ON QUASI - WEAK COMMUTATIVE NEAR - RINGS III

Dr.S.Geetha ${ }^{1}$, Dr.G.Gopalakrishnamoorthy ${ }^{2}$
${ }^{1}$ Associate Professor,Department of Mathematics,St. Michael College of Engg.and Tech,Kalaiyarkovil - 630 551.Tamilnadu,India. Email :geethae836@gmail.com
${ }^{2}$ Advisor,Sri KrishnasamyArsts and Science College, Sattur - 626203.
Tamilnadu,India.

Abstract. A left near - ring N is called weak commutative if $x y z=x z y$ for every $x, y, z \in N$. A left near - ring N is called pseudo commutative if $x y z=z y x$ for every $x, y, z \in N$. A left near - ring N is called quasi weak commutative near- ring if $x y z=y x z$ for every $x, y, z \in N$. In [3,5], we have obtained many interesting results on quasi - weak commutative near - rings (right). In this paper we obtain some more results of quasi-weak commutative near-rings (left).

Key Words: weak commutative, pseudo commutative, quasi - weak commutative, Boolean like near - rings.

1. Introduction

Throughout this paper, N denotes a left near - ring ($\mathrm{N},+,$.) with at least two elements. For every non - empty subset A of N , we denote $\mathrm{A}-\{0\}=\mathrm{A}^{*}$. The following definition and results are well known.

Example 1.1. (of Left near - ring)
Let (G,+) be any group. Define a.b = b $\forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$. Then (G,+,.) is a Quasi weak commutative near - ring (left).
 $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{G}$.

Also $\mathrm{a} .(\mathrm{b}+\mathrm{c})=\mathrm{b}+\mathrm{c}$; and $\mathrm{a} . \mathrm{b}+\mathrm{a} . \mathrm{c}=\mathrm{b}+\mathrm{c}$; so, $\quad \mathrm{a} .(\mathrm{b}+\mathrm{c})=\mathrm{a} . \mathrm{b}+\mathrm{a} . \mathrm{c}$
Also: $\mathrm{abc}=\mathrm{c}=\mathrm{bac}$; Hence ($\mathrm{G},+,$.) is a quasi weak commutative near ring (left).

Definition 1.2:

An element a $\epsilon \mathrm{N}$ is said to be
(i) Idempotent if $\mathrm{a}^{2}=\mathrm{a}$.
(ii) Nilpotent, if there exists a positive integer k such that $\mathrm{a}^{\mathrm{k}}=0$.

Result: Each near - ring N is isomorphic to a sub direct product of sub directly irreducible near rings.

Definition 1.4:

A near $-\operatorname{ring} N$ is said to be zero commutative if $a b=0$ implies $b a=0$, where $a, b \in N$.

Definition 1.5:

A near - ring (left) N is said to be Boolean if $\mathrm{a}^{2}=\mathrm{a} \forall \mathrm{a} \epsilon \mathrm{N}$. It is said to be anti - Boolean if $\mathrm{a}^{2}=-\mathrm{a} \forall \mathrm{a} \in \mathrm{N}$.

Result: If N is zero symmetric, then
(i) Every left ideal A of N is an N -subgroup of N .
(ii) Every ideal I of N satisfies the condition NIN $\subseteq \mathrm{I}$. (ie) every ideal is an N - Subgroup.
(iii) $\quad \mathrm{N}^{*} \mathrm{I}^{*} \mathrm{~N}^{*} \subseteq \mathrm{I}^{*}$.

Result: Let N be a near - ring. Then the following are true.
(i) If A is an ideal of N and B is any subset of N, then $(A: B)=\{n \in N$ such that $n B \subseteq A\}$ is always a left ideal.
(ii) If A is an ideal of N and B is an N-subgroup, then $(\mathrm{A}: \mathrm{B})$ is an ideal. In particular if A and B are ideals of a zero - symmetric near - ring, then $(A: B)$ is an ideal.

Result:

1. Let N be a regular near - ring, $\mathrm{a} \epsilon \mathrm{N}$ and $\mathrm{a}=\mathrm{axa}$, then ax , xa are idempotents.
2. $a x N=a N$ and $N x a=N a$.
3. N is S and S^{\prime} near - rings.

