FURTHER RESULTS ON FCM LABELING OF SOME GRAPHS AND ITS LINE GRAPH

A. Rajesh Kannan ${ }^{1}$, S. Arockiaraj ${ }^{2}$, A. Durai Baskar ${ }^{3}$ and P.Manivannan ${ }^{4}$
1,4 Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi- 626 005, Tamil Nadu, INDIA.
${ }^{2}$ Department of Mathematics
Government Arts \& Science College, Sivakasi- 626 124, Tamil Nadu, INDIA.
${ }^{3}$ Department of Mathematics
C.S.I. Jayaraj Annapackiam College, Nallur - 627853, Tamil Nadu, INDIA

Email: rajmaths@gmail.com, manivannan.p10@gmail.com \& psarockiaraj@gmail.com

Abstract A function f is called an F-centroidal mean labeling of a graph $G(V, E)$ with p vertices and q edges if $f: V(G) \rightarrow\{1,2,3, \ldots, q+1\}$ is injective and the induced function $f^{*}: E(G) \rightarrow\{1,2,3, \ldots, q\}$ defined as

$$
f^{*}(u v)=\left[\frac{2\left[f(u)^{2}+f(u) f(v)+f(v)^{2}\right]}{3[f(u)+f(v)]}\right],
$$

for all $u v \in E(G)$, is bijective. A graph that admits an F-centroidal mean labeling (FCM labeling) is called an F centroidal mean graph (FCM graph). The line graph is one among the graph operations. In this paper, we try to analyse that the line graph operation preserves the F-centroidal mean property for the graph $P_{n} \circ S_{2}$, the graph [$P_{n} ; S_{1}$], the graph $S\left(P_{n} \circ K_{1}\right)$, the ladder graph L_{n} and the slanting ladder graph $S L_{n}$.

Keywords Labeling, F-centroidal mean labeling, F-centroidal mean graph.

2010 Mathematics Subject Classification Number: 05C78

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let $\boldsymbol{G}(\boldsymbol{V}, \boldsymbol{E})$ be a graph with \boldsymbol{p} vertices and \boldsymbol{q} edges. For notations and terminology, we follow [8]. For a detailed survey on graph labeling, we refer [7].

The line graph $\boldsymbol{L}(\boldsymbol{G})$ of a graph \boldsymbol{G} is defined to have as its vertices the edges of \boldsymbol{G}, with two being adjacent if the corresponding edges share a vertex in \boldsymbol{G}. Path on \boldsymbol{n} vertices is denoted by $\boldsymbol{P}_{\boldsymbol{n}}$. The graph $\boldsymbol{G} \circ \boldsymbol{S}_{\boldsymbol{m}}$ is obtained from \boldsymbol{G} by attaching \boldsymbol{m} pendant vertices to each vertex of \boldsymbol{G}. If $\boldsymbol{v}_{\mathbf{1}}^{(i)}, \boldsymbol{v}_{\mathbf{2}}^{(i)}, \boldsymbol{v}_{\mathbf{3}}^{(\boldsymbol{i})}, \ldots, \boldsymbol{v}_{\boldsymbol{m}+\boldsymbol{1}}^{(i)}$ and $\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}, \boldsymbol{u}_{\mathbf{3}}, \ldots, \boldsymbol{u}_{\boldsymbol{n}}$ be the vertices of $\boldsymbol{i}^{\boldsymbol{t h}}$ copy of the star graph $\boldsymbol{S}_{\boldsymbol{m}}$ and the
path $\boldsymbol{P}_{\boldsymbol{n}}$ respectively, then the graph $\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\boldsymbol{m}}\right]$ is obtained from \boldsymbol{n} copies of $\boldsymbol{S}_{\boldsymbol{m}}$ and the path $\boldsymbol{P}_{\boldsymbol{n}}$ by joining $\boldsymbol{u}_{\boldsymbol{i}}$ with the central vertex $\boldsymbol{v}_{\mathbf{1}}^{(\boldsymbol{i})}$ of the $\boldsymbol{i}^{\boldsymbol{t h}}$ copy of $\boldsymbol{S}_{\boldsymbol{m}}$ by means of an edge, for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$. A subdivision of a graph \boldsymbol{G}, denoted by $\boldsymbol{S}(\boldsymbol{G})$, is a graph obtained by subdividing edge of \boldsymbol{G} by a vertex. Let $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ be any two graphs with $\boldsymbol{p}_{\boldsymbol{1}}$ and $\boldsymbol{p}_{\mathbf{2}}$ vertices respectively. Then the cartesian product $\boldsymbol{G}_{\mathbf{1}} \times \boldsymbol{G}_{\mathbf{2}}$ has $\boldsymbol{p}_{\mathbf{1}} \boldsymbol{p}_{\mathbf{2}}$ vertices which are $\left\{(\boldsymbol{u}, \boldsymbol{v}): \boldsymbol{u} \in \boldsymbol{G}_{\mathbf{1}}, \boldsymbol{v} \in \boldsymbol{G}_{\mathbf{2}}\right\}$ and the edges are obtained as follows: $\left(\boldsymbol{u}_{1}, \boldsymbol{v}_{1}\right)$ and $\left(\boldsymbol{u}_{2}, \boldsymbol{v}_{2}\right)$ are adjacent in $\boldsymbol{G}_{\mathbf{1}} \times \boldsymbol{G}_{\mathbf{2}}$ if either $\boldsymbol{u}_{\mathbf{1}}=\boldsymbol{u}_{\mathbf{2}}$ and $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$ are adjacent in $\boldsymbol{G}_{\mathbf{2}}$ or $\boldsymbol{u}_{\mathbf{1}}$ and $\boldsymbol{u}_{\mathbf{2}}$ are adjacent in $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{1}}=\boldsymbol{v}_{\mathbf{2}}$. A ladder graph $\boldsymbol{L}_{\boldsymbol{n}}$ is the graph $\boldsymbol{P}_{\mathbf{2}} \times \boldsymbol{P}_{\boldsymbol{n}}$. The slanting ladder $\boldsymbol{S} \boldsymbol{L}_{\boldsymbol{n}}$ is a graph obtained from two paths $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{n}}$ and $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ by joining each $\boldsymbol{v}_{\boldsymbol{i}}$, with $\boldsymbol{u}_{\boldsymbol{i + 1}}, \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{1}$.

