

GROWTH AND DISTORTION THEOREMS FOR GENERALIZED *q*-STARLIKE FUNCTIONS

YAŞAR POLATOĞLU

Presented at the 11th International Symposium GEOMETRIC FUNCTION THEORY AND APPLICATIONS 24-27 August 2015, Ohrid, Republic of Macedonia

ABSTRACT. For every $q \in (0,1)$ we define a class of analytic functions, so called q-starlike functions on the open unit disc $\mathbb{D} = \{z | \quad |z| < 1\}$. This class was introduced by M.E.H. Ismail, E. Merkes and D.Styer [4]. In the present paper we will give basic characterization, growth theorem and distortion theorem for this class.

1. INTRODUCTION

Let Ω be the family of functions which are regular in \mathbb{D} and satisfying the conditions $\phi(0) = 0$, $|\phi(z)| < 1$ for every $z \in \mathbb{D}$, and let \mathcal{A} be the class of functions $s(z) = z + c_2 z^2 + c_3 z^3 + \cdots$ which are regular in \mathbb{D} . Let $s_1(z)$ and $s_2(z)$ be an element of \mathcal{A} , if there exists a function $\phi(z) \in \Omega$ such that $s_1(z) = s_2(\phi(z))$ for every $z \in \mathbb{D}$, then we say that $s_1(z)$ subordinate to $s_2(z)$ and we write $s_1(z) \prec s_2(z)$. We also note that if $s_2(z)$ is univalent in \mathbb{D} , then $s_1(z) \prec s_2(z)$ if and only if $s_1(0) = s_2(0), s_1(\mathbb{D}) \subset s_2(\mathbb{D})$ implies $s_1(\mathbb{D}_r) \subset s_2(\mathbb{D}_r)$ where $\mathbb{D}_r = \{z \mid |z| < r, 0 < r < 1\}$. Let $s_1(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $s_2(z) = z + \sum_{n=2}^{\infty} b_n z^n$ be elements of \mathcal{A} , then the convolution of these functions is defined by

$$s_1(z) * s_2(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$

Denote by \mathcal{P} the family of functions $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ in \mathbb{D} and such that p(z) is in \mathcal{P} if and only if

$$p(z) \prec rac{1+z}{1-z} \Leftrightarrow p(z) = rac{1+\phi(z)}{1+\phi(z)}$$

for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$ [3].

²⁰¹⁰ Mathematics Subject Classification. 30C45. Key words and phrases. Starlike function, q-starlike function, distortion theorem, growth theorem.

Y. POLATOĜLU

For analytic function s(z) in \mathbb{D} , we recall here q-fractional calculus. If $\mu \in \mathbb{R}$ is fixed a subset B of \mathbb{C} is called μ -geometric if $\mu z \in B$ whenever $z \in B$. If a subset B of \mathbb{C} is a μ -geometric then it contains all geometric sequences $\{z\mu^n\}_{n=0}^{\infty}$, $z \in B$. Let s be a function, real or complex valued, defined on a q-geometric set B, $|q| \neq 1$. The qdifference operator, which was reintroduced by Jackson, F. H., and may go back to E. Heine or Euler [1] defined by

(1.1)
$$D_q s(z) = \frac{s(z) - s(qz)}{z - qz} \quad ext{for} \quad z \in B/\{0\}.$$

The q-difference operator (1.1) sometimes called Jackson q-difference operator. If $0 \in A$, the q-derivative at zero is defined for |q| < 1 by

$$D_q s(0) = \lim_{n o \infty} rac{s(zq^n) - s(0)}{zq^n} \quad ext{for} \quad z \in B/\{0\}.$$

Provided the limit exists and does not depend on z. In addition, the q-derivative at zero defined by |q| > 1 by

$$D_q s(0) = D_{q^{-1}} s(0)$$

Under the hypotheses of the definition of q-difference operator then we have the following rules [1].

