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Abstract. The maps de�ned by reproducing kernels on total and base spaces of
holomorphic vector bundles into some Hilbert and Grassmann spaces are considered
and the main results concerning basic properties of this maps are proved.

1. Introduction

This work deals with mappings de�ned by reproducing kernels of the Bergman function

type for holomorphic sections of complex vector bundles. Such mappings seems to be very

interesting from the geometric as well as physical point of view (see [4], [5] or [9]). In

Section 3 we show that the mappings mentioned above are holomorphic (Theorem 3.2)

and describe how to use them in the proof of Kodaira embedding theorem (Theorem 3.5).

In Section 4 we use this mappings to de�ne Kählerian on the base manifold and the new

Hermitian structure on the considered bundle. Section 2 contains the description of main

results of [7]. Without any other explanation we use the following symbols: N-the set of

natural numbers; R-the set of reals; C-the complex plain.

2. Preliminaries

All proofs of theorems and propositions presented in this section are given in [7].

Assume that there are given:

- E = (E; �;M) - a holomorphic vector bundle over a complex manifold M ;

- � 2 �1(
V2n

T �M) - a volume form on M , where n := dimCM ;

- h - a Hermitian structure on E.
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We denote by L2(E) = L2(E; h; �) the Hilbert space being a completion of the space

�10 (E) of all smooth sections of E with a compact support with respect to the norm k � k

de�ned by the scalar product

< s j t >:=

Z
M

h(s; t)�; s; t 2 �10 (E):

It is known that L2(E) can be identify with the space (of classes) of all Lebesgue mea-

surable sections s of E for which the integral

ksk2 =

Z
M

h(s; s)�(s)

is �nite. When M has a countable basis of topology one can prove that L2(E) is a

separable Hilbert space.

Let L2H(E) = L2H(E; h; �) denotes the space of all elements of L2(E) which can be

identify with holomorphic sections of E, i.e.,

L2H(E) = L2(E) \H(M;E);

whereH(M;E) = Ho(M;E) is the space of all holomorphic sections of E. We call L2H(E)

the (h; �)-Bergman space of sections of E.

For any element v� of the bundle E� = (E�; �0;M) dual to E we de�ne the evaluation

functional Ev� on L2H(E) by the following formula

Ev�s := v�(s(�0(v�))); s 2 L2H(E);

where �0 : E� ! M is the vector bundle projection. It is clear that Ev� is a linear

functional. Using similar methods as in the case of an ordinary Bergman space (see [2]

or [6]) one can prove the following

Proposition 2.1. For any v� 2 E� there exists a neighbourhood Y of v� in E� and

a constant C > 0 such that for any w� 2 Y and any s 2 L2H(E)

jEw�sj � Cksk:

As a simple corollary of this proposition we obtain the following

Theorem 2.1.

(i) For any v� 2 E� the evaluation functional Ev� is continuous;

(ii) L2H(E) is a closed subspace of L2(E).

Since L2H(E) is a Hilbert space we can use the Riesz theorem on the representation

of linear functionals on this space. Hence for any f 2 L2H(E)� there exists an unique

element f# of L2H(E) such that for each s 2 L2H(E)

f(s) =< f#js > :

Moreover the map L2H(E)� 3 f 7! f# 2 L2H(E) is an antilinear isometry.

Let for a given v� 2 E�

kv� := E
#
v� 2 L2H(E):
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Since the map E�
x 3 v� 7! Ev� 2 L2H(E)� is linear we obtain that E�

x 3 v� 7! kv� 2

L2H(E) is an antilinear mapping for any x 2M . Hence the mapping

(2.1) E�
x 3 v� 7! kv�(y) 2 Ey

is linear for any x; y 2 M , where E denotes the complex vector bundle over M which

is complex conjugated to E (we recall that the total space of E coincides with the total

space of E as a C1-manifold with the same � as a vector bundle projection, but the

multiplication of elements of E by complex numbers is given by the formula: �v = �v or

�v = �v, where � 2 C and v 2 E; see [3]). Consequently the map (2.1) can be identy�ed

with a tensor K(x; y) 2 Ex 
Ey. Since Ex 
Ey is in a natural way a �bre of the vector

bundle E~
E; = pr�1E
 pr�2E over M �M , where prj ;M �M !M; j = 1; 2 are ordinary

projections (prj(x1; x2) = xj for j = 1; 2) we can identify the map M �M 3 (x; y) 7!