The concept of geometric mean labeling was introduced by Durai Baskar and Arockiaraj [6]. In [5], Arockiaraj et al., introduced the concept of \boldsymbol{F}-root square mean labeling of a graph. In [4], Arockiaraj et al., analyzed the line graph operation preserves the \boldsymbol{F}-root square mean property for so many standard graphs. Arockiaraj et al., defined the \boldsymbol{F}-centroidal mean labeling [1]. Motivated by the works of so many authors in the area of graph labeling, we try to analyse that the line graph operation preserves the \boldsymbol{F}-centroidal mean property for some standard graphs.

A function \boldsymbol{f} is called an \boldsymbol{F}-centroidal mean labeling of a graph $\boldsymbol{G}(\boldsymbol{V}, \boldsymbol{E})$ with \boldsymbol{p} vertices and \boldsymbol{q} edges if $\boldsymbol{f}: \boldsymbol{V}(\boldsymbol{G}) \rightarrow\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \boldsymbol{q}+\mathbf{1}\}$ is injective and the induced function $\boldsymbol{f}^{*}: \boldsymbol{E}(\boldsymbol{G}) \rightarrow\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \boldsymbol{q}\}$ defined as

$$
f^{*}(u v)=\left\lfloor\frac{2\left[f(u)^{2}+f(u) f(v)+f(v)^{2}\right]}{3[f(u)+f(v)]}\right\rfloor
$$

for all $\boldsymbol{u} \boldsymbol{v} \in \boldsymbol{E}(\boldsymbol{G})$, is bijective. A graph that admits an \boldsymbol{F}-centroidal mean labeling (FCM labeling) is called an \boldsymbol{F}-centroidal mean graph (FCM graph).

An FCM labeling of the graph is given in Figure 1.

Figure 1

In this paper, we try to analyse that the line graph operation preserves the \boldsymbol{F}-centroidal mean property for the graph $\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{2}}$, the graph $\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right]$, the graph $\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}\right)$, the ladder graph $\boldsymbol{L}_{\boldsymbol{n}}$ and the slanting ladder graph $\boldsymbol{S} \boldsymbol{L}_{\boldsymbol{n}}$.

Theorem 1.1. [2] The ladder graph $\boldsymbol{L}_{\boldsymbol{n}}$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{1}$.
Theorem 1.2. [2] The slanting ladder graph $\boldsymbol{S} \boldsymbol{L}_{\boldsymbol{n}}$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{2}$.
Theorem 1.3. [3] Every path $\boldsymbol{P}_{\boldsymbol{n}}$ is an FCM graph.

Theorem 1.4. [3] The graph $\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{1}}$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{1}$.
Theorem 1.5. [3] The graph $\boldsymbol{L}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\boldsymbol{1}}\right)$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{2}$.

2. Main Results

Theorem 2.1 The graph $\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{2}}$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{1}$.

Proof. Let $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \boldsymbol{v}_{\mathbf{3}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ be the vertices of the path $\boldsymbol{P}_{\boldsymbol{n}}$ and $\boldsymbol{u}_{\mathbf{1}}^{(\boldsymbol{i})}$ be the pendant vertices at each $\boldsymbol{v}_{\boldsymbol{i}}$, for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$.