Result: (Lemma 4 Dheena [2]) Let N be a zero - symmetric reduced near - ring. For any a,b $\in \mathrm{N}$ and for any idempotent element eє N , abe = aeb.

Result: A near - ring N is sub -directly irreducible if and only if the intersection of all non - zero ideals of N is not zero.

Result (Gratzer [7] Each simple near - ring is sub directly irreducible.
Result (Pliz [10]) A non - zero symmetric near - ring N has Intersection of factors Property (IFP) if and only if ($\mathrm{O}: \mathrm{S}$) is an ideal for any subset S of N .

Result (Oswald [9]) An N - subgroup A of N is essential if $A \cap B=\{0\}$, where B is any N subgroup of N , implies $\mathrm{B}=\{0\}$

Definition 1.6:

A near - ring is said to be reduced if N has no non - zero nilpotent elements.

Definition 1.7

A near - ring N is said to be an integral near - ring if N has no non - zero divisors.

Lemma 1.8

Let N be a near - ring if for all $\mathrm{a} \epsilon \mathrm{N}, \mathrm{a}^{2}=0=>\mathrm{a}=0$, then N has no non - zero nilpotent elements.

Definition 1.9

Let N be a near - ring. N is said to satisfy intersection of factors property (IFP) if $\mathrm{ab}=0$ $=>$ anb $=0 \forall n \in N$, where $a, b \in N$.

Definition 1.10

(1) An ideal I of N is called a prime ideal if for all ideals A, B of $N, A B$ is subset of $I=>A$ is subset of I or B is subset of I.
(2) I is called a semi - prime ideal if all ideals A of N, A^{2} is subset of I implies A is subset of I.
(3) I is called a completely semi - prime ideal, if for any $x \boldsymbol{\epsilon} N, x^{2} \boldsymbol{\epsilon} I=>x \boldsymbol{\epsilon}$.
(4) A completely prime ideal, if for any $\mathrm{x}, \mathrm{y} \boldsymbol{\epsilon} \mathrm{N}, \mathrm{xy} \boldsymbol{\epsilon} \mathrm{I}=>\mathrm{x} \boldsymbol{\epsilon}$ I or y $\boldsymbol{\epsilon} \mathrm{I}$.
(5) N is said to have strong IFP, if for all ideals I of N, ab $\boldsymbol{\epsilon}$ I implies anb $\boldsymbol{\epsilon}$ I.

Result:(Proposition 2.4[11]) Let N be a pseudo commutative near - ring. Then every idempotent element is central.

Result: [3] Let N be a regular quasi weak commutative near - ring. Then
(i) $\mathrm{A}=\sqrt{ } \boldsymbol{A}$, for every $\mathrm{N}-$ subgroup A of N .
(ii) N is reduced.
(iii) $\quad \mathrm{N}$ has (IFP).

Result: [3] Let N be a regular quasi weak commutative near - ring. Then every N sub group is an ideal

$$
\mathrm{N}=\mathrm{Na}=\mathrm{Na}^{2}=\mathrm{aN}=\mathrm{aNa} \text { for all } \mathrm{a} \boldsymbol{\epsilon} \mathrm{~N} .
$$

Result: [3] Let N be a quasi weak commutative near - ring. For every ideal I of N, (I:S) is an ideal of N where S is any subset of N .

Result: [3] Every quasi weak commutative near - ring N is isomorphic to a sub - direct product of sub - directly irreducible quasi weak commutative near - rings.

2. Main Results

Lemma 2.1:

If N is a Boolean (left) near - ring, then for any $a, b \in N, a b=0=>b a=0 . a$.
Proof: Let a,b ϵ N.

$$
\mathrm{ba}=(\mathrm{ba})^{2}=\mathrm{ba} \mathrm{ba}=\mathrm{b}(\mathrm{ab}) \mathrm{a}=\mathrm{b} 0 \mathrm{a}=0 \mathrm{a} .
$$

Lemma 2.2:

If N is a Boolean (left) near - ring, then for any $\mathrm{x}, \mathrm{y} \in \mathrm{N}, \mathrm{xyx}=\mathrm{yx}$.
Proof: Let $x, y \in N$.
Now,

$$
\begin{aligned}
\mathrm{yx}(\mathrm{xyx}-\mathrm{yx}) & =\mathrm{yx}^{2} \mathrm{yx}-(\mathrm{yx})^{2} \\
& =\mathrm{yx} \mathrm{yx}-(\mathrm{yx})^{2}=0
\end{aligned}
$$

