

SOME PROPERTIES OF THE SOLUTION SET OF THE NON-LINEAR ELLIPTIC DIFFERENTIAL EQUATION $\overline{f_z} = w(z)f_z$

H. ESRA ÖZKAN UÇAR

Presented at the 11th International Symposium GEOMETRIC FUNCTION THEORY AND APPLICATIONS 24-27 August 2015, Ohrid, Republic of Macedonia

ABSTRACT. Let $f = f + \overline{g}$ be the sense-preserving harmonic mapping, then it satisfies that non-linear elliptic differential equation $\overline{f_z} = w(z)f_z$. We will obtain the solution of this differential equation by using subordination method, under the condition $w(z) = \frac{g'(z)}{h'(z)} \prec b_1 \left(\frac{1+Az}{1+Bz}\right)^{\alpha}$, $\alpha \ge 0$, $-1 \le B < A \le 1$, and we will investigate the properties of the solution of this differential equation.

1. Introduction

Let Ω be the family of functions $\phi(z)$ regular in the disc \mathbb{D} and satisfying the conditions $\phi(0) = 0$, $|\phi(z)| < 1$ for all $z \in \mathbb{D}$. Next, \mathcal{A} is denote the class of analytic functions of the form $s(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ in the open unit disc \mathbb{D} . Let $\mathcal{P}(\mathcal{A}, \mathcal{B})(1 - \leq \mathcal{B} < \mathcal{A} \leq 1)$ designate the class of functions $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ which are analytic, have positive real part in \mathbb{D} , and such that p(z) is in $\mathcal{P}(\mathcal{A}, \mathcal{B})$ if and only if

$$p(z)=rac{1+A\phi(z)}{1+B\phi(z)}$$

for some $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$.

Moreover, let C denote the family of functions $s(z) \in A$ and such that s(z) is in C if and only if

$$1+zrac{s^{\prime\prime}(z)}{s^{\prime}(z)}=p(z)$$

for some p(z) is in \mathcal{P} and all $z \in \mathbb{D}$, and let $s_1(z)$ be an element of \mathcal{A} and satisfies the condition

$$Re\left(rac{s_1'(z)}{s_1(z)}
ight)>0,$$

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Distortion theorem, growth theorem, complex dilatation.

H. E. ÖZKAN UÇAR

where $s_2(z) \in C$, then $s_1(z)$ is called close-to-convex function. The class of such functions is denoted by \mathcal{K} . Let $F_1(z)$ and $F_2(z)$ be an elements of \mathcal{A} , if there exists a function $\phi(z) \in \Omega$ such that $F_1(z) = F_2(\phi(z))$ for all $z \in \mathbb{D}$, then we say that $F_1(z)$ is subordinate to $F_2(z)$ and we write $F_1(z) \prec F_2(z)$ if and only if $F_1(\mathbb{D}) \subset F_2(\mathbb{D})$ and $F_1(0) = F_2(0)$ implies $F_1(\mathbb{D}_r) \subset F_2(\mathbb{D}_r)$, where $\mathbb{D}_r = \{z | |z| < r, 0 < r < 1\}$. (Subordination and Lindelof principle[2]).

Finally, a planar harmonic mapping in the open unit disc \mathbb{D} is a complex-valued harmonic function f, which maps \mathbb{D} onto the some planar domain $f(\mathbb{D})$. Since \mathbb{D} is a simply-connected domain the mapping f has a canonical decomposition $f(z) = h(z) + \overline{g(z)}$, where h(z) and g(z) are analytic in \mathbb{D} and have the following power series expansions

$$h(z) = \sum_{n=0}^{\infty} a_n z^n, \quad g(z) = \sum_{n=0}^{\infty} b_n z^n,$$

where $a_n, b_n \in C$, n = 0, 1, 2, 3, ... as usual we call h(z) the analytic part of f(z) and g(z) is co-analytic part of f(z). An elegant and complete account of the theory of harmonic mappings is given in Duren's monograph [1] proved in 1936 that the harmonic function f(z) is locally univalent in \mathbb{D} if and only if its Jacobian

$$J_f = |h'(z)|^2 - |g'(z)|^2$$

is different from zero in \mathbb{D} . In view of this result, locally univalent harmonic mappings in the open unit disc \mathbb{D} are either sense-reserving if |g'(z)| > |h'(z)| in \mathbb{D} or sense-preserving if |g'(z)| < |h'(z)| in \mathbb{D} .

