Advances in Mathematics: Scientific Journal 9 (2020), no.1, 119-143
EBY NI ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/ams;j.9.1.12

ON UNIQUENESS OF L-SHARING OF DIFFERENTIAL POLYNOMIALS OF
MEROMORPHIC FUNCTIONS

NINTU MANDAL! AND ABHIJIT SHAW

ABSTRACT. In this paper, we shall study the uniqueness problems of differ-
ential polynomials of meromorphic functions sharing 1 value. Here we prove
two uniqueness theorems which extend and improve recent results of H.P.
Waghamore and N.H. Sannappala [10].

1. INTRODUCTION

Throughout the article we study the uniqueness of differential polynomials
of f and g, where f and ¢ are non-constant meromorphic functions in whole
complex plane. Here we use the standard definitions, theorems and notations
of Nevanlinna’s value distribution theory (see [3]). The Nevanlinna charac-
teristic function is denoted by T'(r, f) and S(r, f) is small quantity define by
o(T(r,f)) = S(r,f), asr — oo and r ¢ E where £ C R* and measure of F is
finite. The greatest common divisor of positive real number shall be denoted
by GCD(q1, g2, ..., q,) Where g1, g, ..., ¢, are positive integers. Let a € C\ {0}
and we say that f and ¢ share value a CM(Counting Multiplicities) if f — a and
g — a have same zeros with same multiplicities. We say that f and ¢ share a
IM (Ignoring Multiplicities) if f — a and g — a have the same zeros. Now we

define, ©(a, f) =1 — lim, supNT((’;“JL{). where a € CU{o0}. Ei(a, f) is the set

of all a-points of f where an a-point with multiplicities m is counted m times if
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m < land !+ 1 times if m > [. If Ej(a, f) = Ei(a, g), then we say that f and g
share the value a with weight /. We also use the notation N(r,a; f|p) to denote
the counting function of f — a where m fold zeros is counted m times if m < p
and p times if m > p, where p is an integer.

Definition 1.1. [4] Let f is a nonconstant meromorphic function and a € C U
{o0}, the counting function of a-points of f with multiplicities at least p(€ Z*)
is denoted by N(r,a; f |> p) and N(r,a; f |> p) is the corresponding reduced
counting function. Similarly we can define N(r,a; f |< p) and N(r,a; f |< p).

Definition 1.2. [4] The counting function of a-points of f, where an a-point of
multiplicities m is counted m times if m < p and p times if m > p is denoted by
Ny(r,a; f), where p € Z* U {oo}. Then we can write:

Ny(r,a; f) = N(r,a; f) + N(r,a; f |>2) + ...+ N(r,a; f [> p).

Definition 1.3. [4] Let f and g be two nonconstant meromorphic functions those
share the value 1 IM. Let zy, be a 1-point of f and g with multiplicity p and q
respectively. The counting function of those 1-points of f and g, where p > q is
denoted by N(r,1; f), and the counting function of those 1-points of f and g,
where p = q > k is denoted by Ng(r, 1; f) (k > 2 is an integer), where each
point in those counting functions is counted only once. Similarly we can define
Np(r,1;9) and N?(r, 1;9).

Definition 1.4. [4] Let f and g be two nonconstant meromorphic functions
those share the value a IM. The reduced counting function of those a-points of
f whose multiplicities differ from the multiplicities of corresponding a-points of
g is denote by N,(r,a; f;g). So we claim that N,(r,a; f;g) = N.(r,a;g; f) and
N.(r,a; f;9) = Np(r,a; f) + Np(r,a; 9).

In 2001, Fang and Hong [2] deduce the following theorem,

Theorem 1.1. [2] Let f and g be two transcendental entire functions and n(> 11)
be an integer. If f*(f —1)f" and ¢g"(g — 1)g’ share 1 CM then f = g.

In 2006, Lahiri and Pal proved the following result:

Theorem 1.2. [6] Let f and g be two nonconstant meromorphic functions and
n(> 14) be an integer. Let F® = f(f3 — 1)f' and G°® = ¢"(¢* — 1)g. If
E3)(1, F®) = E3)(1,G) then f = g.
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In 2015, Chao Meng established the following result:

Theorem 1.3. [7] Let f and g be two non-constant meromorphic functions, n(>
12) a positive integer. If Ey(1, f*(f2 — 1)f") = Es(1,9"(¢> — 1)g¢’) and f and g
share oo IM, then f = g.

Let Q(z) = Y7, a;2", where ag(# 0), a1, as, ..., ap_1, a,(# 0) are complex con-
stants and i € Z".
We assume that F' = [f"Q(f)]*®) and G = [¢"Q(g)]™.

In 2018, H.P. Waghamore and N.H. Sannappala [10] proved the results:

Theorem 1.4. [10] Let f and g be two non-constant meromorphic functions
whose zeros and poles are multiplicities at least m and n > p + k + =(3k + 4),
where m, n, p are positive integers, and ©(co, f)+0(o0, g) > % If F and G share
(1,2) and f and g share oo IM, then one of the following two cases holds:

i) f = tg for a constant t such that t* = 1, where x = GCD(n +p,...,n +
p—i,...,n+1,n)and a,_; # 0 for some i =0,1,..., p.

ii) f and g satisfy the algebraic equation R(f,g) = 0, where R(f,g) =
frQ(f) — g"Q(g).

