1-NEIGHBORLY EDGE IRREGULAR GRAPHS

N.R. Santhi Maheswari ${ }^{1}$ and K. Amutha ${ }^{2}$
${ }^{1}$ Associate Professor and Head,PG and Research Department of Mathematics, G.Venkataswamy Naidu College,Kovilpatti - 628 502, Tamil Nadu, India.
Affiliated to Manonmaniam Sundaranar University,Abishekapatti, Tirunelveli - 627 012,Tamil Nadu, India.nrsmaths@yahoo.com
${ }^{2}$ Research Scholar(Reg No:18112052092001), PG and Research Department of Mathematics, G.Venkataswamy Naidu College,Kovilpatti - 628 502, Tamil Nadu, India. Affiliation to Manonmaniam Sundaranar University,Abishekapatti, Tirunelveli -627 012, Tamil Nadu, India. Email :amuthapriyam@yahoo.co.in

Abstract

A simple graph $G(V, E)$ is 1 - Neighbourly edge irregular graph(1NEI) if no two adjacent edges of G have same number of edges at edge distance one. In this paper, we prove a necessary and sufficient condition for a graph to be 1-NEI graph and some results on it. We study some properties of 1-NEI and several methods to construct 1-NEI graph from a given1NEI graph. It is shown that every graph is an induced subgraph of some 1-Neighbourly irregular graph.

Keywords: Neighbourly irregular graphs, m-Neighbourly irregular graphs, Edge irregular graphs, Neighbourly edge irregular fuzzy graphs, pairable vertices, support of a graph.

AMS Subject Classification:Primary: 05C12, Secondary: 03E72, 05C72.

1. Introduction

Throughout this paper we consider finite, simple connected graphs. Let G be a graph with n vertices and m edges. The vertex set and edge set of G are denoted by $V(G)$ and $E(G)$ respectively. The degree of a vertex $v \in V(G)$ is the number of vertices adjacent to v and is denoted by $d_{G}(v)$ or simply $d(v)$.The concept of Neighbourly irregular graphs was introduced and studied by S. Gnaana Bhragsam and S.K.Ayyaswamy [2]. N.R. SanthiMaheswari and C.Sekar introduced the concept of m-Neighbourly irregular graphs [6] and neighborly edge irregular fuzzy graphs [12]. The degree of an edge $e=(u, v)$ as the number of edges which have a common vertex with the edge e. (i.e) $\operatorname{deg}(e)=$ $\operatorname{deg}(u)+\operatorname{deg}(v)-2[5]$. Edge regular graphs are those graphs for which each edge has the same degree.The distance between two edges $e_{1}=\left(u_{1}, v_{1}\right)$ and $e_{2}=\left(u_{2}, v_{2}\right)$ is defined as $\operatorname{ed}\left(e_{1}, e_{2}\right)=$ $\min \left\{d\left(u_{1}, u_{2}\right), d\left(u_{1}, v_{2}\right), d\left(v_{1}, u_{2}\right), d\left(v_{1}, v_{2}\right)\right\}$. If $e d\left(e_{1}, e_{2}\right)=0$, these edges are neighbour edges[4]. The
purpose of this paper is to introduce a new class of graphs based on distance property in edge sense. The concept of 1-Neighborly edge irregular graphs is analogous to m-Neighborly irregular graphs but considering the distance between the edges instead of vertices.This is the background to introduce 1- Neighborly edge irregular graphs.

2. Preliminaries

We present some known definitions and results for ready reference to go through the work presented in the paper.

Definition 2.1. A graph G is said to be neighborly irregular if no two adjacent vertices of G have the same degree.

Definition 2.2. A connected graph is said to be m-Neighborly Irregular(m-NI)graph if no two adjacent vertices of G have the same number of vertices at a distance m away from it.

Definition 2.3. A graph G is said to be Neighborly edge irregular if no two adjacent edges of G have the same edge degree.

Definition 2.4. Let be G be a graph. For any two distinct vertices u and v in G, u is pairable with v if $\mathrm{N}[\mathrm{u}]=\mathrm{N}[\mathrm{v}]$ in G . A vertex in G is called a pairable vertex if it is pairable with a vertex in G .

