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Abstract    Let 𝐺𝐺 be a graph and 𝑓𝑓:𝑉𝑉(𝐺𝐺) → {1,2,3, … , 𝑝𝑝 + 𝑞𝑞} be an injection. For each 𝑢𝑢𝑢𝑢, the 
induced edge labeling 𝑓𝑓∗ is defined as  

𝜒𝜒∗(𝑢𝑢𝑢𝑢) = �
1
𝑒𝑒

(
𝜒𝜒(𝑢𝑢)𝜒𝜒(𝑣𝑣)

𝜒𝜒(𝑢𝑢)𝜒𝜒(𝑢𝑢))
1

𝜒𝜒(𝑣𝑣)−𝜒𝜒(𝑢𝑢)�. 

Then 𝑓𝑓 is called a super exponential mean labeling if 𝑓𝑓�𝑉𝑉(𝐺𝐺)� ∪ {𝑓𝑓∗(𝑢𝑢𝑢𝑢):𝑢𝑢𝑢𝑢 ∈ 𝐸𝐸(𝐺𝐺)} =
{1,2,3, … , 𝑝𝑝 + 𝑞𝑞}. A graph that admits a super exponential mean labeling is called a super 
exponential mean graph. In this paper, we have discussed the super exponential meanness of 
some standard graphs.  

AMS 2010 Mathematics Subject Classification.  05C78. 
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1.  Introduction 
In this paper, only finite, simple and undirected graphs are considered. For terminology, 

definitions we follow [7] and for survey [6]. 
A path on 𝑛𝑛 vertices is denoted by 𝑃𝑃𝑛𝑛.  The graph 𝐺𝐺�(𝑝𝑝1,𝑚𝑚1,𝑝𝑝2,𝑚𝑚2, … ,𝑚𝑚𝑛𝑛−1,𝑝𝑝𝑛𝑛) is obtained 

from 𝑛𝑛 cycles of length 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛 and (𝑛𝑛 − 1) paths on 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑛𝑛−1 vertices respectively by 
identifying a cycle and a path at a vertex alternatively as follows: If the 𝑗𝑗𝑡𝑡ℎ cycles is of odd length, 

then its �𝑝𝑝𝑗𝑗+3
2
�
𝑡𝑡ℎ

 vertex is identified with a pendant vertex of 𝑗𝑗𝑡𝑡ℎ path and if the 𝑗𝑗𝑡𝑡ℎ cycle is of even 

length, then its �𝑝𝑝𝑗𝑗+2
2
�
𝑡𝑡ℎ

 vertex is identified with a pendant vertex of 𝑗𝑗𝑡𝑡ℎ path while the other pendant 
vertex of the 𝑗𝑗𝑡𝑡ℎ path is identified with the first vertex of the (𝑗𝑗 + 1)𝑡𝑡ℎ cycle. The graph 
𝐺𝐺∗(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛) is obtained from 𝑛𝑛 cycles of length 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛 by identifying consecutive cycles at 

a vertex as follows. If the 𝑗𝑗𝑡𝑡ℎ cycle is of odd length, then its �𝑝𝑝𝑗𝑗+3
2
�
𝑡𝑡ℎ

 vertex is identified with the first 

vertex of (𝑗𝑗 + 1)𝑡𝑡ℎ cycle and if the 𝑗𝑗𝑡𝑡ℎ cycle is of even length, then its �𝑝𝑝𝑗𝑗+2
2
�
𝑡𝑡ℎ

 vertex is identified 
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with the first vertex of (𝑗𝑗 + 1)𝑡𝑡ℎ cycle.  The graph Tadpoles 𝑇𝑇(𝑛𝑛,𝑘𝑘) is obtained by identifying a 
vertex of the cycle 𝐶𝐶𝑛𝑛 to an end vertex of the path 𝑃𝑃𝑘𝑘 . The triangular ladder 𝑇𝑇𝐿𝐿𝑛𝑛,𝑛𝑛 ≥ 2 is a graph 
obtained by completing the ladder 𝐿𝐿𝑛𝑛 by the edges 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖+1 for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, where 𝐿𝐿𝑛𝑛 is the graph 
𝑃𝑃2 × 𝑃𝑃𝑛𝑛. 