Throughout this paper we will restrict ourselves to the study of sense-preserving harmonic mappings. We will also note that $f(z) = h(z) + \overline{g(z)}$ is sense-preserving in \mathbb{D} if and only if h'(z) doesn't vanish in \mathbb{D} and the second dilatation $w(z) = \frac{g'(z)}{h'(z)}$ has the property |w(z)| < 1 for all $z \in \mathbb{D}$. Therefore, the class of all sense-preserving harmonic mappings in the open unit disc with $a_0 = b_0 = 0$ and $a_1 = 1$ will be denoted by S_H . Thus S_H contains standard class S of univalent functions. The family of all mappings $f \in S_H$ with the additional property g'(0) = 0, i.e., $b_1 = 0$ is denoted by S_H^0 . Hence it is clear that $S \subset S_H^0 \subset S_H$.

We consider the following class of harmonic mappings

$$\mathcal{S}_{HK(A,B)} = \left\{f = h + \overline{g}|w(z) = rac{g'(z)}{h'(z)} \prec b_1\left(rac{1+Az}{1+Bz}
ight)^lpha, lpha \ge 0, -1 \le B < A \le 1, h(z) \in \mathcal{C}
ight\}.$$

The class of $S_{HK(A,B)}$ is the solution set of the non-linear elliptic partial differential equation $\overline{f_z} = w(z)f_z$ under the conditions $\frac{g'(z)}{h'(z)} \prec b_1 \left(\frac{1+Az}{1+Bz}\right)^{\alpha}$, $\alpha \ge 0, -1 \le B < A \le 1$, $h(z) \in C$. The aim of this paper is to investigate the class of $S_{H(K(B))}$, for this aim we need the following lemma and theorems.

Lemma 1.1. ([3]) Let $\phi(z)$ be a non-constant and analytic function in the unit disc \mathbb{D} with $\phi(0) = 0$. If $|\phi(z)|$ attains its maximum value on the circle |z| = r at the point z_0 , then $z_0\phi'(z_0) = m\phi(z_0)$, $m \ge 1$. **Theorem 1.2** ([2]). Let h(z) be an element of C, then

$$egin{aligned} rac{r}{1+r} &\leq |h(z)| \leq rac{r}{1-r}, \ rac{r}{(1+r)^2} &\leq |h'(z)| \leq rac{r}{(1-r)^2} \ Re\left(zrac{h'(z)}{h(z)}
ight) > rac{1}{2}. \end{aligned}$$

and

2. Main Results

Theorem 2.1. Let $f = h(z) + \overline{g(z)}$ be an element of $S_{HK(A,B)}$, then

$$\frac{g(z)}{h(z)} \prec b_1 \left(\frac{1+Az}{1+Bz}\right)^{\alpha}$$

where $b_1 \in \mathbb{R}$, $lpha \geq 0$, $-1 \leq B < A \leq 1$.

Proof. Since $f = h(z) + \overline{g(z)} \in \mathcal{S}_{HK(A,B)}$, then we have

$$\frac{g'(z)}{h'(z)} \prec b_1 \left(\frac{1+Az}{1+Bz}\right)^{\alpha}$$

and

$$Re\left(zrac{h'(z)}{h(z)}
ight)>rac{1}{2}\Rightarrow zrac{h'(z)}{h(z)}\precrac{1}{1-z}\Rightarrow \left|zrac{h'(z)}{h(z)}-rac{1}{1-r^2}
ight|\leqrac{r}{1-r^2},$$