Theorem 1.5. [10] Let f and g be two non-constant meromorphic functions
whose zeros and poles are multiplicities at least m and n > p + k + =(3k + 4),
where m, n, p are positive integers. If f"Q(f)f and ¢g"Q(g)g’ share (1,2) and f
and g share oo IM, then one of the following two cases holds:

i) f = tg for a constant t such that fX = 1, where
x =GCD(n+p,...,n+p—i,..n+1n)and a,—; # 0 for some i =
0,1,...,p.

ii) f and g satisfy the algebraic equation R(f,g) = 0, where

m—1

R(f,g) = [ 30 e — gt Y e
In their paper [10], the authors posed the open problems that:
i) n can be still reduced, and
ii) (1,2) sharing can be replaced by (1,1),( > 0) sharing?

The solution of this problems is given in the section Main results, theorem
3.1 and theorem 3.2.
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2. LEMMAS

To prove our results following lemmas will be needed. Let F; and G be
two non-constant meromorphic functions defined in C. We denote by H; the
F/ 2F] G 2GY

function as follows : H; = (F T 1) - (a G- 1).
1 1

Lemma 2.1. [12] Let f be a non-constant meromorphic function, where ay, ay, as, ...

0) are complex constants and i € 7. Then
T(r, 3 asf) = nT(r, f) + S(r. ).
i=0
Lemma 2.2. [13] Let f be a nonconstant meromorphic function, and p, k € Z*.
Then: N(r,0; f®) < EN(r,00; f) + N(r,0; f) + S(r, f).

Lemma 2.3. [14] Let f be a nonconstant meromorphic function, and p, k € Z*.
Then, N(r,0; f®|p) < kN(r,00; f) + N(r,0; flp + k) + S(r, f) .

Lemma 2.4. [1] Let F; and GG, be two non-constant meromorphic functions shar-
ing (1,2),(c0,0) and H, # 0, then, T(r, Fy) < N(r,0; F1|2) + N(r,0;G1|2) +

N(r, 00; F1)+N(r, 00; Gl)—l—ﬁ*(r, oo; Fi; Gh)—m(r, 1; Gl)—N](;’(r, 1; Fl)—NL(r, 1;Gy)+

S(r, F1) + S(r,Gy).
We can deduce same result for T'(r, G).

Lemma 2.5. [11] Let F; and GG, be two non-constant meromorphic functions
sharing (1,1),(c0,0) and H, # 0, then T'(r, F}) < N(r,0; F1|2) + N(r,0; G1|2) +
2N (r, 00; F1 )+ N(r, 00;G1)+ N (r,00; Fi, G1) + 5N (r, 0; F1)+S(r, F1)+S(r, Gy).
We can deduce same result for T'(r, G).

Lemma 2.6. [11] Let F; and GG, be two non-constant meromorphic functions

sharing (1,0),(c0,0) and Hy # 0, then, T'(r, F1) < N(r,0; F1]|2) + N(r,0; G1|2) +

3N(r,00; F1) + 2N(r,00;G1) + N, (r,00; F1;G1) + 2N(r,0; F1) + N(r,0;G1) +

S(r, F1)+ S(r,Gy). We can deduce same result for T'(r, G).

Lemma 2.7. [5] Let f and g be two non-constant meromorphic functions and
4

O(c0, f) 4+ ©(00, g) > — for all integers n > 3. Now if f™(af +b) = ¢g"(ag + b)
n

then f = g, where a and b are two finite non-zero complex constants.

Lemma 2.8. [10] Let F; and G, be two non-constant meromorphic functions,

whose zeros and poles are of multiplicities at least m, where m is positive in-
teger. Let n,k € Z* and if there exists two non-gero constants « and 3 such
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that N(r,0; F,) = N(r,0;G; — a) and N(r,0;G,) = N(r,0; F, — j3) then n >
p+ 2(k+1)

Lemma 2.9. [9] Let f and g be two non-constant meromorphic functions and let
n(> 1),k(> 1), and m(> 1) be integers. Then FG # 1, where F, G are as define
above.

Lemma 2.10. [8] Let f and g be two nonconstant meromorphic functions and
n+ p > 6 is a positive integer then f"Q(f)f'¢"Q(g9)g" # 1.

3. MAIN RESULTS

Theorem 3.1. Let f and g be two non-constant meromorphic functions whose
zeros and poles are multiplicities at least m, where m, n, p, k are positive integers,
and ©(oco, f) + O(c0,9) > 4. If E(1,F) = E(1,G) and f and g share oo IM.
Then for the one of the following conditions:

DIi>2,a)m> 2andn>p+k+%(3k+7), b)m=1andn > p+4k+6;

i) l=La)m>2andn > 2+k+1(4k+8),b) m = landn > 2 +5k+7;

i)l =0, @)m >2andn > 4p+k+ =(9% +13), b) m = 1 and n >
4p + 10k + 12;

one of the following results hold:

i) f = tg for a constant t such that t* = 1, where y = GCD(n +p,....,n +
p—i,..,n+1,n)and a,_; # 0 for some i = 0,1, ..., p.

ii) f and g satisfy the algebraic equation R(f,g) = 0, where R(f,g) =
frQ(f) — g"Q(g) -

: : : * P ap—i(ntp—i)! rn—_ftl4p—i
Proof. First we defined two functions F* = " (o f and
G =>", %g”*’“”p*i. Then from lemma 2.1 we have

(3.1 Tr,F*Y=(n—k+14+p)T(r, f)+S(r[).
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Since (F*)' = F, we deduce, m(r, &) = m(r, +) + S(r, f). By Nevanlinna’s first
fundamental theorem, we get

T(r,F*) < N(r,oo;F)+ N(r,0; F*) — N(r,0; F) + S(r, f)

< T(r, F)+ N0, f) + > N(r,0; f — ) = > N(r,0; f —ws)