So, by Lemma 2.1, we have: $(\mathrm{xyx}-\mathrm{yx}) \mathrm{yx}=0 \mathrm{yx}$
Also,

$$
\begin{align*}
\operatorname{xyx}(x y x-y x) & =x y x^{2} y x-x y x y x \tag{1}\\
& =x y x y x-x y x y x=0
\end{align*}
$$

So, by Lemma 2.1,

$$
\begin{equation*}
(x y x-y x) x y x=0 x y x \tag{2}
\end{equation*}
$$

Now,

$$
\begin{align*}
\mathrm{xyx}-\mathrm{yx} & =(\mathrm{xyx}-\mathrm{yx})^{2} \\
& =(\mathrm{xyx}-\mathrm{yx})(\mathrm{xyx}-\mathrm{yx}) \\
& =(\mathrm{xyx}-\mathrm{yx}) \mathrm{xyx}-(\mathrm{xyx}-\mathrm{yx}) \mathrm{yx} \\
& =0 \mathrm{xyx}-0 \mathrm{yx} \\
\mathrm{xyx}-\mathrm{yx} & =0(\mathrm{xyx}-\mathrm{yx}) \quad \ldots \ldots \ldots \ldots . . \tag{3}
\end{align*}
$$

Now

$$
\begin{aligned}
0 & =x(x y x-y x) \\
& =x \cdot 0(x y x-y x) \\
& =0(x y x-y x) \\
& =x y x-y x
\end{aligned} \quad(\text { using }(3))
$$

Hence $\quad \mathrm{xyx}=\mathrm{yx} \quad \forall \mathrm{x}, \mathrm{y} \boldsymbol{\epsilon} \mathrm{N}$.

Theorem 2.3: Every Boolean (left) near - ring is Quasi - weak commutative. That is, if N is a Boolean (left) near - ring then $x y z=y x z$ for all $x, y, z \in N$.

Proof: Let $x, y, z \in N$, Now

\Rightarrow	$\mathrm{x}(\mathrm{z}-\mathrm{xz}) \mathrm{y}=$	$\left(x z-x^{2} z\right) y$	$(x z-x z) y$	
		$=0 y$		
	$x(z-x z) y(z-x z)$	$=0 \mathrm{y}(\mathrm{z}-\mathrm{xz})$		
\Rightarrow	$x y(z-x z)$	$0 \mathrm{y}(\mathrm{z}-\mathrm{xz})$	(by Lemma 2.2)	
\Rightarrow	xyz - ($x y x$) z	0yz - $0 y x z$		
\Rightarrow	$x y z-y x z$	$=0 y \mathrm{y}-0 \mathrm{yxz}$	(by Lemma 2.2)	$\rightarrow(4)$

Also,
$\begin{array}{llll} & x(z-x z) x & = & \left(x z-x^{2} z\right) x \\ \Rightarrow & (z-x z) x & = & 0 x\end{array}$

Now: $x y(z-x z) x y \quad=\quad(z-x z) x y \quad$ (by Lemma 2.2)
$x y(z-x z) x y(z-x z)$
$=0 \mathrm{xy}$
$(x y(z-x z))^{2}$
$=\quad 0 \mathrm{xy}(\mathrm{z}-\mathrm{xz})$
$x y(z-x z)$
$=\quad 0 x y(z-x z)$
i.e, $x y z-x y x z$
$-0 x y(z-x z)$
$=0 x y z-0 x y x z$
$=0 \mathrm{xyz}-0 \mathrm{yxz} \quad$ (using Lemma 2.2) $\rightarrow(6)$
From (4) and (5) we get
$0 \mathrm{yz}-0 \mathrm{yxz} \quad=\quad 0 \mathrm{xyz}-0 \mathrm{yxz}$
$0 \mathrm{yz} \quad=\quad 0 \mathrm{xyz} \quad$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \boldsymbol{\epsilon} \mathrm{N} \quad \rightarrow(7)$
Replacing x by y and y by z in (7) we get
0 zz
$=\quad 0 \mathrm{yzz}$
(i.e) $0 \mathrm{z}^{2}=0 \mathrm{yz}^{2}$
$\Rightarrow \quad 0 \mathrm{z} \quad=\quad 0 \mathrm{yz}$
for all $\mathrm{y}, \mathrm{z} \boldsymbol{\epsilon} \mathrm{N}$
From (4), we get