Definition 2.5. Let G be a graph. A full vertex of G is a vertex in G which is adjacent to all other vertices of G.

Definition 2.6. The support $\mathrm{s}_{\mathrm{G}}(\mathrm{v})$ or simply $\mathrm{s}(\mathrm{v})$ of a vertex v is the sum of degrees of its neighbors. That is, $s(v)=\sum u \in N(v) d(u)$.

3. 1-Neighborly edge irregular graphs(1-NEI)

In this section, we introduce 1-Neighborly edge irregular graphs and study some properties of these graphs.
Definition 3.1. A simple graph $G(V, E)$ is 1- Neighborly edge irregular graph(1-NEI) if no two adjacent edges of G have same number of edges at edge distance one.

Example 3.2.The following graph proves the existence of 1-NEI graphs.

2.1. Figure 1

Results:

- There are no 1-NEI graph of order $n=3,5$ and 7 . For $n=4, P_{4}$ is the $1-N E I$ graph
- Let G be a 1-NEI graph. Then there will not be more than one pendant edges at any vertex.
- Let G be a 1-NEI graph. Then there is no P_{5} with internal vertices of degree 2 and external vertices of same degree as an induced subgraph.
- For any edge uvinE(G), ed $d_{1}(u v)=s(u)+s(v)-\sum \operatorname{xeN}(u) \cap N(v) d(x)-2 e d(u v)-m-2$ where m is the number of edges in the induced subgraph $<\mathrm{N}(\mathrm{u}) \cup \mathrm{N}(\mathrm{v})>$.

The following theorem proves a necessary and sufficient condition for a graph to be 1-NEI graph.

Theorem 3.3 A graph G is a 1-NEI graph if and only if for any two adjacent edges uv and vw , then
 edges in the induced subgraphs $<N(u) U N(v) \backslash\{u, v\}>$ and $<N(v) U N(w) \backslash\{v, w\}>$ respectively.

Proof: .Let G be a 1-NEI graph. Let uvand vwbe any two adjacent edges.Then ed $_{1}(u v) \not$ fed $_{1}(\mathrm{vw})$ which implies:
$s(u)+s(v)-\sum x \varepsilon N_{(u) \cap} N_{(v)} d(x)-2 e d(u v)-a-2 \neq s(v)+s(w)-\sum y \varepsilon N_{(v) \cap} N_{(w)} d(y)-2 e d(v w)-b-2$
where a and b are the number edges in the induced subgraphs $<N(u) U N(v) \backslash\{u, v\}>$ and $<N(v) \cup N(w) \backslash\{v, w\}>$ respectively, since ed(uv) $=d(u)+d(v)-2$ and ed(vw)=d(u)+d(w)-2,(s(u) -s(w)) $-(d(u)-d(w))=\neq \sum x \varepsilon N_{(u) \cap N(v)} d(x)-\sum_{y \in N(v)} \mathrm{NN}_{(w)} d(y)+(a-b)$.
Conversely suppose that (s(u) $-s(w))-(d(u)-d(w)) \neq \sum \operatorname{xeN}(u) \cap N(v) d(x)-\sum_{y E N(v) \cap N(w)} d(y)+(a-b)$, for some two adjacent edges uv and vw, that is:

$$
s(u)+s(v)-\sum x \varepsilon N_{(u) \cap} N_{(v)} d(x)-2 e d(u v)-a-2 \ddagger s(v)+s(w)-\sum y \varepsilon N_{(v) \cap} N_{(w)} d(y)-2 e d(v w)-b-2
$$

This implies that $\operatorname{ed}_{1}(u v) \not \ddagger_{1}(\mathrm{vw})$. Hence G is a 1-NEI graph.
Theorem 3.4. .Let G be a 1-NEI graph without triangles. If there are two adjacent edges uv and vw in $E(G)$ with $d(u)=d(w)$, then $s(u) \neq s(w)$.
Proof: Let G be a 1-NEI graph with girth at least 5 . Let $u v$ and $v w$ be two adjacent edges with $d(u)=$ $d(w)$. Then:
$e d_{1}(u v)=s(u)+s(v)-\sum x \varepsilon N_{(u) \cap} N_{(v)} d(x)-2 e d(u v)-a-2$ and $e d_{1}(v w)=s(v)+s(w)-\sum y \varepsilon N_{(v) \cap} N_{(w)}$ $d(y)-2 e d(v w)-b-2$.
Since girth of G is at least $5,|N(u) \cap N(v)|=|N(v) \cap N(w)|=0$ and $a=b=0$. If $s(u)=s(w)$, then $e d_{1}(u v)=$ $e d_{1}(v w)$, which is a contradiction.