=0 1=0

(3.2) — kN(r,o00; f)+ S(r, f),

where p; and v;(i = 1,2, ..., p) are roots of algebraic equations

P ap—i(n+p—i)! p—i __ P ap—i :
ic0 it~ = 0and )7 ga, ;27" = 0 respectively. Also we use the

result for m(> 2), m(=1)

(3.3) N.(r,00; f;9) < N(r,00; f),

(3.4  N(r,o0; f)+ N(r,00;9) + N.(r,00; f; g) < N(r,00; f) + N(r,o0;g),

respectively. As we assume that zeros and poles of f and ¢ are of multiplicities
at least m(> 2), then

(3.5) N(r,00: ) < - N{r, 005 ) £ 707, ),
(3.6 (0, 1) < N (0. 1) < T, ),
(3.7) N(r,00: ) < - N{r, 005 ) £ —T(5, ),
(3.8) N(r,0; f) < %N (r,0; f) < %m, f)-

Now F' and G are transcendental meromorphic functions that share (1,1) and
f, g share (00, 0). We discuss the following two cases separately.

Case 1. We assume that H; #Z 0. Now we study the following subcases .
Subcase 1.1 If [ > 2, then, using lemma 2.4, we obtain

T(r,F) < N(r,0;F|2) + N(r,0;G|2) + N(r,00; F) + N(r,00; G)
(3.9 + N.(r,00; F;G)+ S(r, F) + S(r, Q).
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Now from equation (3.2) and (3.9) we have:

T(r, F*)
N(r,0; F|2) + N(r,0; G|2) + N(r,00; F) 4+ N(r, 00; G)

IA

+ Nu(r,00 F;G) + N(r,0; f) + > N(r,0; f — i)

=1

N(r,0; f —v;) — kN (r,00; f) + S(r, f) + S(r, g)

NE

7

< N(0; [ QUNI™MI2) + N(r,0; [9"Q(9)]™[2) + N(r, o0; f)

(r,00; 9) + Nu(r, 00; f;9) + N(r,0; /) + Y N(r,0; f — pu:)

=1

+
=

N(r,0; f — v;) — kN(r,00; f) + S(r, f) + S(r, 9)

+2)N(r,0; f) + kN (r,00; g) + (k +2)N(r,0; g)

VAN
'Mﬁ =~ EM*@

N(r,0;g — v;) + N(r,00; f) + N(r,00; g) + N.(r,00; f; g)

=1

+ N(TaO;f)+ZN(T70;f_,uz')+S(r7f)+S(T7g>'
=1

(3.10)

Subsubcase 1.1.1 If m > 2, then we deduce with help of inequalities (3.1),(3.3),(3.5)
- (3.8) and (3.10) that,

(n—k+1+p)T(r f)

200 1)+ 1(rg) + 2 ) 4070 )+ 2T

IN

b T g) 4 T(r, )+ PT(r, ) + 5(r, ) + S(r,9)

IA

p+ 1 (k+ TG, )+ [p+ - (26 + 3)]T(r,0)
(3.11D) +S(r, f)+ S(r,g).
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Similarly we can show that:

(n—k+14+p)T(r,g)
1 1
< [p+1+—(k+ 4T 9) +Ip+ —(2k+3)T(r, f)
(3.12) + S(r, f)+S(r,9).
Adding (3.11) and (3.12) we have: (n —k+ 1+ p)[T(r, f) + T(r,9)] < [2p +
1+ LBk + 7))[T(r, f) + T(r,9)] + S(r, f) + S(r,g), which implies that n <
p+k+=(3k+7),butn>p+k+ L(3k+7), acontradiction.

Subsubcase 1.1.2 If m = 1, then using inequalities (3.1),(3.4) and (3.10), we
have:

(n—k+14+p)T(r, f)
< (k+2)T(r,f)+ kT (r,g)+ (k+2)T(r, f)+pT(r,f)+T(r, f)
+ T(r,g) +T(r. f) +pT(r, )+ S(r. f) + 5(r. 9)
(3.13) S<(p4+k+D)T(r f)+ p+2k+3)T(r,g)+ S(r, f)+ S(rg).

Similarly we can show,

(n—k+1+pT(r,g) < (p+k+4)T(r,g)+ (p+2k+3)T(r,f)
(3.19) + S(r, f)+S(r,g).
Adding (3.13) and (3.14) we can deduce that n < p + 4k + 6 which is contra-

diction as n > p + 4k + 6.
Subcase 1.2 If [ = 1, then, we obtain from lemma 2.5

T(r,F) < N(r,0;F|2)+ N(r,0;G|2) + gﬁ(r, 00; F) + N(r,00; G)
(3.15) b ONL(r 00 F1G) + %N(r, 0. F) + S(r, F) + S(r, G,
Now using (3.2) and (3.15) we have:
T(r, F*)

p p

S T<T7F)+N(T70§f)+ZN<T70;f_Ni)_ZN(Tao;f_Vz)

=1 i=1

— EN(r,00; f) + S(r, f)
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IN

3— —
N(r,0; F|2) + N(r,0;G|2) + EN(r,oo;F) + N(r,00; G)

_ 1 P
+ N*(T,OO;F;G)+§N(T,0;F)+N(T,0;f)+ZN(T70;f—ui)
=1

S

- 2 N0 f ) - kN (r, 001 f) +S(r, f) + S(r. g)

N
Il
—_

< NGOLPQUOIPIR) + N 0: 1" Qo)1) + SN, 00 F)

_|_
=

(1,061G) + N.(r,065 Fi G) + 5N 0 [ QUNI®) + N(r. 05

S

+ N(r,o;f—m—z (r,0; f — i) — kN(r, 00; f)