$$
\begin{array}{llll}
\mathrm{xyz}-\mathrm{yxz} & = & 0 \mathrm{yz}-0 \mathrm{yxz} & \tag{8}\\
& = & 0 \mathrm{z}-0 \mathrm{xz} & \text { (using (8)) } \\
& = & 0 \mathrm{z}-0 \mathrm{z} & \text { (using (8)) }
\end{array}
$$

Hence $\quad x y z=y z$ for all $x, y, z \in N$.

Note: If N is anti - Boolean near ring then $2 \mathrm{x}=0 \quad \forall \mathrm{x} \boldsymbol{\epsilon} \mathrm{N}$.
Proof: Let $\mathrm{x} \boldsymbol{\epsilon}$ N. Then $(\mathrm{x}+\mathrm{x})^{2}=-(\mathrm{x}+\mathrm{x})$
$(x+x)(x+x) \quad=\quad-(x+x)$
$(x+x) x+(x+x) x \quad=\quad-(x+x)$
$2 \mathrm{x} \cdot \mathrm{x}+2 \mathrm{x} \cdot \mathrm{x} \quad=\quad-(\mathrm{x}+\mathrm{x})$
$2 x^{2}+2 x^{2} \quad=\quad-x-x$
$-2 \mathrm{x}-2 \mathrm{x} \quad=\quad-2 \mathrm{x}$
$-2 x \quad=\quad 0$
$2 \mathrm{x} \quad=\quad 0 \quad \forall \mathrm{x} \boldsymbol{\epsilon} \mathrm{N}$.

Lemma 2.4

If N is anti - Boolean left near - ring then for any $a, b \boldsymbol{\epsilon} N, a b=0 \Rightarrow b a=-0 a$.
Proof: Let $\mathrm{a}, \mathrm{b} \boldsymbol{\epsilon}$ N. $-\mathrm{ba}=(\mathrm{ba})^{2}=\mathrm{ba} \mathrm{ba}=\mathrm{b}(\mathrm{ab}) \mathrm{a}=\mathrm{b} 0 \mathrm{a}=0 \mathrm{a} \Rightarrow \mathrm{ba}=-0 \mathrm{a}$.

Lemma 2.5

If N is anti Boolean (left) near ring then for any $\mathrm{x}, \mathrm{y} \boldsymbol{\epsilon} \mathrm{N}, \mathrm{xyx}=-\mathrm{yx}$.
Proof: Let $\mathrm{x}, \mathrm{y} \boldsymbol{\epsilon} \mathrm{N}$.

$$
\begin{array}{cc}
\mathrm{yx}(\mathrm{xyx}+\mathrm{yx}) & = \\
= & -\mathrm{yx} \mathrm{xx} \\
= & \mathrm{yx}+(\mathrm{yx})^{2} \\
\mathrm{yx})^{2}=0
\end{array}
$$

By Lemma 2.4

$$
\begin{equation*}
(\mathrm{xyx}+\mathrm{yx}) \mathrm{yx}=-\quad-0 \mathrm{yx} \tag{9}
\end{equation*}
$$

Also

$$
\begin{gathered}
\mathrm{xyx}(\mathrm{xyx}+\mathrm{yx})= \\
= \\
-\mathrm{xyxyx}+\mathrm{xyxyx}= \\
\mathrm{xyx}^{2} \mathrm{yx}+\mathrm{xyxyx} \\
=
\end{gathered}
$$

By Lemma 2.4,

$$
(\mathrm{xyx}+\mathrm{yx}) \mathrm{xyx}=\quad-0 \mathrm{xyx} \quad \rightarrow(10)
$$

Now,

$$
\begin{align*}
& -(x y x+y x) \quad=\quad(x y x+y x)^{2} \\
& =\quad(x y x+y x)(x y x+y x) \\
& =\quad(x y x+y x) x y x+(x y x+y x) y x \\
& =\quad-0 \mathrm{xyx}-0 \mathrm{yx} \\
& \Rightarrow(\mathrm{xyx}+\mathrm{yx})=0(\mathrm{xyx}+\mathrm{yx}) \tag{11}
\end{align*}
$$