Corollary 3.5. If G is a 1-NEI graph without triangles, then there is no P_{3} (say uvw) such that $d(u)=$ $\mathrm{d}(\mathrm{w})$ and $\mathrm{s}(\mathrm{u})=\mathrm{s}(\mathrm{w})$.

Theorem 3.6. Let G be a 1-NEI graph without triangles. For any two adjacent edges uv and vw , then $\mathrm{N}(\mathrm{u}) \neq \mathrm{N}(\mathrm{w})$.
Proof: .Let G be a 1-NEI graph without triangles. suppose there are some adjacent edges $u v$ and $v w$ such that $N(u)=N(w)$, then $d(u)=d(w)$ and $s(u)=s(w)$, since girth of G is at least 5,
$|N(u) \cap N(v)|=|N(v) \cap N(w)|=0$ and $a=b=0$. Then $e d_{1}(u v)=e d_{1}(v w)$, which is a contradiction.

Theorem 3.7. A graph with a pairable vertex is not 1-NEI graph
Proof: Let G be a graph with a pairable vertex u, pairable with v, Then $N[u]=N[v]$. If $N(u)=N(v)=$ $\left\{u_{1}, u_{2}, \ldots, u_{d}\right\}$, then $e d_{1}\left(u u_{i}\right)=e d_{1}\left(v u_{i}\right)$ for $1 \leq i \leq d$, which is a contradiction.

Theorem 3.8 .Any graph with more than one full vertex is not 1-NEI graph.
Proof.Suppose G has more than one full vertex say u and v. Then $N[u]=N[v]$, If $N(u)=N(v)=$ $\left\{u_{1}, u_{2}, \ldots, u_{d}\right\}$, then $e d_{1}\left(u u_{i}\right)=e d_{1}\left(v u_{i}\right)$ for $1 \leq i \leq d, G$ is not 1-NEI graph.

Theorem 3.9. Let G be a 1-NEI graph. Then there is no cycle in G with vertices $v_{1}, v_{2}, \ldots, v_{m}$ such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{d}\left(\mathrm{v}_{\mathrm{i}+2}\right)=2$ and $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}-1}\right)=\mathrm{d}\left(\mathrm{v}_{\mathrm{i}+3}\right)$ for some $1 \leq \mathrm{i} \leq \mathrm{m}$.

Proof: .If there is a cycle in G with vertices $v_{1}, v_{2}, \ldots, v_{m}$ such that $d\left(v_{i}\right)=d\left(v_{i+2}\right)=2$ and $d\left(v_{i-1}\right)=d\left(v_{i+3}\right)$ for some $1 \leq i \leq m$, then $e d_{1}\left(v_{i} v_{i+1}\right)=e d_{1}\left(v_{i+1} v_{i+2}\right)$, which is a contradiction.

Yousefalavi [1] proved that for every positive integer $n=36,5,7$, there exists a highly irregular graph of order n.

Theorem 3.10. For every positive even integer $n=2 d, d \geq 3$, there exists a 1-NEI graph of order n and it is denoted by $1-\mathrm{NEI}_{(\mathrm{n})}$.

Corollary 3.11. For every positive odd integer $n \geq 11$, there exists a 1-NEI graph of order n. For, we can construct G^{*} from $1-\mathrm{NEI}_{\left(\mathrm{n}^{-}-5\right)}$ by attaching a graph as in Figure 2 at u_{1} or $\mathrm{v}_{(\mathrm{n}-5)}$. $\operatorname{ed}_{1}(\mathrm{e})$ in
 $\operatorname{ed}_{1}(\mathrm{wx})=1$. Then G^{*} is also a 1-NEI graph of order n .

