(Special issue on ICRAPAM)
ISSN 1857-8365 printed version
ISSN 1857-8438 electronic version

Super exponential mean graphs

A. Rajesh Kannan ${ }^{1}$, R.Rathajeyalakshmi ${ }^{2}$ and A. Durai Baskar ${ }^{3}$
${ }^{1,2}$ Department of Mathematics
Mepco Schlenk Engineering College, Sivakasi- 626 005, Tamil Nadu, INDIA.
${ }^{3}$ Department of Mathematics C.S.I. Jayaraj Annapackiam College, Nallur - 627853, Tamil Nadu, INDIA.

Abstract

Let G be a graph and $\chi: V(G) \rightarrow\{1,2,3, \ldots, p+q\}$ be an injection. For each $u v$, the induced edge labeling χ^{*} is defined as $\chi^{*}(u v)=\left[\frac{1}{e}\left(\frac{\chi^{(v)} \chi^{(v)}}{\chi(u))^{(u)}}\right)^{\frac{1}{(v)}-\chi^{(u)}}\right]$. Then χ is called a super exponential mean labeling if $\chi(V(G)) \cup\left\{f^{*}(u v): u v \in E(G)\right\}=\{1,2,3, \ldots, p+q\}$. A graph that admits a super exponential mean labeling is called a super exponential mean graph. In this paper, the super exponential meanness of some standard graphs have been studied.

AMS 2010 Mathematics Subject Classification. 05C78, 54A99

Keywords. Exponential mean graph, super exponential mean labeling, super exponential mean graph.

1. Introduction

In this paper, only finite, simple and undirected graphs are considered. For terminology, definitions we follow [6] and for survey [5].

A path on n vertices is denoted by P_{n}. $G \odot S_{m}$ is the graph obtained from G by attaching m pendant vertices to each vertex of G. Let $v_{1}^{(i)}, v_{2}^{(i)}, v_{3}^{(i)}, \ldots, v_{m+1}^{(i)}$ and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices of the $i^{t h}$ copy of the star graph $S_{m}, 1 \leq i \leq n$ and the path P_{n} respectively. Then the graph $\left[P_{n} ; S_{m}\right]$ is obtained from n copies of S_{m} and the path P_{n} by joining u_{i} with the central vertex $v_{1}^{(i)}$ of the $i^{\text {th }}$ copy of S_{m} by means of an edge, for $1 \leq i \leq n$. An arbitrary subdivision of a graph G, is a graph obtained from G by a sequence of elementary subdivisions forming edges into paths through new vertices of degree 2 . For a graph G, the graph $S(G)$ is obtained by subdividing each edge of G by a vertex. A square of a graph G, denoted by G^{2}, has the vertex set as in G and two vertices are adjacent in G^{2} if they are at a distance either 1 or 2 apart in G.

The concept of exponential mean labeling was introduced [1] and developed the exponential mean labeling of some standard graphs [2] by by Rajesh Kannan et al.. The concept of super geometric labeling was first introduced by A. Durai Baskar et al. [3]. Arockiaraj et al. introduced the super F-root square mean labeling of graphs [4]. Motivated by the works on graph labeling, we introduced a new type of labeling called super exponential mean labeling.

Let G be a graph and $\chi: V(G) \rightarrow\{1,2,3, \ldots, p+q\}$ be an injection. For each $u v$, the induced edge labeling χ^{*} is defined as $\chi^{*}(u v)=\left\lceil\frac{1}{e}\left(\frac{\chi(v)^{\chi(v)}}{\chi(u)^{\chi(u)}}\right)^{\frac{1}{\chi(v)-\chi(u)}}\right\rceil$. Then χ is called a super exponential mean labeling if $\chi(V(G)) \cup\left\{f^{*}(u v): u v \in E(G)\right\}=\{1,2,3, \ldots, p+q\}$. A graph that admits a super exponential mean labeling is called a super exponential mean graph.