(r, f)+S(r,9)
< (k+2)N(r,0; f) + EN(r,00; g) + (k +2)N(r,0; g)

.
Il

+
W\

)

+ N(r, 0,9 — _|_3N(roof)+N(TOOg)+N<TOOfg)

i=1

+ %kﬁ(r,oosf) 2(k+1 N(r,0; f) + ZN’”Of

+ N<T>07f)+ZN(T707f_M1)+S(T7f)+S(Tag)a
i=1
(3.16)

Subsubcase 1.2.1 If m > 2, then we deduce with help of inequalities (3.1),(3.3),(3.5)
- (3.8) and (3.16) that

(n—k+1+4+p)T(r,f)

< [3;+1—|—2—(4k’+10)]T( f)—l—[p—l—%(%—i—f&)]T(r,g)

(3.17) + S(r, f)+S(r.g).
Similarly we can show,

(n —k+1+p)T(r,9)

< [ + 1+ %(Zﬂc +10)]T(r,9) + [p+ %(214 + )T (r, f)

(3.18) + S( )+ 8S(r,g).
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Adding (3.17) and (3.18), we have (n — k + 1 + p)[T'(r, f) + T(r,g)] < [2 +
1+ L(4k 4+ 8)]|[T(r, f) + T(r,9)] + S(r, f) + S(r,g), which implies that n <
2 4 k+ L(4k +8), but n > 22 + k + L(4k + 8), a contradiction.

Subsubcase 1.2.2 If m = 1, then using inequalities (3.1),(3.4) and (3.16), we
have

n—k+1+4+p)T(r,f)

(k+ 2)T(r, f) + KT(r, ) + (k + 2)T(r, g) + pT(r g) + %T(r, f)

+ T(r f)+T(r,g)+ %k’T(r, f)+ %(k—l— DT (r, )+ %pT(r, f)
+ T(r, f)+pT(r, f)+S(r, f)+S(r, )
p

(3.19) < (% +2k+5)T(r, f)+ (p+2k+3)T(r,9) + S(r, f)+ S(r,g) .

IA

Similarly we can show,

(= k+ 1+ D)T(rg) < (2 42K+ 5)T(09) + (p+ 2% +3)T(, )

(3.20) + S(r, f)+S(r,g).

Adding (3.19) and (3.20) we can deduce that n < % + 5k + 7 which is contra-
diction as n > % + 5k 4 7.
Subcase 1.3 If [ = 0, then using lemma 2.6, we obtain

T(r, F)
< N(T,O;FIQ)+N(7",0;G\2)+3N(7”,00;F)+2N(r,oo;G)
(3.21)  +N.(r,00; F;G) +2N(r,0; F) + N(r,0;G) + S(r, F) + S(r,G) .

Now using (3.2) and (3.21)

T(r,F)
P P

S T<T7F)+N(T70§f)+ZN<T70;f_Ni)_ZN(Tao;f_Vi>

=1 i=1

— EN(r,00; f) + S(r, f)
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N(r,0; F|2) + N(r,0; G|2) 4+ 3N(r, 00; F) 4+ 2N(r, 00; G)
+ N,(r,00; F;G) + 2N (r,0; F) + N(r,0;G) + N(r,0; f)

+ Y N0 f =) = > N(r,0; f —vi) = kN(r,00; f) + S(r, f) + S(r, 9)
=1 =1

IN

N(r,0; [f"Q()]™]2) + N(r,0; [¢"Q(g)]™|2) + 3N (r, 00; F)
+ 2N(r,00;G) + N.(r, 00, F;G) + 2N (r,0; [f"Q(f)]*))

+ N(r,0;[g"Q(9))"™) + N(r,0; f) + Z N(r, 05 f = pi)
- ZN(T,O;f—Vi)—kN(T,OO;f)—i—S(T,f)—i—S(T,g)

< (k+2)N(r,0; f) + kN (r,00; g) + (k +2)N(r,0; g) + iN(r, 0;9 — v;)

=1

+ 3N(r,00; f) 4+ 2N(r,00; g) + N.(r,00; f; g) + 2kN(r, 00; f)

+ 20k + 1N (r,0; f) +2>  N(r,0; f — v;) + kN (r, 00; g)

=1

+ (k+1)N(r,0;g)—|—ZN(T,O;g—Vi)—|—N(r,0;f)

=1

(3.22)  +> N(r0;f—pm)+ S0, f)+5(r.g).

i=1
Subsubcase 1.3.1 If m > 2,then we deduce with help of inequalities (3.1),(3.3),(3.5)
- (3.8) and (3.22) that

(n—k+1+p)T(r, f)
< [Bpt Lt (5h+8)T0 1) + 20+ —(4k + )T (r,0)
(3.23) + S(r, f)+S(r,g).
Similarly we can show,
(n—k+14+p)T(r,g)
S Bpt 1+ 5k +OIT(rg) + 2p+ - (4k 4 5)]T(r, )
(3.24) + S(r, f)+ S(r,9).
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Adding (3.23) and (3.24) we have, (n — k+ 1+ p)[T(r, f) + T(r,9)] < [5p +
1+ L(9k + 13)][T(r, f) + T(r,g)] + S(r, f) + S(r,g). Which implies that n <
4p+k + =(9k + 13), but n > 4p + k + = (9% + 13), a contradiction.
Subsubcase 1.3.2 If m = 1,then using inequalities (3.1),(3.4) and (3.22), we
have

(n—k+14+p)T(r, f)
< (k+2)T(r,f)+ kT (r,g)+ (k+2)T(r,9) +pT(r,g)
+ 2T(r,f)+T(r,9)
+ T(r, f)+T(r,g)+2kT(r, f)+2(k+ )T (r, f) +20T(r, f) + kT (r, f)
+ (k+10)T(r,9) +pT(r,g) + T(r, ) +pT(r, ) + S(r, [) + S(r, 9)
(3.25) < (Bp+5k+8)T(r,f)+ 2p+4k+5)T(r,g9) +S(r, f)+ S(r,g).