2.2. Figure 2

Remark. We can construct a 1-NEI graph of order $n+2$ from $1-\mathrm{NEI}_{(\mathrm{n})}$ by attaching 2 new vertices u and v and joining the edges $u v$ and $\mathrm{vv}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{d}$. The resulting graph G^{*} is a $1-$ NEI graph of order n $+2$.

For illustration, the graph G^{*} constructed for $1-\mathrm{NEI}_{6}$ is given in Figure 3.

2.3. Figure 3

Results:

- Let G_{1} be a 1-NEI graph. Let v be a vertex of degree 1 which is adjacent to the vertex u s.t $d(u) \geq 3$ as in Figure 4, which satisfies ed $(u v)+1$ łed(uv) and $\operatorname{ed}_{1}\left(u u l_{i}\right) \not$ キed $_{1}\left(u_{i} v_{j}\right)+1$ for $\mathrm{u}_{\mathrm{i}} \mathrm{inN}(\mathrm{u})$ and $\mathrm{v}_{\mathrm{j}} \operatorname{inN}\left(\mathrm{u}_{\mathrm{i}}\right)$. We can construct $\mathrm{G}_{1}{ }^{*}$ by introducing P_{3} at v .Then $e d_{1}\left(u_{i} v_{j}\right)$ in $G_{1}^{*}=e d_{1}\left(u_{i} v_{j}\right)$ in $\mathrm{G}_{1} \neq \mathrm{ed}_{1}\left(\mathrm{uu}_{\mathrm{i}}\right)+1$ in $\mathrm{G}_{1}=\operatorname{ed}_{1}\left(\mathrm{uu}_{\mathrm{i}}\right)$ in $\mathrm{G}_{1}{ }^{*}$, ed $\mathrm{ed}_{1}(\mathrm{vx})$ in $\mathrm{G}_{1}{ }^{*}=\operatorname{ed}(\mathrm{uv})$ in $G_{1} \neq e d_{1}(u v)+1$ in $G_{1}=e d_{1}(u v)$ in G_{1}^{*} and $\operatorname{ed}_{1}(\mathrm{xy})=1$. Hence G_{1}^{*} is alsoa 1-NEI graph.

G1

2.4. Figure 4

- Let G_{2} be a triangle-free 1-NEI graph. Let u be a vertex of the graph G_{2} having degree d which is adjacent to the vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{d}} \mathrm{s} . \mathrm{ted}\left(\mathrm{uu}_{\mathrm{i}}\right)+1 \neq \mathrm{s}(\mathrm{u})-\mathrm{d}(\mathrm{u})$ and $2 \mathrm{~d}(\mathrm{u}) \neq \mathrm{s}(\mathrm{u})$ in G_{2} as in Figure 5. We can construct $G_{2}{ }^{*}$ by introducing P_{3} at u. Then for $1 \leq i \leq d$ and $w_{j} \mathrm{inN}\left(\mathrm{v}_{\mathrm{i}}\right)$,

$$
\begin{aligned}
& e d_{1}\left(u_{i} w_{j}\right) \text { in } G_{2}{ }^{*}=e d_{1}\left(u_{i} w_{j}\right)+1 \text { in } G_{2} \\
& \text { キed }\left(u u_{i}\right)+1 \text { in } G_{2} \\
& ={e d_{1}\left(u u_{i}\right) \text { in } G_{2}{ }^{*},}^{e d_{1}(u v) \text { in } G_{2}{ }^{*}=s(u)-d(u) \text { in } G_{2}} \begin{array}{l}
\ddagger e d_{1}\left(u u_{i}\right)+1 \text { in } G_{2} \\
=e d_{1}\left(u u_{i}\right) \text { in } G_{2}{ }^{*}, \\
e d(u v) \text { in } G_{2}{ }^{*}=s(u)-d(u) \text { in } G_{2} \\
\neq 2 d(u)-d(u) \text { in } G_{2} \\
=d(u) \text { in } G_{2} \\
=e d_{1}(v w) \text { in } G_{2}{ }^{*} .
\end{array}
\end{aligned}
$$