Figure 1. A super exponential mean labeling of C_{4}
In this paper, the super exponential meanness of some standard graphs have been studied.

2. Main Results

Theorem 2.1 Union of number of path P_{n} is a super exponential mean graph, for $\mathrm{n} \geq 2$.
Proof. Let the graph G be the union of k paths. Let $\left\{v_{\beta}^{(\alpha)}: 1 \leq \beta \leq p_{\alpha}\right\}$ be the vertices of the $\alpha^{\text {th }}$ path $P_{p_{\alpha}}$ with $p_{\alpha} \geq 2$ and $1 \leq \alpha \leq k$.
Define $\chi: V(G) \rightarrow\left\{1,2,3, \ldots, \sum_{\alpha=1}^{\gamma} 2 p_{\alpha}-\gamma\right\}$ as follows:

$$
\begin{aligned}
& \chi\left(v_{\beta}^{(1)}\right)=2 \beta-1, \text { for } 1 \leq \beta \leq p_{1} \text { and } \\
& \chi\left(v_{\beta}^{(\alpha)}\right)=f\left(v_{p_{\alpha-1}}^{(\alpha-1)}\right)+2 \beta-1, \text { for } 2 \leq \alpha \leq k \text { and } 1 \leq \beta \leq p_{\alpha}
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& \chi^{*}\left(v_{\beta}^{(1)} v_{\beta+1}^{(1)}\right)=2 \beta, \text { for } 1 \leq \beta \leq p_{1}-1 \text { and } \\
& \chi^{*}\left(v_{\beta}^{(\alpha)} v_{\beta+1}^{(\alpha)}\right)=f\left(v_{p_{\alpha-1}}^{(\alpha-1)}\right)+2 \beta, \text { for } 2 \leq \alpha \leq \gamma \text { and } \\
& 1 \leq \beta \leq p_{\alpha}-1
\end{aligned}
$$

Hence, χ is a super exponential mean labeling of G. Thus the graph G is a super exponential mean graph.

Corollary 2.2 Every path P_{n} is a super exponential mean graph, for $\mathrm{n} \geq 1$.
Theorem 2.3 The graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{S}_{\mathrm{m}}$ is a super exponential mean graph, for $\mathrm{n} \geq 1$ and $\mathrm{m} \leq 3$.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n} and $v_{1}^{(\alpha)}, v_{2}^{(\alpha)}, \ldots, v_{m}^{(\alpha)}$ be the pendant vertices at each vertex u_{α} of the path P_{n}, for $1 \leq \alpha \leq n$.
Case i. $m=1$.
Define $\chi: V\left(P_{n} \odot S_{1}\right) \rightarrow\{1,2,3, \ldots, 4 n-1\}$ as follows:
$\chi\left(u_{\alpha}\right)=4 \alpha-1$, for $1 \leq \alpha \leq n$ and
$\chi\left(v_{1}^{(\alpha)}\right)= \begin{cases}1 & \alpha=1 \\ 4 \alpha-4 & 2 \leq \alpha \leq n .\end{cases}$
The induced edge labeling is as follows:

$$
\begin{aligned}
& \chi^{*}\left(u_{\alpha} u_{i+1}\right)=4 \alpha+1, \text { for } 1 \leq \alpha \leq n-1 \text { and } \\
& \chi^{*}\left(v_{1}^{(\alpha)} u_{\alpha}\right)=4 \alpha-2, \text { for } 1 \leq \alpha \leq n
\end{aligned}
$$