Define $\boldsymbol{f}: \boldsymbol{V}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{2}}\right) \rightarrow\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \mathbf{3 n}\}$ as follows.

$$
\begin{aligned}
& f\left(v_{i}\right)=3 i-1, \text { for } 1 \leq i \leq n \\
& f\left(u_{1}^{(i)}\right)=3 i-2, \text { for } 1 \leq i \leq n \text { and } \\
& f\left(u_{2}^{(i)}\right)=3 i, \text { for } 1 \leq i \leq n
\end{aligned}
$$

Then the induced edge labeling \boldsymbol{f}^{*} is obtained as follows.

$$
\begin{aligned}
& f^{*}\left(v_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}+\mathbf{1}}\right)=3 \boldsymbol{i}, \text { for } 1 \leq i \leq n-1 \\
& \boldsymbol{f}^{*}\left(\boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{u}_{\mathbf{1}}^{(i)}\right)=3 i-\mathbf{2}, \text { for } 1 \leq i \leq \boldsymbol{n} \text { and } \\
& \boldsymbol{f}^{*}\left(\boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{u}_{\mathbf{2}}^{(i)}\right)=3 i-\mathbf{1}, \text { for } 1 \leq i \leq n
\end{aligned}
$$

Hence, \boldsymbol{f} is an FCM labeling of the graph $\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{2}}$. Thus the graph $\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{2}}$ is an FCM graph, for $\boldsymbol{n} \geq$ 1.

Theorem 2.2 The graph $\boldsymbol{L}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{2}}\right)$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{2}$.
Proof. Let $\boldsymbol{u}_{\boldsymbol{1}}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}, \ldots, \boldsymbol{u}_{\boldsymbol{n}}$ be the vertices of $\boldsymbol{P}_{\boldsymbol{n}}$ and $\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{w}_{\boldsymbol{i}}$ be the pendant vertices attached at $\boldsymbol{u}_{\boldsymbol{i}}, \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$ in $\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{2}}$. The edge set of $\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{2}}$ is $\left\{\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i + 1}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{1}\right\} \cup\left\{\boldsymbol{y}_{\boldsymbol{i}}=\boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}}: \mathbf{1} \leq\right.$ $\boldsymbol{i} \leq \boldsymbol{n}\} \cup\left\{\boldsymbol{z}_{\boldsymbol{i}}=\boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{w}_{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\}$.

Let $\boldsymbol{V}\left(\boldsymbol{L}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{2}\right)\right)=\left\{\boldsymbol{x}_{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{1}\right\} \cup\left\{\boldsymbol{y}_{\boldsymbol{i}}, \boldsymbol{z}_{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\}$ and

$$
\begin{aligned}
E\left(L\left(P_{n} \circ S_{2}\right)\right)= & \left\{x_{i} z_{i}, x_{i} y_{i+1}, x_{i} z_{i+1}, x_{i} y_{i}: 1 \leq i \leq n-1\right\} \cup\left\{x_{i} x_{i+1}: 1 \leq i \leq n-2\right\} \cup\left\{y_{i} z_{i}: 1\right. \\
& \leq i \leq n\}
\end{aligned}
$$

be the vertex set and edge set of the graph $\boldsymbol{L}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{2}}\right)$. Define $\boldsymbol{f}: \boldsymbol{V}\left(\boldsymbol{L}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{2}}\right)\right) \rightarrow\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \mathbf{6 n}-$ $5\}$ as follows.

$$
\begin{aligned}
& f\left(x_{i}\right)= \begin{cases}8 i-6, & 1 \leq i \leq 2 \\
6 i-1, & 3 \leq i \leq n-1\end{cases} \\
& f\left(y_{i}\right)= \begin{cases}5 i-4, & 1 \leq i \leq 3 \\
6 i-8, & 4 \leq i \leq n \text { and }\end{cases} \\
& f\left(z_{i}\right)= \begin{cases}4, & i=1 \\
5 i-2, & 2 \leq i \leq 3 \\
6 i-5, & 4 \leq i \leq n\end{cases}
\end{aligned}
$$

Then the induced edge labeling \boldsymbol{f}^{*} is obtained as follows.

$$
\begin{aligned}
& f^{*}\left(x_{i} x_{i+1}\right)= \begin{cases}7 i-1, & 1 \leq i \leq 2 \\
6 i+2, & 3 \leq i \leq n-2,\end{cases} \\
& f^{*}\left(x_{i} y_{i}\right)= \begin{cases}7 i-6, & 1 \leq i \leq 2 \\
6 i-5, & 3 \leq i \leq n-1\end{cases} \\
& f^{*}\left(x_{i} z_{i}\right)=6 i-3, \text { for } 1 \leq i \leq n-1,
\end{aligned}
$$

$$
\begin{aligned}
& f^{*}\left(x_{i} z_{i+1}\right)= \begin{cases}6 i-1, & 1 \leq i \leq 2 \\
6 i, & 3 \leq i \leq n-1,\end{cases} \\
& f^{*}\left(x_{i} y_{i+1}\right)=6 i-2, \text { for } 1 \leq i \leq n-1 \text { and } \\
& f^{*}\left(y_{i} z_{i}\right)= \begin{cases}5 i-3, & 1 \leq i \leq \mathbf{3} \\
6 i-7, & 4 \leq i \leq n .\end{cases}
\end{aligned}
$$

Hence \boldsymbol{f} is an FCM labeling of the graph $\boldsymbol{L}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{2}}\right)$. Thus the graph $\boldsymbol{L}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\boldsymbol{2}}\right)$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{2}$.