The middle graph 𝑀𝑀(𝐺𝐺) of a graph 𝐺𝐺 is the graph whose vertex set is {𝑢𝑢: 𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺)} ∪ {𝑒𝑒: 𝑒𝑒 ∈
𝐸𝐸(𝐺𝐺)} and the edge set is {𝑒𝑒1𝑒𝑒2: 𝑒𝑒1, 𝑒𝑒2 ∈ 𝐸𝐸(𝐺𝐺) and 𝑒𝑒1 and 𝑒𝑒2 are adjacent edges of 𝐺𝐺} ∪ {𝑢𝑢𝑒𝑒:𝑢𝑢 ∈
𝑉𝑉(𝐺𝐺), 𝑒𝑒 ∈ 𝐸𝐸(𝐺𝐺) and 𝑒𝑒 is incident with 𝑢𝑢}. The total graph 𝑇𝑇(𝐺𝐺) of a graph 𝐺𝐺 is the graph whose vertex 
set is 𝑉𝑉(𝐺𝐺) ∪ 𝐸𝐸(𝐺𝐺) and two vertices are adjacent if and only if either they are adjacent vertices of 𝐺𝐺 or 
adjacent edges of 𝐺𝐺 or one is a vertex of 𝐺𝐺 and the other one is an edge incident on it. A twig 
𝑇𝑇𝑇𝑇(𝑃𝑃𝑛𝑛),𝑛𝑛 ≥ 3 is a graph obtained from a path by attaching exactly two pendant vertices to each 
internal vertices to each internal vertices of the path. 

The concept of exponential mean labeling was introduced [1] and developed the exponential 
mean labeling of some standard graphs [2] by by Rajesh Kannan et al.. The concept of super 
geometric labeling was first introduced by Durai Baskar et al. [3]. Arockiaraj et al. introduced the 
super 𝐹𝐹-root square mean labeling of graphs [4]. Rajesh Kannan et al. introduced super exponential 
mean labeling of graphs [5]. Motivated by the works on graph labeling, we discussed the further 
results on super exponential mean labeling of some standard graphs. 

Let 𝐺𝐺 be a graph and 𝑓𝑓:𝑉𝑉(𝐺𝐺) → {1,2,3, … ,𝑝𝑝 + 𝑞𝑞} be an injection. For each 𝑢𝑢𝑢𝑢, the induced 
edge labeling 𝑓𝑓∗ is defined as  

 𝜒𝜒∗(𝑢𝑢𝑢𝑢) = �1
𝑒𝑒

(𝜒𝜒(𝑣𝑣)𝜒𝜒(𝑣𝑣)

𝜒𝜒(𝑢𝑢)𝜒𝜒(𝑢𝑢))
1

𝜒𝜒(𝑣𝑣)−𝜒𝜒(𝑢𝑢)�. 
Then 𝑓𝑓 is called a super exponential mean labeling if 𝑓𝑓(𝑉𝑉(𝐺𝐺)) ∪ {𝑓𝑓∗(𝑢𝑢𝑢𝑢):𝑢𝑢𝑢𝑢 ∈ 𝐸𝐸(𝐺𝐺)} =
{1,2,3, … ,𝑝𝑝 + 𝑞𝑞}. A graph that admits a super exponential mean labeling is called a super exponential 
mean graph. 

 

 
 

Figure 1. A super exponential mean labeling of 𝐶𝐶4 
 
 
 

2.  Main Results 
 

 Theorem 2.1 G�(p1, k1, p2, k2, … , kn−1, pn) is a super exponential mean graph with pα ≠ 4 for 2 ≤
α ≤ n and for any kα.  

 
Proof. Let {𝑢𝑢𝛽𝛽

(𝛼𝛼): 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 and 1 ≤ 𝛽𝛽 ≤ 𝑝𝑝𝛼𝛼} be the vertices of the 𝑛𝑛 number of cycles in 𝐺𝐺� with 
𝑝𝑝𝛼𝛼 ≠ 4 for 2 ≤ 𝛼𝛼 ≤ 𝑛𝑛. 

Let {𝑢𝑢𝛽𝛽
(𝛼𝛼): 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1 and 1 ≤ 𝛽𝛽 ≤ 𝑘𝑘𝛼𝛼} be the vertices of the (𝑛𝑛 − 1) number of paths in 

𝐺𝐺�. For 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1, the 𝛼𝛼𝑡𝑡ℎ cycle and 𝛼𝛼𝑡𝑡ℎ path are identified by a vertex 𝑢𝑢
�𝑝𝑝𝛼𝛼+32 �
(𝛼𝛼)  and 𝑢𝑢1