K(x; y) 2 Ex 
Ey with a section of this bundle.

De�nition 2.1. Section K will be called the (h; �)-Bergman section of the bundle

E~
E.

Let us de�ne the transposition t : E~
E! E~
E as a vector bundle isomorphism given

on homogeneous tensors by the formula

(vx 
 vy)
t := vy 
 vx; vx 2 Ex; vy 2 Ey; x; y 2M:

The main properties of K are described in the following

Theorem 2.2. The (h; �)-Bergman section K has the following properties:

(i) K(y; x) = K(x; y)t; x; y 2M ;

(ii) K(x; y) is holomorphic in x and antiholomorphic in y;

(iii) K is R-analytic on M �M .

3. Maps given by the Bergman section and the Kodaira embeding theorem

For the proofs of results presented in this section see [8].

Let us denote

L2H(E) := ff : f 2 L2H(E)g:

We will consider this vector space as a subspace of

L2(E) := ff : f 2 L2(E)g;

where the last space is the Hilbert space with the scalar product

< sjt > :=

Z
M

h(s; t)�

=

Z
M

h(t; s)� =< tjs >; s; t 2 L2(E):

It is easy to show that

L2(E) = L2(E) = L2(E; h; �)
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and that the complex conjugation

L2(E) 3 s 7! s 2 L2(E)

is an antilinear isometry of Hilbert spaces.

Let ua consider the map

E� 3 v� 7! J (v�) := kv� 2 L2H(E):

We have

[J (v�)](y) = K(x; y)v�; v� 2 E� x := �0(v�); y 2M:

Theorem 3.1. The map J is continuous.

Let (U;') be a vector bundle chart on E i.e.: (i) U is an open nonempty subset of M ;

(ii) ' : ��1(U) ! V �Cr is a biholomorphism, where V is an open subset of Cn; (iii) if

' = ('1; '2; :::; 'n+r) then for any x 2 U the map ('n+1; :::; 'n+r)jEx is an isomorphism

of Ex onto Cr. Then the map ~' = ('1; :::; 'n) : U ! V is a holomorphic chart on M .

Let e := (e1; ::; er) be a holomorphic frame of E de�ned on U as follows

ek(x) := '�1( ~'(x); 0; :::; 1|{z}
(k�th)�place

; :::; 0); x 2 U; k = 1; 2; :::; r:

For any x 2 U the sequence (e1(x); :::; er(x)) is the ordered basis in the vector space Ex.

The vector bundle chart (U;') canonicaly de�nes a vector bundle chart (U;'0) on

the bundle E� . Namely, if (e1; :::; er) is a frame on U de�ned by ' then for any

x 2 U and any v� 2 E�
x '0j+n(v

�) is the j-th coordinate of v� with respect to the

base (e�1(x); e�2(x); :::; e�r(x)) of E�
x dual to (e1(x); :::; er(x)) for j = 1; 2; ::; r. Moreover

'0j(v
�) := ~'0j(�

0(v�)) := ~'j(x) for j = 1; 2; :::; r. We have ~'0 = ~' : U ! V and

'0

0
@ rX

j=1

�je
�j(x)

1
A = (~'(x); �1; �2; :::; �r); v� 2 E�

x; x 2 U:

If z 2 V then for any (�1; ::; �r); (�
1; :::; �r) 2 Cr

['0�1(z; �1; :::; �r)]('
�1(z; �1; :::; �r)) =

rX
j=1

�j�
j :

If D is an open subset in Cm, H is a complex Hilbert space and F : D ! H then

we say that F is holomorphic if for any z0 = (z01 : : : ; z0m) 2 D there exists a polydisc

P � D with center at z0 such that FjP can be expressed as the power series of the form

F (z) = F (z1 : : : ; zm) =

1X
k1;:::;km=1

�k1;:::;km(z1 � z01)
k1 : : : (zm � z0m)km :