2.5. Figure 5

- Let G_{3} be a triangle-free 1-NEI graph. Let u be a vertex of the graph G_{3} having degree d which is adjacent to the vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{d}} \mathrm{s} . \mathrm{t} \mathrm{ed}_{1}\left(\mathrm{uu}_{\mathrm{i}}\right)+1 \neq \mathrm{s}(\mathrm{u})-\mathrm{d}(\mathrm{u})$ and $2 \mathrm{~d}(\mathrm{u})-1 \neq \mathrm{s}(\mathrm{u})$ in G_{3} as in Figure 6. We can construct $\mathrm{G}_{3}{ }^{*}$ by attaching a graph at u as in Figure 6. Then for $1 \leq \mathrm{i} \leq$ $\mathrm{d}, \mathrm{w}_{\mathrm{j}}$ in $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{ed}_{1}\left(\mathrm{u}_{\mathrm{i}} \mathrm{W}_{\mathrm{j}}\right)$ in $\mathrm{G}_{3}{ }^{*}=\operatorname{ed}_{1}\left(\mathrm{u}_{\mathrm{i}} \mathrm{W}_{\mathrm{j}}\right)+1$ in G_{3}

$$
\begin{gathered}
\neq d_{1}\left(u u_{i}\right)+1 \text { in } G_{3} \\
=e d_{1}\left(u u_{i}\right) \text { in } G_{3}^{*}, \\
e d_{1}(u v){\text { in } G_{3}}^{*}=s(u)-d(u) \text { in } G_{3} \\
\text { Łed } d_{1}\left(u u_{i}\right)+1 \text { in } G_{3} \\
=e d_{1}\left(u u_{i}\right) \text { in } G_{3}^{*}, \\
e d_{1}(u v) \text { in } G_{3}^{*}=s(u)-d(u) \text { in } G_{3} \\
\neq 2 d(u)-1-d(u) \text { in } G_{3} \\
=\mathrm{d}(\mathrm{u})-1 \text { in } G_{3} \\
=e d_{1}(v w) \text { in } G_{3}^{*}, \\
\operatorname{ed}_{1}(\mathrm{wz})=\mathrm{ed}_{1}(\mathrm{xy})=2 \text { and } e d_{1}(w x)=1 .
\end{gathered}
$$

Therefore, G_{3}^{*} is also a 1-NEI graph.

2.6. Figure 6

Theorem 3.12. Every complete bipartite graph $\mathrm{K}_{\mathrm{r}, \mathrm{r}}$ is an induced subgraph of a 1-NEI graph of order 4r.

Proof. Let $u_{1}, u_{2}, \ldots u_{r}$ and $v_{1}, v_{2}, \ldots v_{r}$ are two partites of $K_{r, r}$. Introduce the vertices
$u_{1}^{\prime}, u_{2}^{\prime}, \ldots u_{r}^{\prime}$ and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots v_{r}^{\prime}$. Join the vertices $u_{i} u_{j}^{\prime}, 1 \leq i \leq r, i \leq j \leq r$ and $v_{i} v_{j}^{\prime}, 1 \leq i \leq r, i \leq j \leq r$. The resulting graph contains $K_{r, r}$ as an induced subgraph.