Case ii. $m=2$.
Define $\chi: V\left(P_{n} \odot S_{2}\right) \rightarrow\{1,2,3, \ldots, 6 n-1\}$ as follows:

$$
\begin{aligned}
& \chi\left(u_{\alpha}\right)=6 \alpha-3, \text { for } 1 \leq \alpha \leq n \\
& \chi\left(v_{1}^{(\alpha)}\right)=6 \alpha-5, \text { for } 1 \leq \alpha \leq n \text { and } \\
& \chi\left(v_{2}^{(\alpha)}\right)=6 \alpha-1, \text { for } 1 \leq \alpha \leq n
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& \chi^{*}\left(u_{\alpha} u_{\alpha}+1\right)=6 \alpha, \text { for } 1 \leq \alpha \leq n-1 \\
& \chi^{*}\left(v_{1}^{(\alpha)} u_{\alpha}\right)=6 \alpha-4, \text { for } 1 \leq \alpha \leq n \text { and } \\
& \chi^{*}\left(v_{2}^{(\alpha)} u_{\alpha}\right)=6 \alpha-2, \text { for } 1 \leq \alpha \leq n
\end{aligned}
$$

Case iii. $m=3$.
Define χ : $V\left(P_{n} \odot S_{3}\right) \rightarrow\{1,2,3, \ldots, 8 n-1\}$ as follows:

$$
\begin{aligned}
& \chi\left(u_{\alpha}\right)=8 \alpha-3, \text { for } 1 \leq \alpha \leq n \\
& \chi\left(v_{1}^{(\alpha)}\right)= \begin{cases}1 & \alpha=1 \\
8 \alpha-8 & 2 \leq \alpha \leq n \\
\chi\left(v_{2}^{(\alpha)}\right)=8 \alpha-6, \text { for } 1 \leq \alpha \leq n \text { and }\end{cases} \\
& \chi\left(v_{3}^{(\alpha)}\right)=8 \alpha-1, \text { for } 1 \leq \alpha \leq n
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& \chi^{*}\left(u_{\alpha} u_{\alpha+1}\right)=8 \alpha+1, \text { for } 1 \leq \alpha \leq n-1, \\
& \chi^{*}\left(v_{1}^{(\alpha)} u_{\alpha}\right)=8 \alpha-5, \text { for } 1 \leq \alpha \leq n, \\
& \chi^{*}\left(v_{2}^{(\alpha)} u_{i}\right)=8 \alpha-4, \text { for } 1 \leq \alpha \leq n \text { and } \\
& \chi^{*}\left(v_{3}^{(\alpha)} u_{\alpha}\right)=8 \alpha-2, \text { for } 1 \leq \alpha \leq n
\end{aligned}
$$

Hence, χ is a super exponential mean labeling of $P_{n} \odot S_{m}$. Thus the graph $P_{n} \odot S_{m}$ is a super exponential mean graph, for $n \geq 1$ and $m \leq 3$.

Theorem $2.4\left[P_{n} ; S_{m}\right]$ is a super exponential mean graph, for $n \geq 1$ and $m \leq 2$.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n} and $v_{1}^{(\alpha)}, v_{2}^{(\alpha)}, \ldots, v_{m}^{(\alpha)}$ be the pendant vertices at each vertex u_{α} of the path P_{n}, for $1 \leq \alpha \leq n$.
Case i. $m=1$.
Define $\chi: V\left(\left[P_{n} ; S_{1}\right]\right) \rightarrow\{1,2,3, \ldots, 6 n-1\}$ as follows:

$$
\left.\begin{array}{l}
\chi\left(u_{\alpha}\right)= \begin{cases}5 & \alpha=1 \\
6 \alpha-5 & 2 \leq \alpha \leq n\end{cases} \\
\chi\left(v_{1}^{(\alpha)}\right)=6 \alpha-3 \\
\text { for } 1 \leq \alpha \leq n
\end{array}\right\} \begin{aligned}
& \chi\left(v_{2}^{(n)}\right)=6 n-1
\end{aligned}
$$