Amap F : M ! H, whereM is a complex manifold, is holomorphic if for any holomorphic

chart (U;') the superposition F �'�1 is holomorphic on '(U). Using this de�nition and

the previous considerations one can prove the following:

Theorem 3.2. The map J is holomorphic.
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In the proof one can use the Cauchy integral formula

J (~e�m1 (z)) =
1

(2�i)n

Z
�(a;�)

1

(w1 � z1) � � � (wn � zn)
J (~e�m1 (w))dw;

the expansion of the function

f(z) =
1

(w1 � z1) � � � (wn � zn)
; z 2 P;

into the power series (with respect to the powers of (z�z0)) and the standard arguments

concerning the integration of power series to obtain that J �~e�m1 is theC-analytic mapping

on V for m = 1; 2; :::; r. To complete the proof of the theorem it is enough to note that

for any (z; �) = (z; �1; :::; �r) 2 V �Cr

J ('0�11 (z; �) = J
� rX
m=1

�m~e�m1 (z)
�
=

rX
m=1

�mJ (~e�m1 (z)): �

Let us consider the following condition:

(A) for any v� 2 E� v� 6= 0 there exists s 2 L2H(E) such that

Ev�s = v�
�
s(�0(v�))

�
6= 0:

Proposition 3.1. If the condition (A) is satis�ed then for any x 2M

dimJ (E�
x) = dimE�

x = r:

Proof. The condition (A) implies that for any v� 6= 0 we have kv� 6= 0. Consequently

the linear mapping

E�
x 3 v� 7! J (v�) = kv� 2 L2H(E)

is an isomorphism onto its image. �

Assumption. In the remaining part of this section we suppose that the condition (A)

is satis�ed.

For any vector bundle chart (U;') on E we de�ne a map B' : U !
�
L2H(E)

�r
as

follows

B' := (J ; J; :::; J| {z }
r�times

) � (e�1; e�2; :::; e�r);

i.e.

B'(x) := (ke�1(x); :::; ke�r(x)); x 2 U:

By Theorem 3.2 B' is a holomorphic mapping. By Proposition 3.1 the value B'(x)is a

sequence of linearly independent vectors in L2H(E) for any x 2 U . Consequently we can

consider B' as a holomorphic map on U' into the space Br(L2H(E)) of all r-element

sequences of linearly independent vectors in L2H(E) (Br(L2H(E)) is an open subset

in the Hilbert space (L2H(E))r). Let Gr(L2H(E)) denotes the Grassmann space of all

r-dimensional subspaces in L2H(E) and let

�r : Br(L2H(E)) ! Gr(L2H(E))
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be the natural projection, which assignees to any sequence (s1; :::; sr) 2 Br(L2H(E)) the

vector subspace �r(s1; :::; sr) � L2H(E) spanned by vectors s1; :::; sr. It is well known

that �r is holomorphic with respect to natural complex structures on Br(L2H(E)) and

Gr(L2H(E)).

Now we are ready to de�ne the map

Z : M ! Gr(L2H(E))

as follows: for any vector bundle chart (U;') on E

(3.1) ZjU := �r �B':

Since for any x 2M

Z(x) = �r(B'(x)) = J (E�
x)

we see that Z(x) does not depend on '. By the previous considerations it is clear that

the map Z is holomorphic.

Let us recall the famous Kodaira embedding theorem

Theorem 3.3. (Kodaira) If on a complex compact manifold M there exists a positive

line bundle L then for some N 2 N there exists an embedding Z of M into the

complex projective space PN . (see [1])

The most important and di�cult step in the proof of this theorem is to show that

Theorem 3.4. If L is a positive holomorphic line bundle over a complex compact

manifold M then there exists ko 2 N such that for any k � ko the bundle Lk =

L
 � � � 
 L| {z }
k�times

has the following properties:

(K1) for any x; y 2M there exists a holomorphic section s of Lk such that s(x) = 0

and s(y) 6= 0;

(K2) for any x 2M and any covector v� 2 T �
xM there exists a vector bundle chart

(U;') and a holomorphic section s = s1e1 of Lk such that s(x) = 0 and

ds1(x) = v�, where e1 is a frame of Lk de�ned on U by '.