Similarly we can show,

(n—k+1+p)T(r,g) < (Bp+5k+8)T(r,g)+ (2p+ 4k +5)T(r, f)
(3.26) + S(r,f)+S(r,g).

Adding (3.25) and (3.26) we can deduce that n < 4p + 10k + 12 which is
contradiction as n > 4p + 10k + 12.

Case 2 We assume that H; = 0. Then we can write for our functions F and G,
(£ — 28y (&7 — 267) — , Now after two times integration of the equation,

F’ F—1 G/’ G-1
we have

1 C
F-1 G-1

(3.27) + D,

where C' and D are complex constants. Now we can say from (3.27) that F
and G share 1 CM, that is ' and G share 1 with weight /(> 2). Now we study
the following subcases.

Subcase 2.1 Let D # 0 and C' = D. Then from (3.27) we have

1 DG

(3.28) 1 -1

If D = —1, then from (3.28), we obtain F'G = 1. Then by lemma 2.9, we get

a contradiction. If D # —1, we have, £ = @ and then N(r, 251 F) =
D
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N(r,0; G). Now using the second fundamental theorem of Nevanlinna

T(r, F)

IA

N(r,0; F) + N(r, )+ N(r,00; F) + S(r, F)

(3.29) < N(r,0; F) 4+ N(r,0;G) + N(r,00; F) + S(r, F) + S(r,G),

and using (3.3) and (3.29) we have
T(r,F™)

IN

T(r, F)+ N(r,0; f) + Y N(r,0; f — ) = Y N(r,0; f — ;)
=1

=1

— EN(r,00; f) + S(r, f)

N(r,O;F)—i—N(r,O;G)+N(r,oo;F)+N(r,O;f)—l—ZN(T,O;f—,ui)

IA

_ Z (r,0; f — i) — kN (r, 00; f) + S(r, f) + S(r, 9)

(k+ 1)N(r,0; f) + kN(r,00; g) + (k + 1)N(r,0;9) + Y _ N(r,0;9 — 1s)

=1

IN

(330)  +N(r,00f) + N(r,0; f) + S N(r,0; f = pu) + S(r, f) + S(r,g).

=1
Subsubcase 2.1.1 If m > 2, then we deduce with help of inequalities (3.1),(3.3),(3.5)
- (3.8) and (3.30) that

(n—k+1+p)T(r f)<lp+1+— (k'+2)} (r, f)
(3.31) +[p + %(2/@ + DT (r,g9) + S(r, f) + S(r, g).
Similarly we can show,

(n—k+1+pT(r,g) <[p+1+— (k+2)]T(r,g)
(3.32) o+ 2k + D]T( )+ S0, )+ 5(r.9).

Adding (3.31) and (3.32) we have (n — k+ 1+ p)[T(r, f) + T(r,g)] < [2p +
1+ L3k + 3)][T(r, f) + T(r,g)] + S(r, f) + S(r,g), Which implies that n <
p+k+ L(3k+3),butn > p+k+ L(3k+7), a contradiction.
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Subsubcase 2.1.2 If m = 1, then using inequalities (3.1),(3.4) and (3.32), we
have:

n—k+1+p)T(r f) < (P+E+3)T(r, f)+ (p+2k+1)T(r,g)
(3.33) + S(r, f)+8(r,g).

Similarly we can show,

(n—k+1+p)T(r,g) < (p+k+3)T(r,g)+ (p+2k+1)T(r, f)
(3.34) + S(r, f)+S(r,g).

Adding (3.33) and (3.34) we can deduce that n < p + 4k + 3 which is contra-
diction as n > p + 4k + 6.

C+D+1
Subcase 2.2 Let D # 0 and C' # D, then from (3.27), G = —2——. So,

1
ot a TH-F
N(r, 2241 F) = N(r,0; G) and proceeding similarly as case 2.1, we obtain a

contradiction.

Subcase 2.3 Let D =0and C' # 0. Then F = =L and G = CF — (C - 1). If
C # 1, then we have N(r, <54, F) = N(r,0;G) and N(r,1 — C; F) = N(r,0; F)
and proceeding similarly as case 2.1 we attain a contradiction. Thus C' = 1,
which implies F' = G i.e

(3.35) QU™ = 9" Q(g)] ™,
Now integrating equation (3.35) we have:
(3.36) FRUN* Y = [g"Q(aN* Y + by,

where b,_; is constant. If b,_; # 0, then by lemma 2.8, we have n < p +
+(3k 4 3) which is contradiction for both the cases m > 2 or m = 1 asn >
p+k+ +=(3k+7) orn > p+ k + 6 respectively. Now repeating the process up
to k-times we have

(3.37) f"Q(H)] = 1g"Q(g)]-

Now if p = 1, then from equation (3.37) and lemma 2.7 we have f = g.
Suppose p > 2 and let h = %. If h is constant then putting f = hg in equation
(3.37) we get

p

(3.38) > ap gt (R - 1) =0,

1=0



ON UNIQUENESS OF L-SHARING OF DIFFERENTIAL. .. 133

which implies hX = 1, where y = GCD(n+p,n+p—1,...n+p—i,...,n+1,n),
i = 0,1,...,p. If h is not constant, then we can show that f and ¢ satisfy the
algebraic equation R(f,¢) = 0 and from (3.38), we have, R(f,g) = f"Q(f) —
9"Q(9)-

This complete the proof of theorem. O

Remark 3.1. It is observed at the theorem 3.1 that the value of n is continuously
decreasing for the increasing value of m when k is fixed, in any case according to
[(>0).