and

$$
\chi\left(v_{2}^{(\alpha)}\right)= \begin{cases}1 & \alpha=1 \\ 6 \alpha & 2 \leq \alpha \leq n-1\end{cases}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& \chi^{*}\left(u_{\alpha} u_{\alpha+1}\right)= \begin{cases}6 & \alpha=1 \\
6 \alpha-2 & 2 \leq \alpha \leq n-1,\end{cases} \\
& \chi^{*}\left(u_{\alpha} v_{1}^{(\alpha)}\right)= \begin{cases}4 & \alpha=1 \\
6 \alpha-4 & 2 \leq \alpha \leq n,\end{cases} \\
& \chi^{*}\left(v_{1}^{(\alpha)} v_{2}^{(\alpha)}\right)= \begin{cases}2 & \alpha=1 \\
6 \alpha-1 & 2 \leq \alpha \leq n-1\end{cases}
\end{aligned}
$$

and $\chi^{*}\left(v_{1}^{(n)} v_{2}^{(n)}\right)=6 n-2$.
Case ii. $m=2$.
Define $\chi: V\left(\left[P_{n} ; S_{2}\right]\right) \rightarrow\{1,2,3, \ldots, 8 n-1\}$ as follows:

$$
\chi\left(u_{\alpha}\right)= \begin{cases}3 \alpha+2 & 1 \leq \alpha \leq 2 \\ 8 \alpha-8 & 3 \leq \alpha \leq n\end{cases}
$$

$$
\begin{aligned}
& \chi\left(v_{1}^{(\alpha)}\right)= \begin{cases}3 & \alpha=1 \\
8 \alpha-5 & 2 \leq \alpha \leq n-1,\end{cases} \\
& \chi\left(v_{1}^{(n)}\right)=8 n-3 \text {, } \\
& \chi\left(v_{2}^{(\alpha)}\right)= \begin{cases}1 & \alpha=1 \\
8 \alpha-1 & 2 \leq \alpha \leq n-1,\end{cases} \\
& \chi\left(v_{2}^{(n)}\right)=8 n-6 \text {, } \\
& \chi\left(v_{3}^{(\alpha)}\right)= \begin{cases}9 & \alpha=1 \\
8 \alpha+1 & 2 \leq \alpha\end{cases}
\end{aligned}
$$

and $\chi\left(v_{3}^{(n)}\right)=8 n-1$. The induced edge labeling is as follows:

$$
\left.\begin{array}{rl}
\chi^{*}\left(u_{i} u_{\alpha+1}\right) & = \begin{cases}8 & \alpha=1 \\
8 \alpha-4 & 2 \leq \alpha \leq n-1,\end{cases} \\
\chi^{*}\left(u_{\alpha} v_{1}^{(\alpha)}\right) & = \begin{cases}4 & \alpha=1 \\
8 \alpha-6 & 2 \leq \alpha \leq n-1,\end{cases} \\
\chi^{*}\left(u_{n} v_{1}^{(n)}\right) & =8 n-5, \\
\chi^{*}\left(v_{1}^{(n)} v_{2}^{(n)}\right)=8 n-4,
\end{array}\right\}
$$

Hence, χ is a super exponential mean labeling of $\left[P_{n} ; S_{m}\right.$]. Thus the graph $\left[P_{n} ; S_{m}\right.$] is a super exponential mean graph, for $n \geq 1$ and $m \leq 2$.

Theorem 2.5 Arbitrary subdivision of $\mathrm{K}_{1,3}$ is a super exponential mean graph.

Proof. Let G be an arbitrary subdivision of $K_{1,3}$. Let v_{0}, v_{1}, v_{2} and v_{3} be the vertices of G in which v_{0} is the central vertex and v_{1}, v_{2} and v_{3} are the pendant vertices of $K_{1,3}$.