For the proof see [1] Chapter 1, Section 4.

We will write now conditions which are equivalent to (K1) and (K2) in the case when

M is compact but are more appropriate in our approach. Namely, let L be a holomorphic

line vector bundles over M with the hermitian structure h and let � be a volume form

on M . We say that the triple (L; h; �) satis�es the conditions (K1') and (K2') if: there

exists ko 2 N such that for any k � ko

(K1') and for any x; y 2 M there exists a section s 2 L2H(Lk) such that s(x) = 0

and s(y) 6= 0;

(K2') for any x 2 M and any covector v� 2 T �
xM there exists a vector bundle

chart (U;') on Lk and a section s 2 L2H(Lk) such that x 2 U , s(x) = 0 and

ds1(x) = v�, where sjU = s1e1 and e1 is a frame of Lk de�ned on U by '.

In the above de�nition we suppose that Lk is a hermitian bundle with the hermitian

metric hk := h
 � � � 
 h| {z }
k�times

.
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If Theorem 3.4 is proved then the Kodaira theorem is a consequence of the following

result

Theorem 3.5. Let the triple (L; h; �) satis�es the conditions (K1') and (K2'). Then

for any k � ko the map Z de�ned for Lk by (3.1) is an embeding of M into the

projective space P(L2H(Lk)).

Proof. Let x; y 2 M and x 6= y. Let s 2 L2H(Lk) be such that s(x) = 0 and s(y) 6= 0.

Then for any v� 2 L�k
x

< J (v�)js >=< kv� js >= v�(s(x)) = 0

This means that J (L�k
x ) is a subspace of L2H(Lk) orthogonal to s. On the other hand

there exists w� 2 L�k
y such that

< J (w�)js >=< kw� js >= w�(s(y)) 6= 0

Then J (L�k
y ) is not orthogonal to s, which implies that

Z(x) = J (L�k
x ) 6= J (L�k

y ) = Z(y):

Hence Z is one-to-one map.

Suppose now that there exists a tangent vector v 2 TxM , where x = �(v), such that

v 6= 0 and Z�v = 0. Let (U;') be a vector bundle chart on Lk such that ~'(x) = 0. Let

V := ~'(U) and v0 := ~'�v 2 T0V . Then

[D(J � ~e�1)(0)]v0 = 0

which implies that

[D(J � ~e�1)(0)]v0 = [D(J � ~e�1)(0)]v0

= [Dzke�1(�)(0)]v0 = 0:

Hence for any s 2 L2H(Lk) we have

v(s1) = v[e�1(x)(s(x))] = v(< ke�1(x)js >=< [Dzke�1(�)(0)]v0js >= 0;

where s1 2 H(V ) is such that s = s1e1. This, however contradics the condition (K2'). �

4. Riemannian and Hermitian structures defined by the embeding Z

It is well known that if H is a complex Hilbert space then on the Grassmann space

Gr(H) there exists canonical Kählerian structure � de�ned by the scalar product < �j� >

on H. Similarly on the tautological bundle � (Gr(H)) there exists canonical Hermitian

structure h0 also de�ned by the scalar product on H. For example, if Y0 is a given r-

dimensional subspace in H spanned by orthonormal vectors y1; : : : ; yr 2 H then one of

coordinate neighbourhoods of Y0 consists of all r-dimensional subspaces Yw1:::;wr spanned

by vectors of the form: y1 + w1; : : : ; yr + wr, where w1 : : : ; wr are arbitrary elements of

Y ?
0 . Then the matrix � of the canonical Hermitian structure h0 with respect to the basis

y1 + w1; : : : ; yr + wr in Yw1:::;wr treated as the �ber of � (Gr(H)) is of the form

� = Ir + [< wijwj >]ri;j=1:
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Taking pull-backs Z�� (Gr(H)), Z�� and Z�h0 we obtain that Z�� (Gr(H)) is isomorphic

as a vector bundle to E but is endowed with the new Kählerian (and then Riemannian)

structure on the base manifold M and the new Hermitian structure. This structures

seems to be very interesting from the geometric as well as physical point of view.
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