$$\begin{array}{ll} (1) & D_q z^k = \frac{1-q^k}{1-q} . z^{k-1} \\ (2) & D_q (s_1(z) + s_2(z)) = D_q s_1(z) + D_q s_2(z) \\ (3) & D_q (s_1(z) - s_2(z)) = D_q s_1(z) - D_q s_2(z) \\ (4) & D_q (s_1(z) . s_2(z)) = s_2(qz) D_q s_1(z) + s_1(z) D_q s_2(z) \\ D_q (s_1(z) . s_2(z)) = s_1(qz) D_q s_2(z) + s_2(z) D_q s_1(z) \\ (5) & D_q (\frac{s_1(z)}{s_2(z)}) = \frac{s_2(z) D_q s_1(z) - s_1(z) D_q s_2(z)}{s_2(qz) . s_2(z)} \\ \end{array}$$

Let s(z) be an element of A, if s(z) satisfies the condition

$$\left|z\frac{D_qs(z)}{s(z)}-\frac{1}{1-q}\right|\leq \frac{1}{1-q},$$

for all $z \in \mathbb{D}$, then s(z) is called q-starlike function in \mathbb{D} , the class of such functions will be denoted by S_q^{\star} . Clearly, $D_q \to \frac{d}{\phi(z)}$ as $q \to 1^-$.

Theorem 1.1. ([4]) For a function s(z) to belongs S_q^* it is necessary and sufficient that

$$\left|\frac{s(qz)}{s(z)}\right| \le 1$$

for all $z \in \mathbb{D}$.

2. MAIN RESULTS

Theorem 2.1. Let s(z) be an element of A, then we have $s(z) \in S_a^*$ if and only if

$$zrac{D_q s(z)}{s(z)}\prec rac{1+z}{1-qz}.$$

Proof. Let s(z) be an element of S_q^{\star} . Then we have

$$\left|z\frac{D_qs(z)}{s(z)} - \frac{1}{1-q}\right| \leq \frac{1}{1-q} \Leftrightarrow \left|z\frac{D_qs(z)}{s(z)} - M\right| \leq M, M = \frac{1}{1-q}, M > 1.$$

Therefore, the function

$$\Psi(z)=rac{1}{M}zrac{D_q s(z)}{s(z)}-1$$

has modulus at most 1 in the unit disc \mathbb{D} and so

(2.1)
$$\phi(z) = \frac{\Psi(z) - \Psi(0)}{1 - \overline{\Psi(0)}} = \frac{\frac{1}{M} z \frac{D_q s(z)}{s(z)} - (\frac{1}{M} - 1)}{1 - (\frac{1}{M} - 1)(\frac{1}{M} z \frac{D_q s(z)}{s(z)} - 1)}$$

Then $\phi(0) = 0, \, |\phi(z)| < 1$ and by the Schwarz lemma,

$$(2.2) |\phi(z)| \le |z|.$$

From (2.1) and (2.2) we obtain

(2.3)
$$z \frac{D_q s(z)}{s(z)} = \frac{1 + \phi(z)}{1 - (1 - \frac{1}{M})\phi(z)} = \frac{1 + \phi(z)}{1 - q\phi(z)}.$$

The equality (2.3) shows that

$$z rac{D_q s(z)}{s(z)} \prec rac{1+z}{1-qz}.$$

Conversely $z\frac{D_qs(z)}{s(z)}\prec \frac{1+z}{1-qz}.$ Then we have

$$zrac{D_q s(z)}{s(z)} = rac{1+\phi(z)}{1-(1-rac{1}{M})\phi(z)} \Rightarrow zrac{D_q s(z)}{s(z)} - M = Mrac{rac{1-M}{M}+\phi(z)}{1+rac{1-M}{M}\phi(z)}$$

On the other hand, the function $\left(\frac{\frac{1-M}{M}+\phi(z)}{1+\frac{1-M}{M}\phi(z)}\right)$ maps the unit circle onto itself. So,

$$igg| z rac{D_q s(z)}{s(z)} - M igg| = |M rac{1-M}{M} + \phi(z)| < M \Rightarrow \ igg| z rac{D_q s(z)}{s(z)} - rac{1}{1-q} igg| < rac{1}{1-q}.$$