Theorem 2.3 The graph $\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right]$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{1}$.
Proof. Let $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}, \ldots, \boldsymbol{u}_{\boldsymbol{n}}$ be the vertices of the path $\boldsymbol{P}_{\boldsymbol{n}}$ and $\boldsymbol{v}_{\mathbf{1}}^{(i)}, \boldsymbol{v}_{2}^{(i)}, \boldsymbol{v}_{3}^{(i)}, \ldots, \boldsymbol{v}_{m+1}^{(i)}$ be the vertices of the star graph $\boldsymbol{S}_{\boldsymbol{m}}$ such that $\boldsymbol{v}_{\boldsymbol{1}}^{(\boldsymbol{i})}$ is the central vertex of the star graph $\boldsymbol{S}_{\boldsymbol{m}}, \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$.

Define $\boldsymbol{f}: \boldsymbol{V}\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right] \rightarrow\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \mathbf{3 n}\}$ as follows.

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}3 i, & 1 \leq i \leq n \text { and } i \text { is odd } \\
3 i-2, & 1 \leq i \leq n \text { and } i \text { is even, }\end{cases} \\
& f\left(v_{1}^{(i)}\right)=3 i-1, \text { for } 1 \leq i \leq n \text { and } \\
& f\left(v_{2}^{(i)}\right)= \begin{cases}3 i-2, & 1 \leq i \leq n \text { and } i \text { is odd } \\
3 i, & 1 \leq i \leq n \text { and } i \text { is even. }\end{cases}
\end{aligned}
$$

Then the induced edge labeling \boldsymbol{f}^{*} is obtained as follows.

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)=3 i \text {, for } 1 \leq i \leq n-1, \\
& f^{*}\left(u_{i} v_{1}^{(i)}\right)= \begin{cases}3 i-1, & 1 \leq i \leq n \text { and } i \text { is odd } \\
3 i-2, & 1 \leq i \leq n \text { and } i \text { is even and }\end{cases} \\
& f^{*}\left(v_{1}^{(i)} v_{2}^{(i)}\right)= \begin{cases}3 i-2, & 1 \leq i \leq n \text { and } i \text { is odd } \\
3 i-1, & 1 \leq i \leq n \text { and } i \text { is even. }\end{cases}
\end{aligned}
$$

Hence \boldsymbol{f} is an FCM labeling of the graph $\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right]$. Thus the graph $\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right]$ is an FCM graph, for $\boldsymbol{n} \geq$ 1.

Theorem 2.4 The graph $\boldsymbol{L}\left(\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right]\right)$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{1}$.
Proof. Let $\boldsymbol{V}\left(\boldsymbol{L}\left(\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right]\right)\right)=\left\{\boldsymbol{u}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{j}}, \boldsymbol{w}_{\boldsymbol{j}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{1}, \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}\right\}$ and

$$
\begin{aligned}
E\left(L\left(\left[P_{n} ; S_{1}\right]\right)\right) & =\left\{u_{i} u_{i+1}: 1 \leq i \leq n-2\right\} \cup\left\{u_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{j} v_{j}: 1 \leq j\right. \\
& \leq n-1\} \cup\left\{v_{j} w_{j}: 1 \leq j \leq n\right\}
\end{aligned}
$$

be the vertex set and edge set of the graph $\boldsymbol{L}\left(\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right]\right)$.
Assume that $\boldsymbol{n} \geq \mathbf{3}$.
Define $\boldsymbol{f}: \boldsymbol{V}\left(\boldsymbol{L}\left(\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right]\right)\right) \rightarrow\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \mathbf{4 n}-\mathbf{3}\}$ as follows.

$$
f\left(u_{i}\right)=\left\{\begin{array}{l}
2, \quad i=1 \\
4 i, \quad 2 \leq i \leq n-1,
\end{array}\right.
$$

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{ll}
3 i-2, & 1 \leq i \leq 2 \\
4 i-5, & 3 \leq i \leq n \text { and } \\
f\left(w_{i}\right)= \begin{cases}3, & i=1 \\
4 i-3, & 2 \leq i \leq n .\end{cases}
\end{array} . \begin{array}{l}
2 \leq i \leq 2
\end{array}\right)
\end{aligned}
$$

Then the induced edge labeling \boldsymbol{f}^{*} is obtained as follows.