Theorem 3.2. Let f and g be two non-constant meromorphic functions whose
zeros and poles are multiplicities at least m, where m, n, p, k are positive integers.
If E,(1, f*Q(f)f") = Ei(1,9"Q(g9)¢') and f and g share oo IM. Then for one of the
following conditions:
Di>2am>2andn>p+1+2,b)m=1andn>p+38
i) l=1,a)m>2andn > %+k+%(4k—|—8), b) m=1andn > %%—51{:—1—7
i)l =0, @)m >2andn > 4p+k+ =(9% +13), b) m = 1 and n >
4p + 10k + 12
one of the following results hold

i) f = tg for a constant t such that t* = 1, where x = GCD(n +p,...,n +
p—i,...,n+1,n)and a,_; # 0 for some i =0,1,...,p.
ii) f and g satisfy the algebraic equation R(f,g) = 0, where R(¢,v) =

1 Qo . 1 Qs .
¢n+ Zf:o n+;+i_i¢m i ¢n+ Zf:() n+pp+i_i¢m i

Proof. Let X = f"Q(f)f' and Y = ¢"Q(g)g’. We define two functions: X* =
b lemifndptl=ignd Y* = YP fe—t_gntptl=i From lemma 2.1, we

i=0 ntpti—i i=0 ntpr1—iJ
have
(3.39) T(r, X*)=n+p+1)T(r,f)+S(rf).

Since (X*)' = X, we deduce m(r, =) = m(r, ) +S(r, f). By Nevanlinna’s first
fundamental theorem, we get

T(r,X*) < N(r,o0;X)+ N(r,0; X*)— N(r,0; X)+ S(r, f)

< T X)+ N0 f) + Y N0, f — ) = Y N(r,0; f — )

i=1 i=1

(3.40) — N(r,0; )+ S(r, f),
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where 1; and v;(i = 1,2, ..., p) are roots of algebraic equations

p ap—i pP—i __ p AP :
o1 a2 =0and 37, a,2"7" = 0 respectively.

Also we use the result for m(> 2), m(=1)

(3.41) N.(r,00; f;9) < N(r,o00; f),

(3.42) N(r,00; f)+ N(r,00;9) + N.(r,00; f;9) < N(r,o00; f) + N(r, 00; g),

respectively. As we assume that zeros and poles of f and ¢ are of multiplicities
at least m(> 2), then

(3.43 N(r.00: ) € - N(r,00: ) < 70 ),
(3.4 N(,0:) < N0 ) £ = T( ),
(3.45) N(r,00: ) £ - N(r,00: /) < - T(r. ),
(3.46) (05 ) < - N(r,0:f) < ~T(r, f).

Now X and Y are transcendental meromorphic functions that share (1,1) and
f, g share (00, 0). We discuss the following two cases separately.
Case 1 We assume that H; # 0. Now we study the following subcases,
Subcase 1.1 If [ > 2, then using lemma 2.4, we obtain

T(r,X) < N(r,0;X|2) + N(r,0;Y|2) + N(r,00; X) + N(r,00;Y)
(3.47) + Ni(r,00; X;Y) + S(r, X) + S(r, V).

Now from inequalities (3.40) and (3.47)and lemma 2.2 we have:

T(r,X™)
N(r,0; X[2) + N(r,0; Y|2) + N(r,00; X) + N(r,00;Y)

IN

p p
+ Nu(r,oo; X;Y) + N(r, 05 ) + > N(r0; f — i) = Y N(r,0; f = v5)
i=1

i=1

- N(T,O;f/)+S(T,f)+S(T,g)
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N(r, 0:[f"Q(F)f112) + N(r,0; [¢"Q(g)g']|2) + N(r, 005 f)

IN

+ N(r,00;9) + Nu(r,00; f;.9) + N(r,0; f) + > N(r,0; f — )

i=1

_ Z (r,0; f — ;) — N(r,0; f') + S(r, f) + S(r, g)

=1

p
i=1

+ N(r,00;9) + N(r,00; f) + N(r,00; g) + N.(r,00; f; g) + N(r,0; f)

(3.48) +ZN(T,O;f—ui)+S(r,f)—i—S(T,g).

=1
Subsubcase 1.1.1 If m > 2, then we deduce with help of inequalities (3.39),(3.41),(3.43)
- (3.46) and (3.48) that

(n+p+1)T(r, f)
< (% +%+p+1):r(r,f)+(%+ % +p+ DT(r, )+ S(r, f) + S(r, g)

4 4
Similarly we can show that

(4P VT f) < [t 14T f) + [+ 14 170 )
(3.50) + S(r, f)+S(r.g).
Adding (3.49) and (3.50) we have (n +p+ 1)[T(r, f) + T(r,g9)] < 2[p+ 1+
LT (r, f)+ T(r,9)] + S(r, f) + S(r, g). Which implies that n < p+ £ + 1, but

m

n>p+ £ 41, a contradiction.
Subsubcase 1.1.2 If m = 1, then using inequalities (3.39),(3.42) and (3.48),
we have
(n+p+ )T, f) < 2T(r, f)+2T(r,g) +pT(r,g) +T(r,g9) +T(r,g)
+ T(r, f) +T(r,g) +pT(r, )+ S(r, )+ S(r,9)
(3.51) < +4T(r, f)+@+5)T(r,g) + S f)+S(rg).

