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Abstract. Let f(z) be a multivalent function, i.e., analytic on the unit disk and of
the form f(z) = zp + ap+1z

p+1 + � � � ; p = 2; 3 : : : : In this work we give su�cient
conditions (unfortunately not sharp) when the following implications hold:����arg�1 + zf(p+1)(z)

f(p)(z)

����� < ��

2
(z 2 D) )

����arg zf(p)(z)

f(p�1)(z)

���� < �1�

2
(z 2 D)

and����arg zf(p)(z)

f(p�1)(z)

���� < �1�

2
(z 2 D) )

����arg zf(p�1)(z)

f(p�2)(z)

���� < �2�

2
(z 2 D):

1. Introduction

Let H(D) denote the class of all functions that are analytic in the open unit disk

D = fz 2 C : jzj < 1g. For n 2 N and a 2 C, let

H[a; n] =
�
f 2 H(D) : f(z) = a+ anz

n + an+1z
n+1 + � � �

	
:

Especially, let for a positive integer p, Ap be the subclass of H(D) consisting of functions

of the form f(z) = zp + ap+1z
p+1 + � � � and A � A1. The functions in A that are

one-to-one are called normalized univalent functions. For more details see [1, 3, 6].

A function f is said to be multivalent or p-valent in D if it is assumes no value more

than p times in D and there is some !0 such that f(z) = !0 has exactly p solutions in D,

when roots are counted in accordance with their multiplicities.

In this paper we will study the following two implications:

(1.1)

����arg �1 +
zf (p+1)(z)

f (p)(z)

����� < ��

2
(z 2 D) )

����arg zf (p)(z)

f (p�1)(z)

���� < �1�

2
(z 2 D)
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and

(1.2)

����arg zf (p)(z)

f (p�1)(z)

���� < �1�

2
(z 2 D) )

����arg zf (p�1)(z)f (p�2)(z)

���� < �2�

2
(z 2 D);

and give su�cient conditions when they hold. They are part of a larger study (not yet

completed) aiming to give su�cient conditions when����arg �1 +
zf (p+1)(z)

f (p)(z)

����� < ��

2
(z 2 D)

implies ����arg zf 0(z)f(z)

���� < ��

2
(z 2 D):

For obtaining our main result we will use a method from the theory of di�erential

subordinations. Valuable references on this topic are [2] and [3].

First we introduce the concept of subordination. Let f; g 2 A: Then we say that f(z)

is subordinate to g(z); and write f(z) � g(z); if there exists a function !(z); analytic

in the unit disc D; such that !(0) = 0; j!(z)j < 1 and f(z) = g(!(z)) for all z 2 D:

In particular, if g(z) is univalent in D then f(z) � g(z) if and only if f(0) = g(0) and

f(D) � g(D):

The general theory of di�erential subordinations, as well as the theory of �rst-order

di�erential subordinations, was introduced by Miller and Mocanu in [4] and [5]. Before

we introduce term di�erential subordinations we will give this lemma:

Lemma 1.1 ([7]). If F : Cn ! C is analytic for each of the variables zi; 1 � i � n;

while other variables are considered as constants, than F is continuous and analyt-

ical (in sense of multiple variables).

Further, if � : C2 ! C (where C is the complex plane) is analytic in a domain D; if

h(z) is univalent in D; and if p(z) is analytic in D with (p(z); zp0(z)) 2 D when z 2 D;

then p(z) is said to satisfy a �rst-order di�erential subordination if

(1.3) �(p(z); zp0(z)) � h(z):

A univalent function q(z) is said to be a dominant of the di�erential subordination (1.3)

if p(z) � q(z) for all p(z) satisfying (1.3). If eq(z) is a dominant of (1.3) and eq(z) � q(z)

for all dominants of (1.3), then we say that eq(z) is the best dominant of the di�erential

subordination (1.3).

For the proof of implications (1.1) and (1.2) we will use a lemma from the theory of

di�erential subordinations. It gives e�cient tool for obtaining su�cient conditions (very

often sharp, i.e., best possible) when certain di�erential inequality holds.

Lemma 1.2 (Theorem 2.3i(i), p.35, [3]). Let 
 � C and suppose that the function

 : C2 � D! C satis�es  (ix; y; z) =2 
 for all x 2 R, y � �(1 + x2)=2, and z 2 D. If

q 2 H[1; 1] and  (q(z); zq0(z); z) 2 
 for all z 2 D, then Re q(z) > 0, z 2 D.
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2. Implication (1.1)

In this section we will study implication (1.1).

Theorem 2.1. Let f 2 Ap; p � 2; 0 < �1 � 1 and suppose that f (k)(z) 6= 0 for all

z 2 D n f0g and for all positive integer k. If

� � �(�1) = arctg

"
�1

1� �1
�

�
1� �1
1 + �1

�(1+�1)=2

+ tg
�1�

2

#
;

then the following implication holds:����arg �1 +
zf (p+1)(z)

f (p)(z)

����� < ��

2
(z 2 D) )

����arg zf (p)(z)

f (p�1)(z)

���� < �1�

2
(z 2 D):

Proof. Let choose q�1(z) = zf(p)(z)
f(p�1)(z)

. Then we have

z
�
q�1(z)

�0
q�1(z)

=
z�1q

�1�1(z)q0(z)

q�1(z)
= 1 +

zf (p+1)(z)

f (p)(z)
� q�1(z)

and

1 +
zf (p+1)(z)

f (p)(z)
=
z�1q

0(z)

q(z)
+ q�1(z):