Figure 7 illustrates the theorem 3.20 for $K_{3,3}$

Figure 7

Theorem 3.13. Every complete graph of order $n \geq 3$ is an induced subgraph of a 1-NEI graph of order $2 n(n+1)$ if n is even $n(2 n+1)$ if n is odd.
Proof: Let G be a complete graph of order $n \geq 3$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of G. For each $1 \leq i \leq$ n, we add new vertices $v_{i j}$ and $w_{i j}, 1 \leq j \leq\left[\frac{n}{2}\right]+i$. The vertices $u_{i}(1 \leq i \leq n)$ and the vertices $v_{i j}$ and $w_{i j}$, $1 \leq i \leq n, 1 \leq j \leq\left[\frac{n}{2}\right]+1$ constitute the vertex set of the required graph H.Along with the edges of G, we add several edges to complete the constitution of H. For $1 \leq i \leq n, 1 \leq j \leq\left[\frac{n}{2}\right]+i$, we join u_{i} and $v_{i j}$ and for $j \leq k \leq\left[\frac{n}{2}\right]+i, v_{i j}$ and $w_{i k}$. The resulting graph H contains G as an induced subgraph. Moreover:
$\operatorname{ed}_{1}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{ij}}\right)=(\mathrm{n}-1) \mathrm{C}_{2}+\left(\left[\frac{n}{2}\right]+\mathrm{i}+1\right) \mathrm{C}_{2}-\left(\left[\frac{n}{2}\right]+\mathrm{i}-(\mathrm{j}-1)\right)+\mathrm{n}\left[\frac{n}{2}\right]+\mathrm{ni}+\mathrm{nC}_{2}-\left(\left[\frac{n}{2}\right]+\mathrm{i}\right), \mathrm{ed}_{1}\left(\mathrm{~V}_{\mathrm{ij}} \mathrm{W}_{\mathrm{ik}}\right)=\left(\left[\frac{n}{2}\right]+\mathrm{i}\right) \mathrm{C}_{2}+(\mathrm{j}-\mathrm{k})+\left(\left[\frac{n}{2}\right]+\mathrm{i}-\right.$ $1)+\mathrm{n}-1$ for all $1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq\left[\frac{n}{2}\right]+1,1 \leq \mathrm{k} \leq\left[\frac{n}{2}\right]+1, \operatorname{ed}_{1}\left(\mathrm{u}_{\mathrm{p}} \mathrm{u}_{\mathrm{q}}\right)=(\mathrm{p}+1) \mathrm{C}_{2}+\left(\left[\frac{n}{2}\right]+\mathrm{q}+1\right) \mathrm{C}_{2}+(\mathrm{n}-2) \mathrm{C}_{2}+\mathrm{n}\left[\frac{n}{2}\right]+(\mathrm{n}+1) \mathrm{C}_{2}-$ $\left(\left(\left[\frac{n}{2}\right]+i\right)-\left(\left[\frac{n}{2}\right]+p\right)\right)$. Order of H,
$\mathrm{O}(\mathrm{H})=\mathrm{n}+2\left(\left[\frac{n}{2}\right]+1+\left[\frac{n}{2}\right]+2+\ldots\left[\frac{n}{2}\right]+\mathrm{n}\right)=\mathrm{n}+2\left(\mathrm{n}\left[\frac{n}{2}\right]\right)+\frac{n(n+1)}{2}=\mathrm{n}+2 \mathrm{n}\left[\frac{n}{2}\right]+\mathrm{n}(\mathrm{n}+1)=\left\{\begin{array}{l}2 n(n+1) \text { if } n \text { is even } \\ n(2 n+1) \text { if } n \text { is odd }\end{array}\right.$
Figure 8 illustrates the theorem 3.13 for K_{3}.

Figure 8
Theorem 3.14. Every connected graph of order ≥ 5 is an induced subgraph of 1-NEI graph.
Proof: Let G be a graph of order $n \geq 5$. Let G^{0} be another copy of of G, where $V(G)=\left\{v_{1}{ }^{1}, v_{2}{ }^{1}, \ldots, v_{n}{ }^{1}\right\}$ and $V\left(G^{0}\right)=\left\{v_{1}{ }^{2}, v_{2}{ }^{2}, \ldots, v_{n}{ }^{2}\right\}$ and $v_{i}{ }^{1}$ corresponds to $v_{i}{ }^{2}(1 \leq i \leq n)$. Join the edges $v_{j}{ }^{1} v_{i}{ }^{2}, v_{j}{ }^{2} v_{i}{ }^{1}: v_{j}{ }^{1} v_{i}{ }^{1} \in /$ $E(G), 1 \leq j \leq n, j+1 \leq i \leq n$ and $v_{k}{ }^{1} v_{k}{ }^{2}, 1 \leq k \leq n$. Consider n is any of the form $5 m+l, 0 \leq l \leq 4$. For each $v_{i}{ }^{1}$ and $v_{i}{ }^{2}, 1 \leq i \leq n$, introduce the new vertices $u^{1}{ }_{i j}, w_{i j}{ }^{1}$ and $u^{2}{ }_{i j}, w_{i j}{ }^{2}$, the values of j are $1 \leq j \leq 3+12(m-1)+(i-1)$ if $\mathrm{l}=0,1 \leq \mathrm{j} \leq 5+12(\mathrm{~m}-1)+(\mathrm{i}-1)$ if $\mathrm{l}=1,1 \leq \mathrm{j} \leq 8+12(\mathrm{~m}-1)+(\mathrm{i}-1)$ if $\mathrm{l}=2,1 \leq \mathrm{j} \leq 10+12(\mathrm{~m}-$ $1)+(\mathrm{i}-1)$ if $\mathrm{l}=3$, and $1 \leq \mathrm{j} \leq 12+12(\mathrm{~m}-1)+(\mathrm{i}-1)$ if $\mathrm{l}=4$, for $1 \leq i \leq n$, join the edges $\mathrm{u}_{\mathrm{ij}} \mathrm{W}_{\mathrm{ik}}$, for above mentionedj andk $\geq m$ and join the vertices $v_{i}{ }^{1}$ with $u^{1}{ }_{i j}$ and $v_{i}{ }^{2}$ with $u^{2}{ }_{i j}$ for all i andj .

