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ABSTRACT. Let f(z) be a multivalent function, i.e., analytic on the unit disk and of

the form f(z) = 2P + app12Pt! + ... ,p = 2,3.... In this work we give sufficient
conditions (unfortunately not sharp) when the following implications hold:
2f(P+1)(2) am zf(P)(z) Bim
arg|:1-|—f(p)(z) <7 (zeD) = argm <T (z €D)
and
2f(P)(2) Bim 2fP1)(z) BaT
—_— —_— D - —_— D).
rg e < 5 (zeD) = |arg = < 5 (z € D)

1. INTRODUCTION

Let H(D) denote the class of all functions that are analytic in the open unit disk
D={2€C:|z|<1}. ForneNand a € C, let

Hla,n] ={f € H(D): f(z) = a+ anz" + ans12" T+ }.

Especially, let for a positive integer p, A, be the subclass of H(ID) consisting of functions
of the form f(z) = 2P + ap+12P™' + .-+ and A = A;. The functions in A that are
one-to-one are called normalized univalent functions. For more details see [1, 3, 6].

A function f is said to be multivalent or p-valent in D if it is assumes no value more
than p times in D and there is some wg such that f(z) = wg has exactly p solutions in I,
when roots are counted in accordance with their multiplicities.

In this paper we will study the following two implications:

Zf(P""U(z) zf(P)(z)

F®)(2) 8 1) (2)

</3177T (z € D)

(1.1)

arg{l—l— H<az7r(z€]D) =
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and
£19)(2) 219 (2)
f(P—l) (z) f(P—Q)(z)

and give sufficient conditions when they hold. They are part of a larger study (not yet
completed) aiming to give sufficient conditions when

Bim
2

Bam

(1.2) :

arg < <

(zeD) = ‘a:rg

(z € D),

(+1)
arg {1—%2];:)_(2:()2)” <a2—7r (zeD)
implies
zf'(z)| _ pm

For obtaining our main result we will use a method from the theory of differential
subordinations. Valuable references on this topic are [2] and [3].

First we introduce the concept of subordination. Let f,g € A. Then we say that f(z)
is subordinate to g(z), and write f(z) < g(z), if there exists a function w(z), analytic
in the unit disc D, such that w(0) = 0, |w(2)] < 1 and f(2) = g(w(2)) for all z € D.
In particular, if g(z) is univalent in D then f(z) < g(z) if and only if f(0) = g(0) and
£(D) C o(D).

The general theory of differential subordinations, as well as the theory of first-order
differential subordinations, was introduced by Miller and Mocanu in [4] and [5]. Before
we introduce term differential subordinations we will give this lemma:

Lemma 1.1 ([7]). If F: C™ — C is analytic for each of the variables z;,1 <1 < n,
while other variables are considered as constants, than F 1s continuous and analyt-
ical (in sense of multiple variables).

Further, if ¢ : C2 — C (where C is the complex plane) is analytic in a domain D, if
h(z) is univalent in I, and if p(z) is analytic in D with (p(2),2p'(2)) € D when z € D,
then p(z) is said to satisfy a first-order differential subordination if

(1.3) $(p(2), zp'(2)) < h(2).

A univalent function g(z) is said to be a dominant of the differential subordination (1.3)
if p(2) < g(z) for all p(z) satisfying (1.3). If §(z) is a dominant of (1.3) and g(2) < g(z)
for all dominants of (1.3), then we say that g(z) is the best dominant of the differential
subordination (1.3).

For the proof of implications (1.1) and (1.2) we will use a lemma from the theory of
differential subordinations. It gives efficient tool for obtaining sufficient conditions (very
often sharp, i.e., best possible) when certain differential inequality holds.