(𝛼𝛼) while 𝑝𝑝𝛼𝛼 

is odd and 𝑢𝑢
�𝑝𝑝𝛼𝛼+22 �
(𝛼𝛼)  and 𝑢𝑢1

(𝛼𝛼) while 𝑝𝑝𝛼𝛼 is even and the 𝛼𝛼𝑡𝑡ℎ path and the (𝛼𝛼 + 1)𝑡𝑡ℎ cycle are identified 

by a vertex 𝑢𝑢𝑘𝑘𝛼𝛼
(𝛼𝛼) and 𝑢𝑢1

(𝛼𝛼+1) in 𝐺𝐺�. 
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Define 𝑓𝑓:𝑉𝑉�𝐺𝐺�� → {1,2,3, … ,∑𝑛𝑛−1𝛼𝛼=1 (2𝑝𝑝𝛼𝛼 + 2𝑘𝑘𝛼𝛼) + 2𝑝𝑝𝑛𝑛 − 3𝑛𝑛 + 3} as follows: 
When 𝑝𝑝1 is odd, 

𝑓𝑓 �𝑢𝑢𝛽𝛽
(1)� = 𝑓𝑓 �𝑢𝑢

�𝑝𝑝12 �+2
(1) �+ 2𝛽𝛽 − 2,  for 2 ≤ 𝛽𝛽 ≤ 𝑘𝑘1  and 

𝑓𝑓 �𝑢𝑢𝛽𝛽
(1)� =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

1      𝛽𝛽 = 1 

4𝛽𝛽 − 4      2 ≤   𝛽𝛽 ≤   �
𝑝𝑝1
2 �

 

4𝛽𝛽 − 5      𝛽𝛽  = �
𝑝𝑝1
2 �

+ 1 

4𝛽𝛽 − 6      𝛽𝛽  = �
𝑝𝑝1
2 �

+ 2 

4𝑝𝑝1 + 5 − 4𝛽𝛽      �
𝑝𝑝1
2 �

+ 3 ≤   𝑗𝑗 ≤   𝑝𝑝1.

 

The induced edge labeling is as follows: 

𝑓𝑓∗ �𝑢𝑢𝛽𝛽
(1)𝑢𝑢𝛽𝛽+1

(1) � =

⎩
⎪⎪
⎨

⎪⎪
⎧4𝛽𝛽 − 2      1 ≤   𝛽𝛽  ≤   �

𝑝𝑝1
2 �

 

4𝛽𝛽 − 3      𝛽𝛽  = �
𝑝𝑝1
2 �

+ 1 

4𝛽𝛽 − 8      𝛽𝛽  = �
𝑝𝑝1
2 �

+ 2 

4𝑝𝑝1 + 3 − 4𝛽𝛽      �
𝑝𝑝1
2 �

+ 3 ≤   𝛽𝛽 ≤   𝑝𝑝1 − 1,

 

𝑓𝑓∗ �𝑢𝑢1
(1)𝑢𝑢𝑝𝑝1

(1)� = 3 and 

𝑓𝑓∗ �𝑢𝑢𝛽𝛽
(1)𝑢𝑢𝛽𝛽+1

(1) � = 𝑓𝑓 �𝑢𝑢
�𝑝𝑝12 �+2
(1) �+ 2𝛽𝛽 − 1,  for 1 ≤ 𝛽𝛽 ≤ 𝑘𝑘1 − 1. 

When 𝑝𝑝1 is even, 

𝑓𝑓 �𝑢𝑢𝛽𝛽
(1)� =

⎩
⎪
⎨

⎪
⎧1      𝛽𝛽 = 1 

4𝛽𝛽 − 4      2 ≤   𝛽𝛽  ≤   �
𝑝𝑝1
2 �

+ 1 

4𝑝𝑝1 + 5 − 4𝛽𝛽      �
𝑝𝑝1
2 �

+ 2 ≤   𝛽𝛽 ≤   𝑝𝑝1  𝑎𝑎𝑛𝑛𝑎𝑎 

 

𝑓𝑓 �𝑢𝑢𝛽𝛽
(1)� = 𝑓𝑓 �𝑢𝑢

�𝑝𝑝12 �+1
(1) �+ 2𝛽𝛽 − 2,  for 2 ≤ 𝛽𝛽 ≤ 𝑘𝑘1. 