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}5, & i=1 \\
4 i+2, & 2 \leq i \leq n-2,\end{cases} \\
& f^{*}\left(u_{i} v_{i+1}\right)=4 i-1, \text { for } 1 \leq i \leq n-1, \\
& f^{*}\left(u_{i} v_{i}\right)= \begin{cases}5 i-4, & 1 \leq i \leq 2 \\
4 i-3, & 3 \leq i \leq n-1 a n d\end{cases} \\
& f^{*}\left(v_{i} w_{i}\right)= \begin{cases}2, & i=1 \\
4 i-4, & 2 \leq i \leq n .\end{cases}
\end{aligned}
$$

Hence \boldsymbol{f} is an FCM labeling of the graph $\boldsymbol{L}\left(\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right]\right)$, for $\boldsymbol{n} \geq \mathbf{3}$. For $\mathbf{1} \leq \boldsymbol{n} \leq \mathbf{2}$, the graph $\boldsymbol{L}\left(\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right]\right)$ is a path and by Theorem 2.1, the result follows. Thus the graph $\boldsymbol{L}\left(\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right]\right)$ is an FCM graph, for any $\boldsymbol{n} \geq 1$.

Theorem 2.5 The graph $\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}\right)$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{1}$.
Proof. In $\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}$, let $\boldsymbol{u}_{\boldsymbol{i}}, \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$, be the vertices on the path $\boldsymbol{P}_{\boldsymbol{n}}$ and $\boldsymbol{v}_{\boldsymbol{i}}$ be the vertex attached at each vertex $\boldsymbol{u}_{\boldsymbol{i}}, \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$.

Let $\boldsymbol{x}_{\boldsymbol{i}}$ be the vertex which divides the edge $\boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}}$, for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$ and $\boldsymbol{y}_{\boldsymbol{i}}$ be the vertex which divides the edge $\boldsymbol{u}_{i} \boldsymbol{u}_{\boldsymbol{i + 1}}$, for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{1}$. Then $\boldsymbol{V}\left(\boldsymbol{S}\left(\boldsymbol{P}_{n} \circ \boldsymbol{K}_{1}\right)\right)=\left\{\boldsymbol{u}_{i}, \boldsymbol{v}_{i}, \boldsymbol{x}_{i}, \boldsymbol{y}_{j}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}, \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}-\right.$ $1\}$ and $\boldsymbol{E}\left(\boldsymbol{S}\left(\boldsymbol{P}_{n} \circ \boldsymbol{K}_{1}\right)\right)=\left\{\boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\} \cup\left\{\boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{y}_{i}, \boldsymbol{y}_{i} \boldsymbol{u}_{\boldsymbol{i}+1}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{1}\right\}$.

Define $\boldsymbol{f}: \boldsymbol{V}\left(\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}\right)\right) \rightarrow\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \mathbf{4 n}-\mathbf{1}\}$ as follows.

$$
\begin{aligned}
& f\left(u_{i}\right)=4 i-3, \text { for } 1 \leq i \leq n, \\
& f\left(y_{i}\right)=4 i-1, \text { for } 1 \leq i \leq n-1, \\
& f\left(x_{i}\right)=4 i-2, \text { for } 1 \leq i \leq n, \\
& f\left(v_{i}\right)=4 i, \text { for } 1 \leq i \leq n-1 \text { and } \\
& f\left(v_{n}\right)=4 n-1 .
\end{aligned}
$$

Then the induced edge labeling \boldsymbol{f}^{*} is obtained as follows.

$$
\begin{aligned}
& f^{*}\left(u_{i} y_{i}\right)=4 i-2, \text { for } 1 \leq i \leq n-1, \\
& f^{*}\left(y_{i} u_{i+1}\right)=4 i, \text { for } 1 \leq i \leq n-1, \\
& f^{*}\left(u_{i} x_{i}\right)=4 i-3, \text { for } 1 \leq i \leq n, \\
& f^{*}\left(x_{i} v_{i}\right)=4 i-1, \text { for } 1 \leq i \leq n-1 \mathrm{and} \\
& f^{*}\left(x_{n} v_{n}\right)=4 n-2 .
\end{aligned}
$$

Hence \boldsymbol{f} is an FCM labeling of the graph $\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}\right)$. Thus the graph $\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}\right)$ is an FCM graph, for $\boldsymbol{n} \geq 1$.