Lemma 1.2 (Theorem 2.3i(i), p.35, [3]). Let Q C C and suppose that the function
¥ :C2 x D — C satisfies Y(iz,y;2) ¢ Q forallz e R, y < —(1+2?)/2, and z € D. If
g € H[1,1] and ¢¥(q(2),29'(2);z) € Q for all z € D, then Req(z) >0, z € D.
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2. ImPLICATION (1.1)

In this section we will study implication (1.1).

Theorem 2.1. Let f € Ay, p > 2, 0 < 1 <1 and suppose that f®)(2) # 0 for all
z € D\ {0} and for all positive integer k. If

B1 (1 - B ) (1+81)/2 /317F]

a = a(f) = arctg [ +tg—

1-6 \1+p 2
then the following implication holds:
2fP(z) an 2fP)(z) | _ pur
Proof. Let choose ¢f1(z) = ;(];(_pl))((zz)). Then we have
B1 ! B1—1 ! (p+1)
e ) Yl LA ORI
97 (2) 771 (2) f®)(z)

and (i)
zfPH(z)  zB1q'(z) 6
MG T g T

Further, for the function
s
’Z/J(T‘,S;Z) = 161 ) ; _1_7./51,

we have
e — g 29 e —{,. an
Wa(e),2q(2)i2) = B T 5+ a7 () €9 = {w Jamgel < T}
le.,
om
|arg(q(2),2¢'(2);2)| < -~ (2 €D).
From Lemma 1.2 we realize that for proving
2f®)(z) pam
arg FeD(2) <= (zeD)

it is enough to show that
¢(m,y;z) = ,31 . % + (ia:)ﬁl = _,61 . % o1+ (ix)ﬁl ¢ 9)

for all real z,y < —# (n =1 in the Lemma 1.2) and for all z € D.
In the case when z > 0 we have

[_pg. ¥ B1 i £17 _B, Y
B1Z + zP1sin B B
lo 2 ] = arctg [1 £ tg 27

0<ar 1x,y; 2) = arct
gy(iz,y;2) g 21 cos BT 2P cos BT 3
r 2
By - L2 Bim
<arctg |1 22 4, FLT
< arctg xﬁlcosﬁlT”—’—g 5

= arctg = ¢(z).

Br-(1+2%) +tgﬁl7r]
2

2zP1+1 cos ’317”
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Similarly, for the case z < 0,

jarg iz, i) = ang (1 L i+ el ) = o(le)
It is easy to check that the function ¢(z), on the interval (0,+o00), attains its minimal

1+61
1-6?

value for z, = ie.,

2
1nf{|arg¢(m:,y,z)| Ty € R,(IJ 7£ O7y S _1+m } = QO(:E*) = a(ﬁl)~

For £ = 0 we have

lim Jarg $iz,y;2)| = lim, (@) = 5 > a(f)
This completes the proof of ¥(iz,y; z) ¢ Q for all real z,y < —#. O

3. IMPLICATION (1.2)

In this section we will study the implication (1.2) in a similar way as the implication
(1.1).

Theorem 3.1. Let f € Ay, p > 2, 0 < 2 < 1 and suppose that f®)(2) # 0 for all
z € D\ {0} and for all positive integer k. Also let z, be the bigger, of the only two
positive solutions of the equation

2zP2 L gin(Bym/2) + (Boz® + f2 — 2% + 1) zP2 cos(Bom/2) + 22 — 1 =0,
and B; = f1(B2) = arcctg[h(z,)] where
B
h(z) —1+ 2P cos B2
ﬁ l+9: + $ﬁ2 sin /32

Then the following implication holds:

Zf(P) ﬁlﬂ- Zf(P_l) 1827'('
‘a:r > 1)( )‘ zeD) = |arg =) <= (z € D).
Proof. Let choose ¢#2(z) = % Then we have
VA 162 VA ! ,6271 ! (p)

() _ s M)y SO ey

g%2(z) q972(z) feH(z)
le.,

(») [
zfP)(2) _ 2P29'(2) + qﬁz(z) 1.