Further, for the function

 (r; s; z) = �1 �
s

r
+ r�1 ;

we have

 (q(z); zq0(z); z) = �1 �
zq0(z)

q(z)
+ q�1(z) 2 
 �

n
! : j arg!j <

��

2

o
;

i.e.,

j arg (q(z); zq0(z); z)j <
��

2
(z 2 D):

From Lemma 1.2 we realize that for proving����arg zf (p)(z)

f (p�1)(z)

���� < �1�

2
(z 2 D)

it is enough to show that

 (ix; y; z) = �1 �
y

ix
+ (ix)�1 = ��1 �

y

x
� i+ (ix)�1 =2 


for all real x; y � � 1+x2

2 (n = 1 in the Lemma 1.2) and for all z 2 D:

In the case when x > 0 we have

0 < arg (ix; y; z) = arctg

"
��1

y
x + x�1 sin �1�

2

x�1 cos �1�
2

#
= arctg

"
��1

y
x

x�1 cos �1�
2

+ tg
�1�

2

#

� arctg

"
�1 �

1+x2

2x

x�1 cos �1�
2

+ tg
�1�

2

#

= arctg

"
�1 � (1 + x2)

2x�1+1 cos �1�
2

+ tg
�1�

2

#
� '(x):
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Similarly, for the case x < 0,

j arg (ix; y; z)j = arg

�
��1 �

y

jxj
� i+ (ijxj)�1

�
= '(jxj):

It is easy to check that the function '(x), on the interval (0;+1), attains its minimal

value for x� =
q

1+�1
1��1

, i.e.,

inf

�
j arg (ix; y; z)j : x; y 2 R; x 6= 0; y � �

1 + x2

2

�
= '(x�) = �(�1):

For x = 0 we have

lim
jxj!0

jarg (ix; y; z)j = lim
x!0+

'(x) =
�

2
� �(�1):

This completes the proof of  (ix; y; z) =2 
 for all real x; y � �1+x2

2 . �

3. Implication (1.2)

In this section we will study the implication (1.2) in a similar way as the implication

(1.1).

Theorem 3.1. Let f 2 Ap; p � 2; 0 < �2 � 1 and suppose that f (k)(z) 6= 0 for all

z 2 D n f0g and for all positive integer k: Also let x� be the bigger, of the only two

positive solutions of the equation

2x�2+1 sin(�2�=2) +
�
�2x

2 + �2 � x
2 + 1

�
x�2 cos(�2�=2) + x2 � 1 = 0;

and �1 = �1(�2) � arcctg[h(x�)] where

h(x) �
�1 + x�2 cos �2�

2

�2
1+x2

2x + x�2 sin �2�
2

:

Then the following implication holds:����arg zf (p)(z)

f (p�1)(z)

���� < �1�

2
(z 2 D) )

����arg zf (p�1)f (p�2)

���� < �2�

2
(z 2 D):

Proof. Let choose q�2(z) = zf(p�1)(z)
f(p�2)(z)

. Then we have

z
�
q�2(z)

�0
q�2(z)

=
z�2q

�2�1(z)q0(z)

q�2(z)
= 1 +

zf (p)(z)

f (p�1)(z)
� q�2(z);

i.e.,

zf (p)(z)

f (p�1)(z)
=
z�2q

0(z)

q(z)
+ q�2(z)� 1:

Further, for the function

 (r; s; z) = �2 �
s

r
+ r�2 � 1;

we have

 (q(z); zq0(z); z) = �2 �
zq0(z)

q(z)
+ q�2(z)� 1 2 
 �

�
! : j arg!j <

�1�

2

�
;
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i.e.,

j arg (q(z); zq0(z); z)j <
�1�

2
(z 2 D):

From Lemma 1.2 we realize that for proving����arg zf (p�1)(z)f (p�2)(z)

���� < �2�

2
(z 2 D)

it is enough to show that

 (ix; y; z) = �2 �
y

ix
+ (ix)�2 � 1 = ��2 �

y

x
� i+ (ix)�2 � 1 =2 


for all real x; y � � 1+x2

2 (n = 1 in the Lemma 1.2) and for all z 2 D:

In the case when x > 0 we have

ctg [arg (ix; y; z)] =
�1 + x�2 cos �2�

2

��2
y
x + x�2 sin �2�

2

� h(x)

Similarly, for the case x < 0,

jctg [arg (ix; y; z)]j =

����ctg �arg���2 � yjxj � i+ (ijxj)�2 � 1

������ � h(jxj):

Further, h(x) is continuous on (0;+1), h(0) = 0, lim
x!+1

h(x) > 0 and from

h0(x) =
2�2

h
2x�2+1 sin(�2�=2) +

�
�2x

2 + �2 � x
2 + 1

�
x
�
2 cos(�2�=2) + x2 � 1

i
(2x�2+1 sin(�2�=2) + �2x2 + �2)

2 ;

we receive h0(0) < 0 and lim
x!+1

h0(x) > 0. Therefore, h(x) has at least one local minimum

and at least one local maximum on (0;+1). On the other hand, the nominator of h(x)

is an increasing function on (0;+1) and its denominator is convex function on (0;+1).

Therefore, h(x) has exactly one local minimum (at point x��) and exactly one local

maximum (at point x� > x��) on (0;+1). So,

sup

�
j arg (ix; y; z)j : x > 0; y � �

1 + x2

2

�
= arcctg[h(x�)] = �1(�2):

In a similar way we can show that the same is true also for x < 0.

For x = 0 we have

lim
jxj!0

jarg (ix; y; z)j = lim
x!0+

arcctg[h(x)] =
�

2
� �1(�2):

This completes the proof of the theorem. �
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