Theorem 2.6 The graph $\boldsymbol{L}\left(\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}\right)\right)$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{1}$.
Proof. The vertex set and edge set of the line graph of $\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}\right)$ are as given below.
$\boldsymbol{V}\left(\boldsymbol{L}\left(\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{1}\right)\right)\right)=\left\{\boldsymbol{u}_{\boldsymbol{i}}, \boldsymbol{u}_{\boldsymbol{j}}, \boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{w}_{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}, \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}-\mathbf{2}\right\}$ and

$$
\begin{gathered}
E\left(L\left(S\left(P_{n} \circ K_{1}\right)\right)\right)=\left\{\boldsymbol{u}_{i} \boldsymbol{v}_{i}, \boldsymbol{v}_{i} \boldsymbol{w}_{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq n\right\} \cup\left\{\boldsymbol{u}_{i}, \boldsymbol{v}_{i+1}: \mathbf{1} \leq \boldsymbol{i} \leq n-2\right\} \cup\left\{\boldsymbol{u}_{i} \boldsymbol{u}_{i-1}^{\prime}: \mathbf{2} \leq \boldsymbol{i}\right. \\
\leq n-1\} \cup\left\{\boldsymbol{u}_{\boldsymbol{i}}, \boldsymbol{u}_{\boldsymbol{i}+2}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{2}\right\} \cup \boldsymbol{u}_{\mathbf{1}} \boldsymbol{u}_{\mathbf{2}}
\end{gathered}
$$

Assume that $\boldsymbol{n} \geq 3$.
Define $\boldsymbol{f}: \boldsymbol{V}\left(\boldsymbol{L}\left(\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}\right)\right)\right) \rightarrow\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \mathbf{5 n}-\mathbf{4}\}$ as follows.

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}3, & i=1 \\
5 i-4, & 2 \leq i \leq n-1 \text { and } i \text { is odd } \\
5 i-6, & 2 \leq i \leq n-1 \text { and } i \text { is even, }\end{cases} \\
& f\left(u_{n}\right)= \begin{cases}5 n-4, & n \text { is odd } \\
5 n-6, & n \text { is even, }\end{cases} \\
& f\left(u_{i \prime}\right)= \begin{cases}5 i, & 1 \leq i \leq n-2 \text { and } i \text { is odd } \\
5 i+3, & 1 \leq i \leq n-2 \text { and } i \text { is even, }\end{cases} \\
& f\left(v_{i}\right)= \begin{cases}2, & i=1 \\
5 i-5, & 2 \leq i \leq n-1 \text { and } i \text { is odd } \\
5 i-3, & 2 \leq i \leq n-1 \text { and } i \text { is even, }\end{cases} \\
& f\left(v_{n}\right)=5 n-5, \\
& f\left(w_{i}\right)= \begin{cases}1, & i=1 \\
5 i-6, & 2 \leq i \leq n-1 \text { and } i \text { is odd } \\
5 i-2, & 2 \leq i \leq n-1 \text { and } i \text { is even and }\end{cases} \\
& f\left(w_{n}\right)= \begin{cases}5 n-6, & n \text { is odd } \\
5 n-4, & n \text { is even. }\end{cases}
\end{aligned}
$$

Then the induced edge labeling \boldsymbol{f}^{*} is obtained as follows.

$$
\begin{aligned}
& f^{*}\left(u_{i} v_{i}\right)= \begin{cases}2, & i=1 \\
5 i-5, & 2 \leq i \leq n-1,\end{cases} \\
& f^{*}\left(u_{n} v_{n}\right)= \begin{cases}5 n-5, & n \text { is odd } \\
5 n-6, & n \text { is even, },\end{cases} \\
& f^{*}\left(v_{i} w_{i}\right)= \begin{cases}1, & i=1 \\
5 i-6, & 2 \leq i \leq n-1 \text { and } i \text { is odd } \\
5 i-3, & 2 \leq i \leq n-1 \text { and } i \text { is even, }\end{cases} \\
& f^{*}\left(v_{n} w_{n}\right)= \begin{cases}5 n-6, & n \text { is odd } \\
5 n-5, & n \text { is even, }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& f^{*}\left(u_{i}, v_{i+1}\right)=5 i+1, \text { for } 1 \leq i \leq n-2, \\
& f^{*}\left(u_{i} u_{i-1}\right)=\left\{\begin{array}{l}
5 i-3, \quad 2 \leq i \leq n-1 \text { and } i \text { is odd } \\
5 i-6, \quad 2 \leq i \leq n-1 \text { and } i \text { is even, }
\end{array}\right. \\
& f^{*}\left(u_{i}, u_{i+2}\right)=5 i+3, \text { for } 1 \leq i \leq n-2 \text { and } \\
& f^{*}\left(u_{1} u_{2}\right)=3 .
\end{aligned}
$$

Hence \boldsymbol{f} is an FCM labeling of the graph $\boldsymbol{L}\left(\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}\right)\right)$.
For $\mathbf{1} \leq \boldsymbol{n} \leq \mathbf{2}$, the graph $\boldsymbol{L}\left(\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}\right)\right)$ is a path and by Theorem 1.3, the result follows. Thus the graph $\boldsymbol{L}\left(\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}\right)\right)$ is an FCM graph.