Corollary 2.2. Let s(z) be an element of S_q^{\star} . Then

(2.4)
$$\frac{1-r}{1+qr} \le \left| z \frac{D_q s(z)}{s(z)} \right| \le \frac{1+r}{1-qr}$$

Proof. The linear transformation $w(z) = \frac{1+z}{1-qz}$ maps |z| = r onto the circle with the centre $C(r) = \left(\frac{1+q^2r^2}{1-q^2r^2}, 0\right)$ and the radius $\rho(r) = \frac{2qr}{1-q^2r^2}$. Using the subordination principle, we have

$$\left|zrac{D_q s(z)}{s(z)} - rac{1+q^2r^2}{1-q^2r^2}
ight| \leq rac{2qr}{1-q^2r^2},$$

which gives (2.4).

Corollary 2.3. The radius of q-starlike of the class S_q^* is $R_{ST} = \frac{1}{q}$. This radius is sharp due to the extremal function is $s(z) = \frac{1+z}{1-qz}$.

Y. POLATOĜLU

Proof. Since

$$\left|z \frac{D_q s(z)}{s(z)} - \frac{1+q^2 r^2}{1-q^2 r^2}\right| \leq \frac{2qr}{1-q^2 r^2},$$

we have

$$\operatorname{Re} \, \left(z rac{D_q s(z)}{s(z)}
ight) \geq rac{1-qr}{1+qr}.$$

Hence, for $r < R_{ST}$ the right hand side of the preceding inequality is positive, implying that

$$R_{ST} = \frac{1}{q}.$$

Theorem 2.4. Let s(z) be an element of S_q^{\star} . Then

(2.5)
$$\frac{r-q}{1-rq} \le \left|\frac{s(qz)}{s(z)}\right| \le \frac{r+q}{1+rq}$$

Proof. Since

$$w(z) = \frac{s(qz)}{s(z)} = \frac{qz + a_2q^2z^2 + a_3q^3z^3 + \cdots}{z + a_2z^2 + a_3z^3 + \cdots} = \frac{q + a_2q^2z + a_3q^3z^2 + \cdots}{1 + a_2z + a_3z^2 + \cdots} \Rightarrow w(0) = q$$

and using Theorem 1.1, the function

(2.6)
$$\phi(z) = \frac{w(z) - w(0)}{1 - \overline{w(0)} \cdot w(z)} = \frac{w(z) - q}{1 - qw(z)}$$

satisfies the conditions: $\phi(0) = 0$ and $|\phi(z)| < 1$ for all $z \in \mathbb{D}$. Therefore, by Schwarz lemma,

$$(2.7) \qquad \qquad |\phi(z)| \le |z|$$

From (2.6) and (2.7) we obtain

$$w(z)=rac{q+\phi(z)}{1+q\phi(z)}\Leftrightarrow w(z)=rac{s(qz)}{s(z)}<rac{q+z}{1+qz}.$$

On the other hand, the linear transformation $w(z) = \frac{q+z}{1+qz}$ maps |z| = r onto the circle with the centre $C(r) = \left(\frac{q(1-r^2)}{1-r^2q^2}, 0\right)$ and the radius $\rho(r) = \frac{r(1-q^2)}{1-r^2q^2}$. Using subordination principle, then we can write

$$\left| rac{s(qz)}{s(z)} - rac{q(1-r^2)}{1-r^2q^2}
ight| \leq rac{r(1-q^2)}{1-r^2q^2},$$

which gives (2.5).

10

PREPARATION: Let $s(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ be defined on a q-geometric set B, $|q| \neq 1$. Using the rule (1), then we can write