Now

$$
\begin{array}{llll}
0 & = & \mathrm{x}(\mathrm{xyx}+\mathrm{yx}) & \\
& = & \mathrm{x} 0(\mathrm{xyx}+\mathrm{yx}) & \\
& = & 0(\mathrm{xyx}+\mathrm{yx}) & \\
& = & \mathrm{xyx}+\mathrm{yx} & \text { (using (11)) } \\
& & \text { (using (11)) }
\end{array}
$$

Hence $\mathrm{xyx}=-\mathrm{yx}$ for all $\mathrm{x}, \mathrm{y} \boldsymbol{\epsilon} \mathrm{N}$.

Theorem 2.6

Every anti - Boolean (left) near - ring is anti - quasi weak commutative. That is, if N is anti - Boolean near - ring (in which $\mathrm{x}^{2}=-\mathrm{x} \forall \mathrm{x} \boldsymbol{\epsilon} \mathrm{N}$), then $\mathrm{xyz}=-\mathrm{yxz}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \boldsymbol{\epsilon} \mathrm{N}$.
Proof: Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \boldsymbol{\epsilon} \mathrm{N}$
Now -x ($\mathrm{z}-\mathrm{xz}$) y

$$
\begin{array}{ll}
= & -\left(x z-x^{2} z\right) y \\
= & -(x z+x z) y
\end{array}
$$

$$
\begin{array}{ll}
= & -(2 x z) y \\
= & -0 y .
\end{array}
$$

Therefore

$x y(z-x z)$
$=\quad-0 y(z-x z)$
$x y z-x y x z \quad=\quad-0 y z+0 y x z$
$x y z-(-y x z) \quad=\quad-0 y z+0 y x z$
$x y z+y x z \quad=\quad-0 y z+0 y x z$

Using Lemma 2.4, we get
$-(-(z-x z) x)$
$(z-x z) x$
$(z-x z) x y$

Now by Lemma 2.4, xy ($\mathrm{z}-\mathrm{xz}$) xy
$=\quad-(z-x z) x y$
$=\quad-(-0 x y) \quad($ using(13))
$\therefore \mathrm{xy}(\mathrm{z}-\mathrm{xz}) \mathrm{xy}(\mathrm{z}-\mathrm{xz}) \quad=\quad 0 \mathrm{xy}(\mathrm{z}-\mathrm{xz})$
$(x y(z-x z))^{2} \quad=\quad 0 x y(z-x z)$
$-x y(z-x z) \quad=\quad 0 x y z-0 x y x z$
$-x y z+x y x z \quad=\quad 0 x y z-0 x y x z$
$-x y z-y x z \quad=\quad 0 x y z+0 y x z$
(i.e) $x y z+y x z \quad=\quad-0 x y z-0 y x z$
(using Lemma 2.4)
From (12) and (14) we get,

$-0 \mathrm{yz}+0 \mathrm{yxz}$	$=$	$0 \mathrm{xyz}+\mathrm{oyxz}$
\Rightarrow	-0 yz	$=$

Replacing x by y and y by z in (15) we get,
$-0 \mathrm{z}^{2} \quad=\quad 0 \mathrm{yz}^{2}$
$0 \mathrm{z} \quad=\quad-0 \mathrm{yz} \forall \mathrm{y}, \mathrm{z} \boldsymbol{\epsilon} \mathrm{N}$
From (12) we get,

$$
\begin{array}{llll}
\mathrm{xyz}+\mathrm{yxz} & = & -0 \mathrm{yz}+0 \mathrm{yxz} & \\
& = & 0 \mathrm{z}-0 \mathrm{xz} & \text { (using (16)) } \\
& = & 0 \mathrm{z}+0 \mathrm{z} & \text { (using (16)) } \\
& = & 20 \mathrm{z} & \\
& = & 0 & \\
& & 0 & \\
\Rightarrow \quad \mathrm{xyz}+\mathrm{yxz} & = & -\mathrm{yxz} & \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{~N}
\end{array}
$$

Hence N is anti - Quasi - weak Commutative.