fle=1(z) q(z)
Further, for the function

¢(r)s;z) :ﬁZ'i"_rﬁz _1)
T

we have

W(a(2), 24 (2);2) = o LD L ooy —1eq= { Jargw| < 2T }
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ie.
b
|arg(a(2),2'(2);2)| < 5~ (2 € D).
From Lemma 1.2 we realize that for proving
zf(P_l) (z)
J# ()

<ﬂ2—7r (z € D)

arg 5

it 1s enough to show that
Ylio,yiz) = o o+ (10" —1=—f- 2 i+ (i) ~1¢Q
for all real z,y < —% (n =1 in the Lemma 1.2) and for all z € D.
In the case when =z > 0 we have

—1+2P2 cos 27

y in BaT
—B2¥ + P2 sin 227

ctg larg Y (1z,y;2)] = < h(z)

Similarly, for the case z < 0,

ag{ag(—ﬂ2~y~¢+«ﬂﬂﬁ2—1)}‘Sh0ﬂ»

|ctg [arg 9 (42, y; 2)]| = |z]

Further, h(z) is continuous on (0, +o0), h(0) =0, lim h(z) > 0 and from

z——+00
2B | 2202+ sin(Bym /2) + (B2z? + P2 — % + 1) x5 cos(Bamr/2) + 22 — 1}
R'(z) =
@ (22211 sin(Bym/2) + Ba2® + Ba)’

k)
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we receive h'(0) < 0 and HI-E h'(z) > 0. Therefore, h(z) has at least one local minimum
T—TO0

and at least one local maximum on (0,+400). On the other hand, the nominator of k(z)
is an increasing function on (0, +c0) and its denominator is convex function on (0, 4+0c0).

Therefore, h(z) has exactly one local minimum (at point z,.) and exactly one local

maximum (at point z, > z..) on (0, +00). So,

1+ z2

sup {| arg(iz, y;2)] 1z > 0,y < — } _ arcctglh(a.)] = B (Ba).

In a similar way we can show that the same is true also for z < 0.
For z = 0 we have

> B1(B2)-

N

lim |arg9(iz,y;2)| = lim arcctglh(z)] =
z|—0 z—0+t

\
This completes the proof of the theorem.

REFERENCES

[1] P.L. DUREN: Univalent functions, Springer-Verlag, 1983.

[2] T. BULBOACA: Differential subordinations and superordinations. New results, House of Science

Book Publ., Cluj-Napoca, 2005.

[38] S.S. MiLLEr, P.T. MOCANU: Differential subordinations, Theory and Applications, Marcel

Dekker, New York-Basel, 2000.

[4] S.S. MILLER, P.T'. MOCANU: Differential subordinations and univalent functions, Michigan Math.

J. 28 (1981) 157-171.



50 E. KARAMAZOVA AND N. TUNESKI

[6] S.S. MILLER, P.T. MOCANU: On some classes of first-order differential subordinations, Michigan
Math. J., 32 (1985) 185-195.

[6] S. Owa, H.M. SRIVASTAVA: Current topics in analytic function theory, World Sci. Publ., River
Edge, NJ, 1992.

[7] F. HARTOGS: Einige Folgerungen aus der Cauchyschen Integralformel bei Funktionen mehrerer
VerAdnderlichen, Sitzungsberichte der KAiiniglich Bayerischen Akademie der Wissenschaften zu
MAijnchen, Mathematisch-Physikalische Klasse, German, (1906) 223-242.

DEPARTMENT OF MATHEMATICS AND STATISTICS
GoCE DELCEV UNIVERSITY

STIP, REPUBLIC OF MACEDONIA

E-masl address: elena.gelovaQugd.edu.mk

FacuLTy OF MECHANICAL ENGINEERING

Ss. CYRIL AND METHODIUS UNIVERSITY IN SKOPJE
KaRrpPOS II B.B., 1000 SKOPJE

REPUBLIC OF MACEDONIA

E-mail address: nikola.tuneski@mf .edu.mk