 
The induced edge labeling is as follows: 
 

𝑓𝑓∗ �𝑢𝑢𝛽𝛽
(1)𝑢𝑢𝛽𝛽+1

(1) � = �
4𝛽𝛽 − 2      1 ≤   𝛽𝛽 ≤   �

𝑝𝑝1
2 �

 

4𝑝𝑝1 + 3 − 4𝛽𝛽      �
𝑝𝑝1
2 �

+ 1 ≤   𝛽𝛽  ≤   𝑝𝑝1 − 1,
 

𝑓𝑓∗ �𝑢𝑢1
(1)𝑢𝑢𝑝𝑝1

(1)� = 3 and 

𝑓𝑓∗ �𝑢𝑢𝛽𝛽
(1)𝑢𝑢𝛽𝛽+1

(1) � = 𝑓𝑓 �𝑢𝑢
�𝑝𝑝12 �+1
(1) �+ 2𝛽𝛽 − 1,  for 1 ≤ 𝛽𝛽 ≤ 𝑘𝑘1 − 1. 

For 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, 

  𝑓𝑓 �𝑢𝑢𝛽𝛽
(𝛼𝛼)� =

⎩
⎪
⎨

⎪
⎧𝑓𝑓 �𝑢𝑢

�𝑝𝑝𝛼𝛼2 �+2
(𝛼𝛼) � + 2𝛽𝛽 − 2      2 ≤   𝛽𝛽  ≤   𝑘𝑘𝑖𝑖  𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑜𝑜𝑎𝑎𝑎𝑎 1𝑚𝑚𝑚𝑚

𝑓𝑓 �𝑢𝑢
�𝑝𝑝𝛼𝛼2 �+1
(𝛼𝛼) � + 2𝛽𝛽 − 2      2 ≤   𝛽𝛽 ≤   𝑘𝑘𝛼𝛼  𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑒𝑒𝑢𝑢𝑒𝑒𝑛𝑛.

 

For 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 
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 𝑓𝑓 �𝑢𝑢𝛽𝛽
(𝛼𝛼)� =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
�
𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1

(𝛼𝛼−1)� + 4𝛽𝛽 − 6      2 ≤   𝛽𝛽 ≤   �𝑝𝑝𝛼𝛼
2
� + 1  𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑜𝑜𝑎𝑎𝑎𝑎 1𝑚𝑚𝑚𝑚

𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1
(𝛼𝛼−1)� + 4𝑝𝑝𝛼𝛼 + 5 − 4𝛽𝛽      �𝑝𝑝𝛼𝛼

2
� + 2 ≤   𝛽𝛽 ≤   𝑝𝑝𝛼𝛼  𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑜𝑜𝑎𝑎𝑎𝑎 

1𝑚𝑚𝑚𝑚

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1

(𝛼𝛼−1)� + 4𝛽𝛽 − 6      2 ≤   𝛽𝛽 ≤   �𝑝𝑝𝛼𝛼
2
�   𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑒𝑒𝑢𝑢𝑒𝑒𝑛𝑛 1𝑚𝑚𝑚𝑚

𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1
(𝛼𝛼−1)� + 4𝛽𝛽 − 5      𝛽𝛽 = �𝑝𝑝𝛼𝛼

2
� + 1  𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑒𝑒𝑢𝑢𝑒𝑒𝑛𝑛 1𝑚𝑚𝑚𝑚

𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1
(𝛼𝛼−1)� + 4𝛽𝛽 − 12      𝛽𝛽 = �𝑝𝑝𝛼𝛼

2
� + 2  𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑒𝑒𝑢𝑢𝑒𝑒𝑛𝑛 1𝑚𝑚𝑚𝑚

𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1
(𝛼𝛼−1)� + 4𝑝𝑝𝛼𝛼 + 5 − 4𝛽𝛽      �𝑝𝑝𝛼𝛼

2
� + 3 ≤   𝛽𝛽 ≤   𝑝𝑝𝛼𝛼  

     𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑒𝑒𝑢𝑢𝑒𝑒𝑛𝑛.

 

The induced edge labeling is as follows: 
For 2 ≤ 𝛼𝛼 ≤ 𝑛𝑛, 

  𝑓𝑓∗�𝑢𝑢𝛽𝛽
(𝛼𝛼)𝑢𝑢𝛽𝛽+1

(𝛼𝛼) � =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

⎩
⎪⎪
⎨

⎪⎪
⎧𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1

(𝛼𝛼−1)� + 1      𝛽𝛽 = 1  𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑜𝑜𝑎𝑎𝑎𝑎 2𝑚𝑚𝑚𝑚

𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1

(𝛼𝛼−1)� + 4𝛽𝛽 − 4      2 ≤   𝛽𝛽  ≤   �𝑝𝑝𝛼𝛼
2
� + 1 

     𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑜𝑜𝑎𝑎𝑎𝑎 2𝑚𝑚𝑚𝑚

𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1

(𝛼𝛼−1)� + 4𝑝𝑝𝛼𝛼 + 3 − 4𝛽𝛽      �𝑝𝑝𝛼𝛼
2
� + 2 ≤   𝛽𝛽  ≤   𝑝𝑝𝛼𝛼 − 1 

     𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑜𝑜𝑎𝑎𝑎𝑎 

2𝑚𝑚𝑚𝑚

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1

(𝛼𝛼−1)� + 1      𝛽𝛽 = 1  𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑒𝑒𝑢𝑢𝑒𝑒𝑛𝑛 2𝑚𝑚𝑚𝑚

𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1

(𝛼𝛼−1)� + 4𝛽𝛽 − 4      2 ≤   𝛽𝛽 ≤   �
𝑝𝑝𝛽𝛽
2
� − 1 

     𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑒𝑒𝑢𝑢𝑒𝑒𝑛𝑛 2𝑚𝑚𝑚𝑚

𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1

(𝛼𝛼−1)� + 4𝛽𝛽 − 3      𝛽𝛽 = �𝑝𝑝𝛼𝛼
2
� 

     𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑒𝑒𝑢𝑢𝑒𝑒𝑛𝑛 2𝑚𝑚𝑚𝑚

𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1

(𝛼𝛼−1)� + 4𝛽𝛽 − 6      𝛽𝛽 = �𝑝𝑝𝛼𝛼
2
� + 1 

     𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑒𝑒𝑢𝑢𝑒𝑒𝑛𝑛 2𝑚𝑚𝑚𝑚

𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1

(𝛼𝛼−1)� + 4𝑝𝑝𝛼𝛼 + 3 − 4𝛽𝛽      �𝑝𝑝𝛼𝛼
2
� + 2 ≤   𝑗𝑗 ≤   𝑝𝑝𝛼𝛼 − 1 

     𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼  𝑖𝑖𝑖𝑖  𝑒𝑒𝑢𝑢𝑒𝑒𝑛𝑛,

 

For 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, 
  𝑓𝑓∗ �𝑢𝑢1

(𝛼𝛼)𝑢𝑢𝑝𝑝𝛼𝛼
(𝛼𝛼)� = 𝑓𝑓�𝑢𝑢𝑘𝑘𝛼𝛼−1

(𝛼𝛼−1)� + 3 and 

𝑓𝑓∗ �𝑢𝑢𝛽𝛽
(𝛼𝛼)𝑢𝑢𝛽𝛽+1

(𝛼𝛼) � =

⎩
⎪
⎨

⎪
⎧𝑓𝑓 �𝑢𝑢

�𝑝𝑝𝛼𝛼2 �+2
(𝛼𝛼) �+ 2𝛽𝛽 − 1      1 ≤   𝛽𝛽 ≤   𝑘𝑘𝛼𝛼 − 1  𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼   𝑖𝑖𝑖𝑖  𝑜𝑜𝑎𝑎𝑎𝑎 2𝑚𝑚𝑚𝑚

𝑓𝑓�𝑢𝑢
�𝑝𝑝𝛼𝛼2 �+1
(𝛼𝛼) �+ 2𝛽𝛽 − 1      1 ≤   𝛽𝛽 ≤   𝑘𝑘𝛼𝛼 − 1  𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝛼𝛼   𝑖𝑖𝑖𝑖  𝑒𝑒𝑢𝑢𝑒𝑒𝑛𝑛.

 

Hence, 𝑓𝑓 is a super exponential mean labeling of 𝐺𝐺�(𝑝𝑝1,𝑘𝑘1,𝑝𝑝2,𝑘𝑘2, … ,𝑘𝑘𝑛𝑛−1,𝑝𝑝𝑛𝑛). Thus the graph 
𝐺𝐺�(𝑝𝑝1,𝑘𝑘1,𝑝𝑝2,𝑘𝑘2, … ,𝑘𝑘𝑛𝑛−1,𝑝𝑝𝑛𝑛) is a super exponential mean graph with 𝑝𝑝𝑖𝑖 ≠ 4 for 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 and for any 
𝑘𝑘𝑖𝑖.  
 
 Corollary 2.2 G∗(p1, p2, … , pn) is a super exponential mean graph with pi ≠ 4, for all 2 ≤ i ≤ n.  

 
         Corollary 2.3 Every triangular snake is a super exponential mean graph.  