Let the edges $v_{0} v_{1}, v_{0} v_{2}$ and $v_{0} v_{3}$ of $K_{1,3}$ be subdivided by p_{1}, p_{2} and p_{3} number of vertices respectively. Let

$$
v_{0}, v_{1}^{(1)}, v_{2}^{(1)}, v_{3}^{(1)}, \ldots, v_{p_{1}+1}^{(1)}\left(=v_{1}\right), v_{0}, v_{1}^{(2)}, v_{2}^{(2)}, v_{3}^{(2)}, \ldots, v_{p_{2}+1}^{(2)}\left(=v_{2}\right)
$$

and $v_{0}, v_{1}^{(3)}, v_{2}^{(3)}, v_{3}^{(3)}, \ldots, v_{p_{3}+1}^{(3)}\left(=v_{3}\right)$ be the vertices of $S\left(K_{1,3}\right)$ and $v_{0}=v_{0}^{(i)}$, for $1 \leq \alpha \leq 3$.
Let $e_{\beta}^{(\alpha)}=v_{\beta-1}^{(\alpha)} v_{\beta}^{(\alpha)}, 1 \leq \beta \leq p_{\alpha}+1$ and $1 \leq \alpha \leq 3$ be the edges of $S\left(K_{1,3}\right)$ and it has $p_{1}+$ $p_{2}+p_{3}+4$ vertices and $p_{1}+p_{2}+p_{3}+3$ edges with $p_{1} \leq p_{2} \leq p_{3}$.
Case i. $p_{1}=p_{2}$.
Define $\chi: V\left(S\left(K_{1,3}\right)\right) \rightarrow\left\{1,2,3, \ldots, 2\left(p_{1}+p_{2}+p_{3}\right)+7\right\}$ as follows:

$$
\begin{aligned}
& \chi\left(v_{0}\right)=2\left(p_{1}+p_{2}\right)+5 \\
& \chi\left(v_{\beta}^{(1)}\right)=2\left(p_{1}+p_{2}\right)+5-4 j, \text { for } 1 \leq \beta \leq p_{1}+1 \\
& \chi\left(v_{\beta}^{(2)}\right)=2\left(p_{1}+p_{2}\right)+6-4 j, \text { for } 1 \leq \beta \leq p_{2}+1 \text { and } \\
& \chi\left(v_{\beta}^{(3)}\right)=2\left(p_{1}+p_{2}\right)+5+2 j, \text { for } 1 \leq \beta \leq p_{3}+1
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& \chi^{*}\left(v_{\beta}^{(1)} v_{\beta+1}^{(1)}\right)=2\left(p_{1}+p_{2}\right)+3-4 \beta, \text { for } 1 \leq \beta \leq p_{1} \\
& \chi^{*}\left(v_{\beta}^{(2)} v_{\beta+1}^{(2)}\right)=2\left(p_{1}+p_{2}\right)+4-4 \beta, \text { for } 1 \leq \beta \leq p_{2} \\
& \chi^{*}\left(v_{\beta}^{(3)} v_{\beta+1}^{(3)}\right)=2\left(p_{1}+p_{2}\right)+6+2 \beta, \text { for } 1 \leq \beta \leq p_{3} \\
& \chi^{*}\left(v_{0} v_{1}^{(1)}\right)=2\left(p_{1}+p_{2}\right)+3 \\
& \chi^{*}\left(v_{0} v_{1}^{(2)}\right)=2\left(p_{1}+p_{2}\right)+4
\end{aligned}
$$

and

$$
\chi^{*}\left(v_{0} v_{1}^{(3)}\right)=2\left(p_{1}+p_{2}\right)+6
$$

Case ii. $p_{1}<p_{2}<p_{3}$.
Define $\chi: V\left(S\left(K_{1,3}\right)\right) \rightarrow\left\{1,2,3, \ldots, 2\left(p_{1}+p_{2}+p_{3}\right)+7\right\}$ as follows:

$$
\begin{aligned}
& \chi\left(v_{0}\right)=2\left(p_{1}+p_{2}\right)+5 \\
& \chi\left(v_{\beta}^{(1)}\right)=2\left(p_{1}+p_{2}\right)+6-4 \beta, \text { for } 1 \leq j \leq p_{1}+1 \\
& \chi\left(v_{\beta}^{(2)}\right)= \begin{cases}2\left(p_{1}+p_{2}\right)+5-4 j & 1 \leq j \leq p_{1}+1 \\
2 p_{2}+3-2 j & p_{1}+2 \leq \beta \leq p_{2}+1\end{cases}
\end{aligned}
$$