Similarly we can show,

(8.52) (n+p+1)T(r,g) < (p+4)T(r,g)+(+5T(r, f)+S(r, f)+S(rg).
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Adding (3.51) and (3.52) we can deduce that n < p + 8 which is contradiction
asn > p-+8.
Subcase 1.2 If [ = 1, then we obtain from lemma 2.5

3— —

(3.53) b N oo X:Y) 4 %N(r, 0: X) + S(r, X) + S(r,Y).

Now using (3.40) and (3.53) and lemma 2.2

T(r, X")
< T(r, X) 4+ N(r,0; f) + Y N(r0; f — ) = Y N(r,0; f — )
=1 =1
- N<T7O;fl> +S(T,f)
< N(r,0:X[2) + N(r,0:Y]2) + gw(r, n0: X) + N(r, 00: V)

— 1 P
+ N*(T,OO;X;YH§N(T,0;X)+N(T,0;f)+ZN(T,0;f—m)

=1

- N(?“,O;f—yi)—N(T,O;f’)—l—S(r,f)—l—S(r,g)

1

hS]

(2

N0 [ QUNTII) + NG 0:g"Qa)g|2) + SN (r, 001 X)

IN

+ N(r,00;Y) 4+ N, (r,00; X;Y) + %N(n 0; [f"Q()f])

=

+ N0 )+ D N0 f =) = 3 N 0;f = w)
— N(r,0; ")+ S(r, f) + S(r,9)

p
< 2N(r,0; f) +2N(r,0;9) + > N(r,0;9 — ;) + N(r,0; g) + N(r,00; g)

i=1

N(r,00; f) + N(r,00; g) + N.(r,00; f; g)—l—;N(rO f)

ZN’/’Of —l—;N(rOf)—i-;N(roof)—i-N(rOf)
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(354) +ZN(T707JC_[/J1)+S(Taf)+S(Tvg)

=1
Subsubcase 1.2.1 If m > 2, then we deduce with help of inequalities (3.39),(3.41),(3.43)
- (3.46) and (3.54) that

(04 p+ VTG, f) < (24 1 o+ ST f)
(3.55) Hp+ -+ 1IT(9) + S0 ) + 5(r,9).
Similarly we can show,
(n+p+ DT(rg) < [L 414 o + )T(r.g)
2 om ' 2
(3.56) +p+ % + 1T(r, f)+ S(r, f) + S(r,g).

Adding (3.55) and (3.56) we have (n+p+ 1)[T(r, f) + T(r,9)] < [2 + 2 +

2m
S[T(r, f) +T(r,g)] + S(r, f) + S(r, g). Which implies that n < 2 + 1% + 2 but
n> 22414 3 3 contradiction.
Subsubcase 1.2.2 If m = 1, then using inequalities (3.39),(3.42) and (3.54),

we have
(3.57) (n+p+ DT 1) < (L +6)T(r, £) + (04 3)T(r,6) + S(r, /) +5(r.9).
Similarly we can show,

(3.58) (n+p+1)T(r,g) < (% +6)T(r, g) + (p+ 3)T(r, )+ S(r, ) + S(r,g)

Adding (3.57) and (3.58) we can deduce that n < % + 8 which is contradiction
asn > 2 +38.
Subcase 1.3 If [ = 0, then using lemma 2.6, we obtain

T(r,X) < N(r,0;X|2) + N(r,0;Y]2) + 3N(r,00; X) 4+ 2N(r,00;Y)
(3.59) + N.(r,00; X;Y) 4+ 2N(r,0; X))+ N(r,0;Y) + S(r, X) + S(r,Y).
Now using (3.40),(3.59) and lemma 2.2

T(r, X™)

p p

S T<T7X)+N(T70;f)+ZN<T70;f_,ui)_ZN(Tao;f_Vz)

i=1 i=1

- N(T,O;f/)+S(T,f)
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N(r,0; X|2) + N(r,0; Y|2) + 3N (r,00; X) + 2N (r,00; Y)
N.(r,00; X;Y) 4+ 2N(r,0; X) + N(r,0; Y) + N(r,0; f)

ZN(T,O;f—ILLi)—ZN(T,O;f—Vi)—N(T,O;f/)
=1 =1

S(r, f)+S(r, g)
N(r,0; [f"Q(f) f112) + N(r,0;[g"Q(9)g']|2) + 3N (r, o0; X)
2N(r,00;Y) 4+ N (r,00; X;Y) + 2N (r, 0; [f"Q(f) f])

+

_l_

+ IN +

N(r,0;[g"Q(g)g']) + N (r,0; f) + Z N(r,0; f — ;)

+

— D N(r,0;f — i) = N(r,0; ') + S(r, f) + S(r, 9)

i=1

p
ZN(T‘,O; f) + QN(T,O;Q) + ZN(T,O;Q - Vi) + N(ﬁ O,Q)

i=1

IN

+ N(r,00;9) 4+ 3N(r,00; ) + 2N(r,00; g) + N.(r,00; f; g)

+ 2N(r,0; f) + QZN(T’, 0; f — 1) + 2N(r,0; f) + 2N (r, 00; f)
i=1

p
+ N(r,0;9) + > N(r,0; f — v;) + N(r,0; 9)
=1

p
(3.60)  +N(r,00;9) + N(r,0; f) + > _ N(r,0; f — ;) + S(r, f) + S(r, g).
=1
Subsubcase 1.3.1 If m > 2, then we deduce with help of inequalities (3.39),(3.41),(3.43)
- (3.46) and (3.60) that
(n+p+1)T(r, f)

10 7
(3.61) <[3p+ - +3|T(r, f) + [2p + - +2|T(r,g) + +S(r, f) + S(r, g) .
Similarly we can show,

(n+p+1)T(rg)
(3.62) < [3p+ % +3]T(r,9) + [2p + % +2]T(r, f) + +S(r, f) + S(r,9) -
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Adding (3.61) and (3.62) we have (n +p + 1)[T'(r, ) + T(r,9)] < [5p + i +
5T (r, f)+T(r,9)] + S(r, f) + S(r, g). Which implies that n < 4p + L + 4, but
n > 4p + 1 4 4, a contradiction.