$$\begin{split} s(z) &= z + a_2 z^2 + a_3 z^3 + \ldots + a_n z^n + \cdots \\ D_q s(z) &= D_q z + a_2 D_q z^2 + a_3 D_q z^3 + \ldots + a_n D_q z^n + \cdots \\ &= \frac{1-q}{1-q} z^{1-1} + a_2 \frac{1-q^2}{1-q} z^{2-1} + a_3 \frac{1-q^3}{1-q} z^{3-1} + \ldots + a_n \frac{1-q^n}{1-q} z^{n-1} + \ldots \\ &= 1 + a_2 \frac{1-q^2}{1-q} z + a_3 \frac{1-q^3}{1-q} z^2 + \ldots + a_n \frac{1-q^n}{1-q} z^{n-1} + \ldots \Rightarrow \\ D_q s(z) &= 1 + a_2 \frac{1-q^2}{1-q} z + a_3 \frac{1-q^3}{1-q} z^2 + \ldots + a_n \frac{1-q^n}{1-q} z^{n-1} + \ldots \\ z D_q s(z) &= z + a_2 \frac{1-q^2}{1-q} z^2 + a_3 \frac{1-q^3}{1-q} z^3 + \ldots + a_n \frac{1-q^n}{1-q} z^n + \ldots \Rightarrow \\ D^q s(z) &= z D_q s(z) = z + \sum_{n=2}^{\infty} a_n \frac{1-q^n}{1-q} z^n \end{split}$$

On the other hand, if $s_1(z) = \frac{z}{1-z}$, then we have

$$D^qs(z)=z+\sum_{n=2}^\inftyrac{1-q^n}{1-q}z^n.$$

Therefore, using the definition of convolution we can write

$$D^q s(z) = z D_q s(z) = z + \sum_{n=2}^{\infty} a_n \frac{1-q^n}{1-q} z^n = s(z) * s_1(z).$$

Theorem 2.5. Let s(z) be an element of S_q^{\star} . Then

(2.8)
$$\left(\frac{q-q^k}{1-q}\right)^2 |a_k|^2 \le (1+q)^2 + \sum_{n=2}^{k-1} \left(\frac{1+q}{1-q}\right) (1-q^{2n}) |a_n|^2.$$

Proof. Using Theorem 2.1 and preparation, then we can write

$$\frac{D^q s(z)}{s(z)} = \frac{1+\phi(z)}{1-q\phi(z)} \Leftrightarrow D^q s(z) - q\phi(z)D^q s(z) = s(z) + \phi(z)s(z) \Rightarrow$$
$$\sum_{n=2}^k a_k \left(\frac{q-q^n}{1-q}\right) z^n + \sum_{n=k+1}^\infty c_n z^n = \phi(z) \left(\sum_{n=1}^{k-1} a_n (\frac{q-q^{n+1}}{1-q}) z^n\right)$$

where the sum $(\sum_{k=n+1}^{\infty} c_k z^k)$ is convergent in \mathbb{D} . Let $z = r e^{i\theta}$. Then, since $|\phi(z)| < 1$,

(2.9)
$$\sum_{n=2}^{k} \left(\frac{q-q^{n}}{1-q}\right)^{2} |a_{n}|^{2} r^{2k} \leq \sum_{n=1}^{k-1} \left(\frac{q-q^{n+1}}{1-q}\right)^{2} |a_{n}|^{2} r^{2k}.$$

Passing to the limit in (2.9) as $r \to 1$ we conclude that

$$\sum_{n=2}^{k} \left(\frac{q-q^{n}}{1-q}\right)^{2} |a_{n}|^{2} \leq \sum_{n=1}^{k-1} \left(\frac{q-q^{n+1}}{1-q}\right)^{2} |a_{n}|^{2}$$

and we have (2.6). The proof of this theorem is based on a method introduced by Clunie [2]. $\hfill \Box$

Y. POLATOĞLU

References

- [1] A. W. GOODMAN: On uniformly convex functions, Annal. Polon. Math. 56(1991), 87-92.

- [1] A. W. GOODMAN. On uniformly convex functions, Annal. Foldi. Math. 36(1351), 07 52.
 [2] A. W. GOODMAN: On uniformly starlike functions, J. Math. Anal. Appl. 155(1991), 364-370.
 [3] W. MA, D. MINDA: Uniformly convex functions, Annal. Polon. Math. 57(1992), 165-175.
 [4] F. RØNNING: Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118(1993), 189-196.

Department of Mathematics and Computer Sciences, İstanbul Kültür University, Istanbul, Turkey $E\text{-}mail \ address: \texttt{y.polatoglu@iku.edu.tr}$