 
         Corollary 2.4 Tadpoles T(n, k) is a super exponential mean graph, for n ≥ 3 and k ≥ 2.  

 
         Theorem 2.5 TLn is a super exponential mean graph, for n ≥ 3.  
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Proof. Let the vertex set of 𝑇𝑇𝐿𝐿𝑛𝑛 be {𝑢𝑢1,𝑢𝑢2, … , 𝑢𝑢𝑛𝑛,𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑛𝑛} and the edge set of 𝑇𝑇𝐿𝐿𝑛𝑛 be 
{𝑢𝑢𝛼𝛼𝑢𝑢𝑖𝑖+1,𝑢𝑢𝑖𝑖𝑢𝑢𝛼𝛼+1,𝑢𝑢𝛼𝛼𝑢𝑢𝛼𝛼+1: 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1} ∪ {𝑢𝑢𝛼𝛼𝑢𝑢𝛼𝛼: 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛}. Then 𝑇𝑇𝐿𝐿𝑛𝑛 has 2𝑛𝑛 vertices and 4𝑛𝑛 − 3 
edges. Define 𝑓𝑓:𝑉𝑉(𝑇𝑇𝐿𝐿𝑛𝑛) → {1,2,3, … ,6𝑛𝑛 − 3} as follows: 

 𝑓𝑓(𝑢𝑢𝛼𝛼) = �1      𝛼𝛼  = 1 
6𝛼𝛼 − 6      2 ≤   𝛼𝛼 ≤   𝑛𝑛, 

 𝑓𝑓(𝑢𝑢𝛼𝛼) = 6𝛼𝛼 − 2 for 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1 
and 𝑓𝑓(𝑢𝑢𝑛𝑛) = 6𝑛𝑛 − 3. 
The induced edge labeling is as follows: 

 𝑓𝑓∗(𝑢𝑢𝛼𝛼𝑢𝑢𝛼𝛼+1) = 6𝛼𝛼 − 3  for  1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1, 
 𝑓𝑓∗(𝑢𝑢𝛼𝛼𝑢𝑢𝛼𝛼+1) = 6𝛼𝛼 + 1   for  1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1,  
 𝑓𝑓∗(𝑢𝑢𝛼𝛼𝑢𝑢𝛼𝛼) = 6𝛼𝛼 − 4   for  1 ≤ 𝛼𝛼 ≤ 𝑛𝑛   and  
 𝑓𝑓∗(𝑢𝑢𝛼𝛼𝑢𝑢𝛼𝛼+1) = 6𝛼𝛼 − 1   for  1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1.   

Hence, 𝑓𝑓 is a super exponential mean labeling of 𝑇𝑇𝐿𝐿𝑛𝑛. Thus the graph 𝑇𝑇𝐿𝐿𝑛𝑛 is a super exponential mean 
graph for 𝑛𝑛 ≥ 3.  
 
          Theorem 2.6 M(Pn) is a super exponential mean graph, forn ≥ 4.  

 
Proof. Let 𝑉𝑉(𝑃𝑃𝑛𝑛) = {𝑢𝑢1,𝑢𝑢2, … , 𝑢𝑢𝑛𝑛} and 𝐸𝐸(𝑃𝑃𝑛𝑛) = {𝑒𝑒𝛼𝛼 = 𝑢𝑢𝛼𝛼𝑢𝑢𝛼𝛼+1: 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1} be the vertex set and 
edge set of the path 𝑃𝑃𝑛𝑛. Then  

 𝑉𝑉(𝑀𝑀(𝑃𝑃𝑛𝑛)) = {𝑢𝑢1,𝑢𝑢2, … , 𝑢𝑢𝑛𝑛, 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛−1}  a𝑛𝑛𝑎𝑎 
 𝐸𝐸(𝑀𝑀(𝑃𝑃𝑛𝑛)) = {𝑢𝑢𝛼𝛼𝑒𝑒𝛼𝛼, 𝑒𝑒𝛼𝛼𝑢𝑢𝛼𝛼+1: 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1} ∪ {𝑒𝑒𝛼𝛼𝑒𝑒𝛼𝛼+1: 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 2}. 