therefore the boundary value of $\left(z\frac{h'(z)}{h(z)}\right)$ on the circle is $\left(\frac{1+re^{i\theta}}{1-r^2}\right)$. On the other hand, if we investigate the properties of the linear transformation $\left(\frac{1+Az}{1+Bz}\right)^{\alpha}$, and using subordination principle or Lindelöf principle with 0 < r < 1, $0 < \frac{1-Ar}{1-Br} < 1$, $\frac{1+Ar}{1+Br} > 1$ we obtain

$$\left(rac{1-Ar}{1-Br}
ight)^lpha \leq rac{1-Ar}{1-Br} < |p(z)| \leq rac{1+Ar}{1+Br} \leq \left(rac{1+Az}{1+Bz}
ight)^lpha.$$

Therefore

$$(2.1) \quad w(\mathbb{D}_r) = \left\{ \frac{g'(z)}{h'(z)} \middle| \left(\frac{1-Ar}{1-Br} \right)^{\alpha} \le \frac{1-Ar}{1-Br} < \left| \frac{g'(z)}{h'(z)} \right| \le \frac{1+Ar}{1+Br} \le \left(\frac{1+Az}{1+Bz} \right)^{\alpha} \right\},$$

where $lpha \geq 0, \, -1 \leq B < A \leq 1, \, 0 < r < 1$. Now we define the function $\phi(z)$ by

$$rac{g(z)}{h(z)} = b_1 \left(rac{1+A\phi(z)}{1+B\phi(z)}
ight)^lpha$$
 ,

then $\phi(z)$ analytic and $\phi(0)=0$. Now, it is easy to realize that the subordination

$$rac{g(z)}{h(z)} = b_1 \left(rac{1+A\phi(z)}{1+B\phi(z)}
ight)^c$$

is equivalent to $|\phi(z)| < 1$ for all $z \in \mathbb{D}$. Indeed assume the contrary that there exists a $z_0 \in \mathbb{D}$ such that $|\phi(z_0)| = 1$. then by using I. S. Jack Lemma we have

$$w(z_0) = \frac{g'(z_0)}{h'(z_0)} = b_1 \left(\frac{1 + A\phi(z_0)}{1 + B\phi(z_0)}\right)^{\alpha} \left(1 + \frac{k\alpha(A - B)\phi(z_0)}{(1 + A\phi(z_0))(1 + B\phi(z_0))} \cdot \frac{1 - r^2}{1 + re^{i\theta}}\right) \notin w(\mathbb{D}_r)$$

because $|\phi(z_0)| = 1$, $k \ge 1$ and the relation (2.1). But this is contradiction to the condition of the definition of $S_{HK(A,B)}$ and so assumption is wrong, i.e., $|\phi(z)| < 1$ for all $z \in \mathbb{D}$.

Corollary 2.2. Let $f = h(z) + \overline{g(z)}$ be an element of $S_{HK(A,B)}$ then

 $(2.2) rF(A,B,-r) \leq |g(z)| \leq rF(A,B,r),$

$$(2.3) rG(A,B,-r) \leq |g'(z)| \leq rG(A,B,r),$$

where

$$F(A,B,r)=rac{1}{1-r}\left(rac{1+Ar}{1+Br}
ight)^lpha,$$

 $G(A,B,r)=rac{1}{1-r}^2\left(rac{1+Ar}{1+Br}
ight)^lpha.$

Proof. Since $\frac{g(z)}{h(z)} \prec b_1 \left(\frac{1+Ar}{1+Br}\right)^{\alpha}$, and $\frac{g'(z)}{h'(z)} \prec b_1 \left(\frac{1+Ar}{1+Br}\right)^{\alpha}$ then we have (using Theorem 2.1)

$$(2.4) |h(z)| \left(\frac{1-Ar}{1-Br}\right)^{\alpha} \le |g(z)| \le |h(z)| \left(\frac{1+Ar}{1+Br}\right)^{\alpha},$$

$$(2.5) |h'(z)| \left(\frac{1-Ar}{1-Br}\right)^{\alpha} \le |g'(z)| \le |h'(z)| \left(\frac{1+Ar}{1+Br}\right)^{\alpha}$$