Theorem 2.7 The graph $\boldsymbol{L}\left(\boldsymbol{L}_{\boldsymbol{n}}\right)$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{2}$.
Proof. Let $\boldsymbol{V}\left(\boldsymbol{L}\left(\boldsymbol{L}_{\boldsymbol{n}}\right)\right)=\left\{\boldsymbol{u}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{j}}, \boldsymbol{w}_{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{1}, \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}\right\}$ and

$$
\begin{aligned}
E\left(L\left(L_{n}\right)\right)= & \left\{u_{i} u_{i+1}, w_{i} w_{i+1}: 1 \leq i \leq n-2\right\} \cup\left\{u_{i} v_{i}, v_{i} w_{i}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i+1}, w_{i} v_{i+1}: 1\right. \\
& \leq i \leq n-1\}
\end{aligned}
$$

be the vertex set and edge set of the graph $\boldsymbol{L}\left(\boldsymbol{L}_{\boldsymbol{n}}\right)$.
Define $\boldsymbol{f}: \boldsymbol{V}\left(\boldsymbol{L}\left(\boldsymbol{L}_{\boldsymbol{n}}\right)\right) \rightarrow\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \mathbf{6 n}-\mathbf{7}\}$ as follows.

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}8 i-5, & 1 \leq i \leq 2 \\
6 i-1, & 3 \leq i \leq n-1\end{cases} \\
& f\left(v_{i}\right)= \begin{cases}3 i-1, & 1 \leq i \leq 2 \\
6 i-8, & 3 \leq i \leq n \text { and }\end{cases} \\
& f\left(w_{i}\right)= \begin{cases}1, & i=1 \\
6 i-4, & 2 \leq i \leq n-1\end{cases}
\end{aligned}
$$

Then the induced edge labeling \boldsymbol{f}^{*} is obtained as follows.

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}7, & i=1 \\
6 i+2, & 2 \leq i \leq n-2,\end{cases} \\
& f^{*}\left(w_{i} w_{i+1}\right)=6 i-1, \text { for } 1 \leq i \leq n-2,
\end{aligned}, \begin{aligned}
& f^{*}\left(u_{i} v_{i}\right)= \begin{cases}6 i-4, & 1 \leq i \leq 2 \\
6 i-5, & 3 \leq i \leq n-1,\end{cases} \\
& f^{*}\left(v_{i} w_{i}\right)=\left\{\begin{array}{l}
1, \\
6 i-6, \\
2 \leq i \leq 1 \leq n-1,
\end{array}\right. \\
& f^{*}\left(u_{i} v_{i+1}\right)=6 i-2, \text { for } 1 \leq i \leq n-1 \mathrm{and} \\
& f^{*}\left(w_{i} v_{i+1}\right)=6 i-3, \text { for } 1 \leq i \leq n-1 .
\end{aligned}
$$

Hence \boldsymbol{f} is an FCM labeling of the graph $\boldsymbol{L}\left(\boldsymbol{L}_{\boldsymbol{n}}\right)$. Thus the graph $\boldsymbol{L}\left(\boldsymbol{L}_{\boldsymbol{n}}\right)$ is an FCM graph.
Theorem 2.8 The graph $\boldsymbol{L}\left(\boldsymbol{S} \boldsymbol{L}_{\boldsymbol{n}}\right)$ is an FCM graph, for $\boldsymbol{n} \geq \mathbf{2}$.
roof. Let $\boldsymbol{V}\left(\boldsymbol{L}\left(\boldsymbol{S} \boldsymbol{L}_{\boldsymbol{n}}\right)\right)=\left\{\boldsymbol{u}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{w}_{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\}$ and

$$
\begin{aligned}
E\left(L\left(S L_{n}\right)\right)= & \left\{\boldsymbol{u}_{i} \boldsymbol{u}_{\boldsymbol{i + 1}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{1}\right\} \cup\left\{\boldsymbol{w}_{\boldsymbol{i}} \boldsymbol{w}_{\boldsymbol{i + 1}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{1}\right\} \cup\left\{\boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}-1}: \mathbf{2} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\} \cup \\
& \left\{\boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\} \cup\left\{\boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\} \cup\left\{\boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{w}_{\boldsymbol{i}-\mathbf{1}}: \mathbf{2} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\} \text { be }
\end{aligned}
$$

the vertex set and edge set of the graph $\boldsymbol{L}\left(\boldsymbol{S} \boldsymbol{L}_{\boldsymbol{n}}\right)$.
Assume that $\boldsymbol{n} \geq 3$.
Define $\boldsymbol{f}: \boldsymbol{V}\left(\boldsymbol{L}\left(\boldsymbol{S} \boldsymbol{L}_{\boldsymbol{n}}\right)\right) \rightarrow\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \mathbf{6} \boldsymbol{n}-\mathbf{3}\}$ as follows.