The resulting graph contains G as an induced subgraph and it is 1-NEI graph of order $2 n+2(n(k+$ $\left.12(m-1)+n C_{2}\right)=n(n+1)+2 n(k+12(m-1))$ where $k=3,5,8,10,12$ for $l=0,1,2,3,4$ respectively.

References

[1] YousefAlavi, Gary Chartrand, F.R.K Chung, Paul Erdos, R.L. Graham, Ortrud R. Oellermann, Highly irregular graphs, Journal of Graph Theory vol .11.No.2,235-249(1987).
[2] S. GnaanaBhragsam and S.K.Ayyaswamy, Neighbourly irregular graphs, Indian J.Pure appl. Math., 35(3):389-399, Marc 2004.
[3] G.S.Bloom, J.K.Kennedy and L.V.Quintas, Distance degree regular graphs, The theory and Applications of Graphs, Wiley, New York,(1981),95-108.
[4] Mehmet Ali Balci, Pinar Dundar, Average Edge Distance in Graphs, Selcuk Journal of Applied Mathematics (2010)65-70
[5] D. Reddy Babu and P.L.N. Varma, Average D-distance between edges of a graph, Indian Journal of Science and Technology,Vol 8(2),152-156, January 2015.
[6] N.R.SanthiMaheswari and C.Sekar, A study on Distance d-regular and neighbourly irregular graphs, Ph.D Thesis, ManonmaniamSundaranar University,Tirunelveli-627012, Tamil Nadu, India, November 2014.
[7] N.R.SanthiMaheswari and C.Sekar, Semi Neighbourly Irregular graphs, International Journal of Combinatorial Graph Theory and Applications, 5(2)(2012),135-144.
[8] N.R.SanthiMaheswari and C.Sekar, Some (r,2,k)-Regular Graphs Containing A Given Graph, International Journal of Engineering Research and Technology,1(10)(2012), Pages 1-9.
[9] N.R.SanthiMaheswari and C.Sekar, (r,2,(r-2)(r-1))-Regular graphs, International Journal of Mathematical Archieve,4(1)(2013),242-251.
[10] N.R.SanthiMaheswari and C.Sekar, Some Minimal (r,2,k)- Regular graphs containing a given graph, International Journal of Mathematical Combinatorics, Mar2015, Vol.1, p65-73.
[11] N.R.SanthiMaheswari and C.Sekar,(r,2,m(r-1)-Regular graphs, Global Journal of Pure and Applied Mathematics,10(1)(2014),1-6.
[12] SelvamAvadayappan and M. Bhuvaneshwari, Pairable graphs ,International Journal of Innovative Science, Engineering Technology, Vol. 1 Issue 5,July 2014 Pages Pages 23-31.
[13] SelvamAvadayappan and M. Bhuvaneshwari and R.Sinthu, Internation journal of Scientific research and Mananagement(IJSRM),Volume 4, issue 03 Pages 4009-4014, 2016.
[14] H.B.Walikar, S.B.Halkarni, H.S.Ramana, M. Tavkoli and A.R. Ashrafi, On neighbourly irregular graphs, Kragujevac journal of mathematics, volume 39(1)(2015), pages 31-39.