Define 𝑓𝑓:𝑉𝑉(𝑀𝑀(𝑃𝑃𝑛𝑛)) → {1,2,3, … ,5𝑛𝑛 − 5} as follows: 

𝑓𝑓(𝑢𝑢𝛼𝛼) = �
1      𝑖𝑖 = 1 
2𝛼𝛼 + 1      2 ≤   𝛼𝛼  ≤   3 
5𝛼𝛼 − 5      4 ≤   𝛼𝛼 ≤   𝑛𝑛  𝑎𝑎𝑛𝑛𝑎𝑎 

 

𝑓𝑓(𝑒𝑒𝛼𝛼) = �8𝛼𝛼 − 5      1 ≤   𝛼𝛼  ≤   2 
5𝛼𝛼 − 2      3 ≤   𝛼𝛼  ≤   𝑛𝑛 − 1. 

The induced edge labeling is as follows: 
𝑓𝑓∗(𝑒𝑒𝛼𝛼𝑒𝑒𝛼𝛼+1) = �6𝛼𝛼  1 ≤   𝛼𝛼  ≤   2 

5𝛼𝛼 + 1  3 ≤   𝛼𝛼  ≤   𝑛𝑛 − 2, 

𝑓𝑓∗(𝑒𝑒𝛼𝛼𝑢𝑢𝛼𝛼) = �
2  𝛼𝛼  = 1 
2𝛼𝛼 + 4  2 ≤   𝛼𝛼  ≤   3 
5𝑖𝑖 − 3  4 ≤   𝛼𝛼  ≤   𝑛𝑛 − 1 

 

and 𝑓𝑓∗(𝑒𝑒𝛼𝛼𝑢𝑢𝛼𝛼+1) = 5𝑖𝑖 − 1 for 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1. 
Hence, 𝑓𝑓 is a super exponential mean labeling of 𝑀𝑀(𝑃𝑃𝑛𝑛). Thus the graph 𝑀𝑀(𝑃𝑃𝑛𝑛) is a super exponential 
mean graph for 𝑛𝑛 ≥ 4.  

 
 Theorem 2.7 The total graph T(Pn) is a super exponential mean graph, for n ≥ 2.  

 
Proof. Let 𝑉𝑉(𝑃𝑃𝑛𝑛) = {𝑢𝑢1,𝑢𝑢2, … , 𝑢𝑢𝑛𝑛} and 𝐸𝐸(𝑃𝑃𝑛𝑛) = {𝑒𝑒𝛼𝛼 = 𝑢𝑢𝛼𝛼𝑢𝑢𝛼𝛼+1: 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1} be the vertex set and 
edge set of the path 𝑃𝑃𝑛𝑛. Then 

𝑉𝑉(𝑇𝑇(𝑃𝑃𝑛𝑛)) = {𝑢𝑢1,𝑢𝑢2, … , 𝑢𝑢𝑛𝑛, 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛−1}  and 
𝐸𝐸(𝑇𝑇(𝑃𝑃𝑛𝑛)) = {𝑢𝑢𝛼𝛼,𝑢𝑢𝛼𝛼+1, 𝑒𝑒𝛼𝛼𝑢𝑢𝛼𝛼, 𝑒𝑒𝛼𝛼𝑢𝑢𝛼𝛼+1: 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1} ∪ {𝑒𝑒𝛼𝛼𝑒𝑒𝛼𝛼+1: 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 2}. 

Define 𝑓𝑓:𝑉𝑉(𝑇𝑇(𝑃𝑃𝑛𝑛)) → {1,2,3, … ,6𝑛𝑛 − 6} as follows: 
𝑓𝑓(𝑢𝑢𝛼𝛼) = �1      𝑖𝑖 = 1 

6𝛼𝛼 − 6      2 ≤   𝛼𝛼 ≤   𝑛𝑛  𝑎𝑎𝑛𝑛𝑎𝑎  
𝑓𝑓(𝑒𝑒𝛼𝛼) = 6𝛼𝛼 − 2,  for 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1. 
The induced edge labeling is as follows: 

𝑓𝑓∗(𝑢𝑢𝛼𝛼𝑢𝑢𝛼𝛼+1) = 6𝑖𝑖 − 3, for 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1, 
𝑓𝑓∗(𝑒𝑒𝛼𝛼𝑢𝑢𝛼𝛼) = 6𝛼𝛼 − 4, for 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1, 
𝑓𝑓∗(𝑒𝑒𝛼𝛼𝑢𝑢𝛼𝛼+1) = 6𝛼𝛼 − 1, for 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1 and 
𝑓𝑓∗(𝑒𝑒𝛼𝛼𝑒𝑒𝛼𝛼+1) = 6𝛼𝛼 + 1, for 1 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 2. 