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}3, & i=1 \\
5 i-5, & 2 \leq i \leq 2 \\
20, & i=4 \\
6 i-6, & 5 \leq i \leq n\end{cases} \\
& f\left(v_{i}\right)= \begin{cases}2, & i=1 \\
5 i-2, & 2 \leq i \leq 3 \\
19, & i=4 \\
6 i-4, & 5 \leq i \leq n \text { and }\end{cases} \\
& f\left(w_{i}\right)= \begin{cases}11 i-10, & 1 \leq i \leq 2 \\
6 i-3, & 3 \leq i \leq n\end{cases}
\end{aligned}
$$

Then the induced edge labeling \boldsymbol{f}^{*} is obtained as follows.

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}\mathbf{3 i + 1}, & \mathbf{1} \leq i \leq \mathbf{2} \\
7 i-\mathbf{6}, & \mathbf{3} \leq i \leq \mathbf{4} \\
\mathbf{6 i - 3}, & \mathbf{5} \leq i \leq n-\mathbf{1},\end{cases} \\
& f^{*}\left(w_{i} w_{i+1}\right)=\left\{\begin{array}{ll}
5 i+3, & 1 \leq i \leq 2 \\
6 i, & 3 \leq i \leq n-1
\end{array},\right. \\
& f^{*}\left(u_{i} v_{i-1}\right)= \begin{cases}6 i-\mathbf{9}, & \mathbf{2} \leq i \leq \mathbf{i} \\
5 i-\mathbf{4}, & \mathbf{4} \leq i \leq 5 \\
6 i-\mathbf{8}, & \mathbf{6} \leq i \leq n,\end{cases} \\
& f^{*}\left(u_{i} v_{i}\right)=\left\{\begin{array}{lc}
2, & i=1 \\
5 i-4, & 2 \leq i \leq 3 \\
6 i-5, & 4 \leq i \leq n,
\end{array}\right. \\
& f^{*}\left(\boldsymbol{v}_{\boldsymbol{i}} w_{i}\right)= \begin{cases}9 i-\mathbf{8}, & \mathbf{1} \leq \boldsymbol{i} \leq \mathbf{2} \\
\mathbf{6 i}-\mathbf{4}, & \mathbf{3} \leq \boldsymbol{i} \leq \boldsymbol{n} \text { and }\end{cases} \\
& f^{*}\left(v_{i} w_{i-1}\right)= \begin{cases}7 i-9, & 2 \leq i \leq 3 \\
6 i-7, & 4 \leq i \leq n .\end{cases}
\end{aligned}
$$

Hence \boldsymbol{f} is an FCM labeling of the graph $\boldsymbol{L}\left(\boldsymbol{S} \boldsymbol{L}_{\boldsymbol{n}}\right)$. Thus the graph $\boldsymbol{L}\left(\boldsymbol{S} \boldsymbol{L}_{\boldsymbol{n}}\right)$ is an FCM graph.
For $\boldsymbol{n}=\mathbf{2}$, an FCM labeling of $\boldsymbol{L}\left(\boldsymbol{S} \boldsymbol{L}_{\boldsymbol{n}}\right)$, is shown in the Figure 1.

3. Conclusion

In this paper we try to analyse that the line graph operation preserves the \boldsymbol{F}-centroidal mean property for the graph $\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{S}_{\mathbf{2}}$, the graph $\left[\boldsymbol{P}_{\boldsymbol{n}} ; \boldsymbol{S}_{\mathbf{1}}\right]$, the graph $\boldsymbol{S}\left(\boldsymbol{P}_{\boldsymbol{n}} \circ \boldsymbol{K}_{\mathbf{1}}\right)$, the ladder graph $\boldsymbol{L}_{\boldsymbol{n}}$ and the slanting ladder graph $\boldsymbol{S} \boldsymbol{L}_{\boldsymbol{n}}$. Further investigation can be done to analyse line graph operation preserves the \boldsymbol{F} centroidal mean property for some other class of graphs

References

[1] S. Arockiaraj, A. Rajesh Kannan and P.Manivannan, F-centroidal meanness of some chain related graphs, Journal of Advanced Research in Dynamical and Control Systems, 10(15)(2018), 519-524.
[2] A. Rajesh Kannan and A. Durai Baskar, F-centroidal meanness of some ladder related graphs, (Communicated).
[3] S. Arockiaraj, A. Rajesh Kannan, P.Manivannan and A. Durai Baskar, FCM labeling of some graphs and its line graph, (Communicated).
[4] S. Arockiaraj, A. Durai Baskar and A. Rajesh Kannan, F-root square mean labeling of line graph of some graphs, Util. Math., (To Appear).
[5] S. Arockiaraj, A. Durai Baskar and A. Rajesh Kannan, F-root square mean labeling of graphs obtained from paths, International Journal of Mathematical Combinatorics, 2 (2017), 92-104.
[6] A. Durai Baskar, S. Arockiaraj and B. Rajendran, Geometric meanness of graphs obtained from paths, Util. Math., 101(2016), 45-68
[7] J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 17(2018), \#DS6.
[8] F. Harary, Graph Theory, Narosa Publishing House Reading, New Delhi (1988).

