i.e., $|\phi(z)| < 1$ for every $z \in \mathbb{D}$.

Remark 2.1. The solution set of the non-linear elliptic partial differential equation $\overline{f}_{\overline{z}} = \omega(z)f_z$ under the conditions $|\omega(z)| < k$, $(0 \le k < 1)$, $\omega(z) \prec \frac{k^2(b_1 - z)}{k^2 - \overline{b_1}z}$ can be denoted by

$$\mathcal{B}=\left\{f(z)=h(z)+\overline{g(z)}\,|\, rac{g(z)}{h(z)}=rac{k^2(b_1-\phi(z))}{k^2-\overline{b_1}\phi(z)} ext{ for some } \phi(z)\in\Omega ext{ and every } z\in\mathbb{D}
ight\}$$

Corollary 2.1. Let $f(z) = h(z) + \overline{g(z)}$ be an element of \mathcal{B} . Then

$$\left. \left. \begin{array}{l} rF(k,|b_1|,-r) \leq |g(z)| \leq rF(k,|b_1|,r) \ \\ G(k,|b_1|,-r) \leq |g'(z)| \leq G(k,|b_1|,r) \end{array}
ight\}$$

where
$$F(k,|b_1|,r) = rac{k(|b_1|+kr)}{(1-r)(k+|b_1|r)}$$
 and $G(k,|b_1|,r) = rac{k(|b_1|+kr)}{(1-r)^2(k+|b_1|r)}.$

Proof. Since $f(z) = h(z) + \overline{g(z)} \in \mathcal{B}$, we have

(2.5)
$$\frac{k(|b_1| - kr)}{(k + |b_1|r)} \le |\omega(z)| = \left|\frac{g'(z)}{h'(z)}\right| \le \frac{k(|b_1| + kr)}{(k + |b_1|r)} \\ \frac{k(|b_1| - kr)}{(k + |b_1|r)} \le \left|\frac{g(z)}{h(z)}\right| \le \frac{k(|b_1| + kr)}{(k + |b_1|r)} \right\}.$$

Using Theorem 1.2 in the inequalities (2.4) we get (2.5).

Corollary 2.2. Let $f(z) = h(z) + \overline{g(z)}$ be an element of \mathcal{B} . Then

(2.6)
$$\frac{1}{(1+r)^4}F_2(k,|b_1|,r) \le |J_f| \le \frac{1}{(1-r)^4}F_1(k,|b_1|,r)$$

 74

(2.4)

where

$$F_1(k,|b_1|,r) = rac{ig[(k+k|b_1|)-(|b_1|+k^2)rig]ig[(k-k|b_1|)-(|b_1|-k^2)rig]}{(k-|b_1|r)^2}$$

and

$$F_2(k,|b_1|,r) = rac{ig[(k+k|b_1|)+(|b_1|+k^2)rig]ig[(k-k|b_1|)+(|b_1|-k^2)rig]}{(k+|b_1|r)^2}.$$

Proof. Using Theorem 2.1, we can write

(2.7)
$$F_2(k,|b_1|,r) \leq (1-|\omega(z)|^2) \leq F_1(k,|b_1|,r)$$

On the other hand

(2.8)
$$J_f = |h'(z)|^2 - |g'(z)|^2 = |h'(z)|^2 (1 - |\omega(z)|^2).$$

Considering (2.7), (2.8) and Theorem 1.2, after calculations we get (2.6).

Corollary 2.3. Let $f(z) = h(z) + \overline{g(z)} \in \mathcal{B}$. Then

(2.9)
$$\int_{0}^{r} \frac{k(1-|b_{1}|)+(|b_{1}|-k^{2})\rho}{(1+\rho)^{2}(k+|b_{1}|\rho)}d\rho \leq |f| \leq \int_{0}^{r} \frac{k(1+|b_{1}|)+(|b_{1}|+k^{2})\rho}{(1-\rho)^{2}(k+|b_{1}|\rho)}d\rho.$$

Proof. Using Theorem 2.1 we obtain

$$(2.10) \qquad \frac{k(1+|b_1|)-(|b_1|+k^2)r}{k-|b_1|r} \le (1+|\omega(z)|) \le \frac{k(1+|b_1|)+(|b_1|+k^2)r}{k+|b_1|r}$$

and

$$(2.11) \qquad \quad \frac{k(1-|b_1|)+(|b_1|-k^2)r}{k+|b_1|r} \leq (1-|\omega(z)|) \leq \frac{k(1-|b_1|)-(|b_1|-k^2)r}{k-|b_1|r}.$$

On the other hand we have

$$(|h'(z)|-|g'(z)|)|dz|\leq d|f|\leq (|h'(z)|+|g'(z)|)|dz|\Longrightarrow$$

$$(2.12) |h'(z)|(1-|\omega(z)|)|dz| \le d|f| \le |h'(z)|(1+|\omega(z)|)|dz|.$$

Considering (2.10), (2.11) and (2.12), after integration, we get (2.9).

References

- P.L. DUREN: Harmonic Mappings in the Plane, Vol. 156 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge UK, 2004.
- [2] A.W. GOODMAN: Univalent Functions, Volume I and Volume II, Mariner publishing Company INC, Tampa Florida, 1983.
- [3] I.S. JACK: Functions Starlike and Convex of order a, J. London Math. Soc. (2) 3 (1971) 469-474.
- [4] D. KALAJ: Quasiconformal Harmonic Mappings and Close-to-convex Domains, Filomat 24(1) (2010), 63-68.
- [5] R.M. ROBINSON: Univalent majorants, Trans. Amer. Math. Soc.. 61 (1947), 1-35.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES ISTANBUL KULTUR UNIVERSITY ISTANBUL, TURKEY *E-mail address*: a.sen@iku.edu.tr