Hence, 𝑓𝑓 is a super exponential mean labeling of 𝑇𝑇(𝑃𝑃𝑛𝑛). Thus the graph 𝑇𝑇(𝑃𝑃𝑛𝑛) is a super exponential 
mean graph, for 𝑛𝑛 ≥ 2.  
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          Theorem 2.8 TW(Pn) is a super exponential mean graph, for n ≥ 3.  
 

Proof. Let 𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑛𝑛 be the vertices of the path 𝑃𝑃𝑛𝑛 and 𝑢𝑢1
(𝛼𝛼),𝑢𝑢2

(𝛼𝛼) be the pendant vertices at each 
vertex 𝑢𝑢𝛼𝛼 of the path 𝑃𝑃𝑛𝑛,for 2 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1. Then  

 𝑉𝑉(𝑇𝑇𝑇𝑇(𝑃𝑃𝑛𝑛)) = 𝑉𝑉(𝑃𝑃𝑛𝑛) ∪ �𝑢𝑢1
(𝛼𝛼), 𝑢𝑢2

(𝛼𝛼): 2 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1�   a𝑛𝑛𝑎𝑎 

 𝐸𝐸(𝑇𝑇𝑇𝑇(𝑃𝑃𝑛𝑛)) = 𝐸𝐸(𝑃𝑃𝑛𝑛) ∪ �𝑢𝑢𝛼𝛼𝑢𝑢1
(𝛼𝛼),𝑢𝑢𝛼𝛼𝑢𝑢2

(𝛼𝛼): 2 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1�. 
Define 𝑓𝑓:𝑉𝑉(𝑇𝑇𝑇𝑇(𝑃𝑃𝑛𝑛)) → {1,2,3, … ,6𝑛𝑛 − 9} as follows: 

 𝑓𝑓(𝑢𝑢𝛼𝛼) = �1      𝛼𝛼  = 1 
6𝛼𝛼 − 7      2 ≤   𝛼𝛼  ≤   𝑛𝑛 − 2, 

 𝑓𝑓(𝑢𝑢𝑛𝑛−1) = 6𝑛𝑛 − 11,𝑓𝑓(𝑢𝑢𝑛𝑛) = 6𝑛𝑛 − 9,  
 𝑓𝑓 �𝑢𝑢1

(𝛼𝛼)� = �2      𝛼𝛼 = 2 
6𝛼𝛼 − 9      3 ≤   𝛼𝛼  ≤   𝑛𝑛 − 2, 

 𝑓𝑓 �𝑢𝑢1
(𝑛𝑛−1)� = 6𝑛𝑛 − 16,  

 𝑓𝑓 �𝑢𝑢2
(𝛼𝛼)� = 6𝛼𝛼 − 5   for   2 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 2  

and  𝑓𝑓 �𝑢𝑢2
(𝑛𝑛−1)� = 6𝑛𝑛 − 14. 

The induced edge labeling is as follows: 
 𝑓𝑓∗(𝑢𝑢𝛼𝛼𝑢𝑢𝛼𝛼+1) = �3      𝛼𝛼  = 1 

6𝛼𝛼 − 4      2 ≤   𝛼𝛼  ≤   𝑛𝑛 − 3, 
 𝑓𝑓∗(𝑢𝑢𝑛𝑛−2𝑢𝑢𝑛𝑛−1) = 6𝑛𝑛 − 15,𝑓𝑓∗(𝑢𝑢𝑛𝑛−1𝑢𝑢𝑛𝑛) = 6𝑛𝑛 − 10,  
 𝑓𝑓∗ �𝑢𝑢𝛼𝛼𝑢𝑢1

(𝛼𝛼)� = 6𝛼𝛼 − 8   for  2 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 2, 

 𝑓𝑓∗ �𝑢𝑢𝑛𝑛−1𝑢𝑢1
(𝑛𝑛−1)� = 6𝑛𝑛 − 13   and  

 𝑓𝑓∗ �𝑢𝑢𝑖𝑖𝑢𝑢2
(𝛼𝛼)� = 6𝛼𝛼 − 6   for  2 ≤ 𝛼𝛼 ≤ 𝑛𝑛 − 1. 

Hence, 𝑓𝑓 is a super exponential mean labeling of 𝑇𝑇𝑇𝑇(𝑃𝑃𝑛𝑛). Thus the graph 𝑇𝑇𝑇𝑇(𝑃𝑃𝑛𝑛) is a super 
exponential mean graph, for 𝑛𝑛 ≥ 3.  

 

3  Conclusion 
In this paper, the results on super exponential meanness of some standard graphs have been discussed. 
It is possible to investigate the super exponential meanness for other graphs. 
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