If we use Theorem 2.1 in the inequalities (2.4) and (2.5), then we obtain (2.2) and (2.3). $\hfill\square$

Corollary 2.3. Let $f = h(z) + \overline{g(z)}$ be an element of $S_{HK(A,B)}$ then (2.6) $r^2 F(A, B, -r) \leq J_f \leq r^2 F(A, B, r),$

where

$$F(A,B,r) = rac{1}{(1+r)^4} \left[1 - \left(rac{1+Ar}{1+Br}
ight)^{2lpha}
ight].$$

Proof. Using Theorem 2.1 we can write

$$\left(rac{1-Ar}{1-Br}
ight)^lpha = |w(z)| = \left|rac{g'(z)}{h'(z)}
ight| \leq \left(rac{1+Ar}{1+Br}
ight)^lpha.$$

Therefore we have

(2.7)
$$\left[1-\left(\frac{1+Ar}{1+Br}\right)^{2\alpha}\right] \leq \left(1-|w(z)|^2\right) \leq \left[1-\left(\frac{1-Ar}{1-Br}\right)^{2\alpha}\right].$$

On the other hand

(2.8)
$$J_f(z) = |h'(z)|^2 - |g'(z)|^2 = |h'(z)|^2(1 - |w(z)|^2).$$

considering (2.7), (2.8) and Theorem 2.1 we get (2.6).

Corollary 2.4. If $f = h(z) + \overline{g(z)} \in S_{HK(A,B)}$, then

$$(2.9) \quad \int_0^r \frac{\rho}{(1+\rho)^2} \left(1 - \left(\frac{1+A\rho}{1+B\rho}\right)^{\alpha}\right) d\rho \le |f| \le \int_0^r \frac{\rho}{(1-\rho)^2} \left(1 + \left(\frac{1+A\rho}{1+B\rho}\right)^{\alpha}\right) d\rho.$$

16

Proof. Since

$$(2.10) 1 + \left(\frac{1-A\rho}{1-B\rho}\right)^{\alpha} \le 1 + |w(z)| \le 1 + \left(\frac{1+A\rho}{1+B\rho}\right)^{\alpha},$$

$$(2.11) 1-\left(\frac{1+A\rho}{1+B\rho}\right)^{\alpha}\leq 1-|w(z)|\leq 1-\left(\frac{1-A\rho}{1-B\rho}\right)^{\alpha},$$

and $(|h'(z)| - |g'(z)|)|dz| \le |df| \le (|h'(z)| + |g'(z)|)|dz| \Rightarrow$

$$(2.12) |h'(z)|(1-|w(z)|)|dz| \le |df| \le |h'(z)|(1+|w(z)|)|dz|.$$

Considering (2.10), (2.11) and (2.12) we obtain

$$(2.13) \quad \frac{r}{(1+r)^2} \left(1 - \left(\frac{1+Ar}{1+Br}\right)^{\alpha}\right) |dz| \le |df| \le \frac{r}{(1-r)^2} \left(1 + \left(\frac{1+Ar}{1+Br}\right)^{\alpha}\right) |dz|.$$
Integrating (2.13) we get (2.9).

(2.13) we get (2.9). gı

References

- [1] P. DUREN: Harmonic Mappings in the plane, Vol. 156, Cambridge University press, Cambridge UK., 2004.
- [2] A.W. GOODMAN: Univalent Functions, Vol I and Vol II., Mariner Publishing, Tampa Florida, 1983.
- [3] I.S.JACK: Functions starlike and convex of order alpha, J. Lond. Math. Soc., 2(3) 1971, 469-474.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES İstanbul Kültür University, İstanbul, Turkey $E\text{-}mail \ address: e.ozkan@iku.edu.tr$