and

$$
\chi\left(v_{\beta}^{(3)}\right)=2\left(p_{1}+p_{2}\right)+5+2 \beta, \text { for } 1 \leq \beta \leq p_{3}+1
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& \chi^{*}\left(v_{\beta}^{(1)} v_{\beta+1}^{(1)}\right)=2\left(p_{1}+p_{2}\right)+4-4 \beta, \text { for } 1 \leq \beta \leq p_{1}, \\
& \chi^{*}\left(v_{\beta}^{(2)} v_{\beta+1}^{(2)}\right)= \begin{cases}2\left(p_{1}+p_{2}\right)+3-4 \beta & 1 \leq \beta \leq p_{1} \\
2 p_{2}+2-2 \beta & p_{1}+1 \leq \beta \leq p_{2}\end{cases} \\
& \chi^{*}\left(v_{\beta}^{(3)} v_{\beta+1}^{(3)}\right)=2\left(p_{1}+p_{2}\right)+6+2 \beta, \text { for } 1 \leq \beta \leq p_{3} \\
& \chi^{*}\left(v_{0} v_{1}^{(1)}\right)=2\left(p_{1}+p_{2}\right)+4, \\
& \chi^{*}\left(v_{0} v_{1}^{(2)}\right)=2\left(p_{1}+p_{2}\right)+3
\end{aligned}
$$

and
$\chi^{*}\left(v_{0} v_{1}^{(3)}\right)=2\left(p_{1}+p_{2}\right)+6$.
Hence, χ is a super exponential mean labeling of $S\left(K_{1,3}\right)$. Thus the graph the graph $S\left(K_{1,3}\right)$ is a super exponential mean graph.

Theorem 2.6 $\mathrm{P}_{\mathrm{n}}^{2}$ is a super exponential mean graph, for $\mathrm{n} \geq 3$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n}. Define $\chi: V\left(P_{n}^{2}\right) \rightarrow\{1,2,3, \ldots, 3 n-3\}$ as follows:

$$
\begin{array}{ll}
\chi\left(v_{1}\right)=1 \\
\chi\left(v_{\alpha}\right)= \begin{cases}3 i-3 & 3 \leq \alpha \leq n-1 \text { and } \alpha \text { is odd } \\
3 \alpha-2 & 2 \leq \alpha \leq n-1 \text { and } i \text { is even and } \\
\chi\left(v_{n}\right)=3 n-3\end{cases}
\end{array}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
\chi^{*}\left(v_{\alpha} v_{\alpha+1}\right) & =3 \alpha-1, \text { for } 1 \leq \alpha \leq n-1 \text { and } \\
\chi^{*}\left(v_{\alpha} v_{\alpha+2}\right) & = \begin{cases}3 \alpha & 1 \leq \alpha \leq n-2 \text { and } \alpha \text { is odd } \\
3 \alpha+1 & 2 \leq \alpha \leq n-2 \text { and } \alpha \text { is even. }\end{cases}
\end{aligned}
$$

Hence, χ is a super exponential mean labeling of P_{n}^{2}. Thus the graph P_{n}^{2} is a super exponential mean graph, for $n \geq 3$.