Lemma 2.7

If N is a Boolean (left) near - ring then for any $x, y \boldsymbol{\epsilon} N, x^{m} y^{n} x^{m}=y^{n} x^{m}$ where $m \geq 1, n \geq 1$ are fixed integers.

Proof: Let $\mathrm{x}, \mathrm{y} \boldsymbol{\epsilon} \mathrm{N}$

$y^{n} x^{m}\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right)$	$=$	$y^{n} x^{2 m} y^{n} x^{m}-y^{n} x^{m} y^{n} x^{m}$
	$=$	$y^{n} x^{m} y^{n} x^{m}-y^{n} x^{m} y^{n} x^{m}$
	$=$	0
By Lemma 2.1,		
$\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right) y^{n} x^{m}$	$=$	$0 y^{n} x^{m}$

Also
$x^{m} y^{n} x^{m}\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right) \quad=\quad x^{m} y^{n} x^{2 m} y^{n} x^{m}-x^{m} y^{n} x^{m} y^{n} x^{m}$
$=\quad x^{m} y^{n} x^{m} y^{n} x^{m}-x^{m} y^{n} x^{m} y^{n} x^{m}$
$=0$
So, by Lemma 2.1, $\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right) x^{m} y^{n} x^{m}$

$$
\begin{equation*}
=\quad 0 x^{m} y^{n} x^{m} \tag{18}
\end{equation*}
$$

Now,

$$
x^{m} y^{n} x^{m}-y^{n} x^{m}
$$

$=\quad\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right)^{2}$
$=\quad\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right)\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right)$
$=\quad\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right) x^{m} y^{n} x^{m}-\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right) y^{n} x^{m}$
$=\quad 0 x^{m} y^{n} x^{m}-0 y^{n} x^{m}$
$x^{m} y^{n} x^{m}-y^{n} x^{m} \quad=\quad 0\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right) \quad \rightarrow$ (19)
Now,

0	$=$	$x^{m}\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right)$	
	$=$	$x^{m} 0\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right)$	(using (19))
	$=$	$0\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right)$	
	$=$	$\left(x^{m} y^{n} x^{m}-y^{n} x^{m}\right)$	(using (19)) $)$
Hence $\quad x^{m} y^{n} x^{m}=\quad$	$y^{n} x^{m}$	$\forall x, y \in N$.	

References

[1] Dheena P.A note on a paper of Lee, Journal of Indian Math.Soc.,53(1988),227-229.
[2] Fain,some structure theorems for near - rings,Doctoral dissertation, University of Oklanama,1968.
[3] Gopalakrishnamoorthy.G,Kamaraj.M and Geetha.S,On quasi- weak commutative Near rings,International Journal of Mathematics Research,Vol5(5),(2013),431-440.
[4] Gopalakrishnamoorthy.G and Anitha.S, On Commutativity property of $\mathrm{Q}_{\mathrm{k}, \mathrm{n}}, \mathrm{Q}_{\mathrm{k}, \infty}, \mathrm{P}_{\mathrm{k}, \mathrm{n}}, \mathrm{P}_{\infty}$ and Q_{∞} rings.Jour,of Inst.of Mathematics and Computer Sciences, Vol 23, No. 2 (2010) 6370.
[5] Gopalakrishnamoorthy.G, Geetha.S and Anitha.S, On Quasi weak Commutative Near rings II, Malaya Journal of Matematik, 3(3), (2015), 327-334.
[6] Gopalakrishnamoorthy.G, Geetha.S and Anitha.S, On Quasi- weak Commutative Boolean - like Near - Rings,Malaya Journalof Matematik, 3(3), (2015),318-326.
[7] Gratzer.George, Universal Algebra, Van Nostrand, 1968.
[8] Henry E.Heartherly, Regular Near - rings, Journalof Indian Maths. Soc, 38(1974), 345 -354.
[9] Oswald A.Near - rings in which every N -Subgroup is principal, Proc. London Math.Soc,.3(1974), No 28,67-88.
[10] Pliz,Giinter,Near- rings,North Holland,Aneterdam,1983.
[11] Uma.S, Balakrishnan.R and Tamizh Chelvam.T, Pseudo Commutative near - rings, Scientia Magna, 6(2010)No 2, 75-85.