Theorem 2.7 $\mathrm{S}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)$ is a super exponential mean graph, for $\mathrm{n} \geq 1$.
Proof. Let $V\left(P_{n} \odot K_{1}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$. Let x_{α} be the vertex which divides the edge $u_{\alpha} v_{\alpha}$, for $1 \leq \alpha \leq n$ and y_{α} be the vertex which divides the edge $u_{\alpha} v_{\alpha+1}$, for $1 \leq \alpha \leq n-1$. Then

$$
\begin{aligned}
& V\left(S\left(P_{n} \odot K_{1}\right)\right)=\left\{u_{\alpha}, v_{\alpha}, x_{\alpha}, y_{\beta}: 1 \leq \alpha \leq n, 1 \leq \beta \leq n-1\right\} \\
& E\left(\left(P_{n} \odot K_{1}\right)\right)=\left\{u_{\alpha} x_{\alpha}, v_{\alpha} x_{\alpha}: 1 \leq \alpha \leq n\right\} \cup\left\{u_{\alpha} y_{\alpha}, y_{\alpha} u_{\alpha+1}: 1 \leq \beta \leq n-1\right\}
\end{aligned}
$$

Define $\chi: V\left(S\left(P_{n} \odot K_{1}\right)\right) \cup E\left(S\left(P_{n} \odot K_{1}\right)\right) \rightarrow\{1,2,3, \ldots, 8 n-3\}$ as follows:

$$
\begin{aligned}
& \chi\left(u_{\alpha}\right)= \begin{cases}5 & \alpha=1 \\
8 \alpha-7 & 2 \leq \alpha \leq n\end{cases} \\
& \chi\left(y_{\alpha}\right)=8 i-1 \text { for } 1 \leq \alpha \leq n-1
\end{aligned}, \begin{array}{ll}
\chi\left(x_{\alpha}\right)=8 i-5 \text { for } 1 \leq \alpha \leq n \\
\chi\left(v_{\alpha}\right) & = \begin{cases}1 & i=1 \\
8 \alpha-2 & 2 \leq \alpha \leq n-1\end{cases}
\end{array}
$$

and

$$
\chi\left(v_{n}\right)=8 n-3
$$

Then the induced edge labeling is as follows:
$\chi^{*}\left(u_{\alpha} y_{\alpha}\right)= \begin{cases}6 & i=1 \\ 8 i-4 & 2 \leq i \leq n-1,\end{cases}$
$\chi^{*}\left(y_{\alpha} u_{\alpha+1}\right)=8 \alpha$ for $1 \leq \alpha \leq n-1$,
$\chi^{*}\left(u_{\alpha} x_{\alpha}\right)= \begin{cases}4 & \alpha=1 \\ 8 \alpha-6 & 2 \leq \alpha \leq n,\end{cases}$
$\chi^{*}\left(x_{\alpha} v_{\alpha}\right)= \begin{cases}2 & \alpha=1 \\ 8 \alpha-3 & 2=1\end{cases}$
and $\chi^{*}\left(x_{n} v_{n}\right)=8 n-4$.
Hence, χ is a super exponential mean labeling of $S\left(P_{n} \odot K_{1}\right)$. Thus the graph $S\left(P_{n} \odot K_{1}\right)$ is a super exponential mean graph, for $n \geq 1$.

3. Conclusion

In this paper, the super exponential meanness of some standard graphs have been studied. It is possible to investigate the super exponential meanness for other graphs.

References

[1] A.Rajesh Kannan, R.Rathajeyalakshmi and P.Manivannan, Exponential meanness of graphs obtained from paths, Journal of Advanced Research in Dynamical and Control Systems 10(14)(2018), 1598-1601.
[2] A.Rajesh Kannan, P.Manivannan and R.Rathajeyalakshmi, Exponential meanness of graphs obtained from some graph operations, Journal of Advanced Research in Dynamical and Control Systems 10(15)(2018), 525-529.
[3] A.Durai Baskar and S.Arockiaraj, Super geometric mean graphs, SUT Journal of Mathematics 52(2)(2016), 97-116.
[4] S.Arockiaraj and A.Rajesh Kannan, Further results on super F-root square mean graphs, International Journal of Pure and Applied Mathematics, 117 (2017), 83-90.
[5] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 17(2018), \#DS6.
[6] F.Harary, Graph Theory, Narosa Publishing House Reading, New Delhi (1988).