Subsubcase 1.3.2 If m = 1, then using inequalities (3.39),(3.42) and (3.60),
we have

m+p+1)T(r, f)

2T (r, f)+ 2T (r,g) + pT(r,g) + T(r,q) + T(r,g) + 2T(r, f) + T(r, 9)

+ T(r,f)+T(r,g) +2T(r, f) + 20T (r, f) + 2T (r, f) + 2T (r, f)

+ T(r,9) +pT(r,g) +T(r,9) +T(r,g) + T(r, f) +pT'(r, f)

+ S(r, f)+S(r,9)

(3.63) <@Bp+12)T(r, )+ 2p+9)T(r,g9) + S(r, f) + S(r,9).

IA

Similarly we can show,
(3.64) (n+p+1)T(r,g) < (3p+12)T(r,9) + (2p+9)T(r, f)+S(r, f)+S(r,g).
Adding (3.63) and (3.64) we can deduce that n < 4p+20 which is contradiction

as n > 4p + 20.
Case 2 We assume that H; = 0.Then we can write for our functions X and Y,
(%5 — 25) — (¥ — 2%) = 0, Now after two times integration of the equation,
we have
1 C
3.65 = D
( ) X-1 Y-1 +

Where C' and D are complex constants. Now we can say from (3.65) that X
and Y share 1 CM, that is X and Y share 1 with weight /(> 2). Now we study
the following subcases.
Subcase 2.1 Let D # 0 and C' = D. Then from (3.65) we have

1 DY
X-1 vy-1
If D = —1, then from (3.66), we obtain XY = 1. Then by lemma 2.10, we get

a contradiction. If D # —1, we have - = @ and then N(r, 251 X) =
P D

N(r,0;Y). Using the second fundamental theorem of Nevanlinna
D -1
D
(3.67) < N(r,0;X)+ N(r,0;Y) + N(r,00; X) + S(r, X) + S(r,Y) .

(3.66)

T(r,X) < N(r,0;X)+ N(r, :X)+ N(r,00; X) + S(r, X)
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Using (3.40) and (3.67) we have

T(r, X™)
P P

T(r, X)+ N(r,0. )+ > N0 f = ) = > N(r,0; f — v3)

i=1 =1

IN

- N(T‘,O;f’)—i—S(T,f)
N(r,0;X) + N(r,0;Y) + N(r,00; X) + N(r,0; f) + > N(r, 05 f — pus)

i=1

IN

S

- N(T,O,f—ljz)—N(T,O,f/)+S(T,f)+S<T7g)

i=1

N(r,0; f) + N(r,0;9) + > N(r,0;9 — v;) + N(r,0;¢') + N(r, 0; f)

=1

IN

(3.68) +) N 05 f = )+ S(r, f) + S(r,9).
=1

Subsubcase 2.1.1 If m > 2, then we deduce with help of inequalities (3.39),(3.41),(3.43)
- (3.46) and (3.68) that

(n+p+1)T(r, f)

1 2
(3.69) < [p+ p— + 1T, f)+p+ - + 1T (r,g) + S(r, f)+ S(r,g) .
Similarly we can show,

(n+p+1)T(r,g)
(B70) < [p+— +1T(n0) + o+ + UT( )+ S0 1) + S(r,9).

Adding (3.69) and (3.70) we have (n+p+ 1)[T(r, f) + T(r,g)] < 2p+ 2 +
2)[T(r, f) + T(r,g)] + S(r, f) + S(r, g). Which implies that n < p+ 2 + 1, but
n>p+ < +1, a contradiction.

Subsubcase 1.3.2 If m = 1, then using inequalities (3.39),(3.42) and (3.68),
we have

(n+p+1)T(r, f)
(3.71) < (p+2)T(r, )+ p+3)T(r,g)+ S(r, f)+ S(r,9).
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Similarly we can show,

(n+p+1)T(r,9)
(3.72) < (p+2)T(r,g) + @+ 3)T(r, f)+S(r, f)+S(r,g).

Adding (3.71) and (3.72) we can deduce that n < p + 4 which is contradiction
asn > p+38.

+ +1_x
Subcase 2.2 Let D # 0 and C # D, then from (3.65), Y = ﬁ‘ So,

N(r, 241 X) = N(r,0;Y) and proceeding similarly as case 2.1, we attain a
contradiction.

Subcase 2.3 Let D = 0and C # 0. Then X = &=l and Y = CX — (C —1). I
C # 1, then we have N(r, z*; X) = N(r,0;Y) and N(r,1 - C;Y) = N(r,0; X)
and proceeding similarly as subcase 2.1, we attain a contradiction. Thus C' = 1,
which implies X = Y i.e [f"Q(f)f'] = [¢"Q(g)¢']. Now we can write X* =
Y™* 4 ¢, where c is constant, then it follows

(3.73) T(r.f)=T(r,g)+5(r.g).
Suppose that ¢ # 0. By the second fundamental theorem and lemma 2.10 we
have
T, Y*) = N0;,Y") + N(r,0,Y" +¢) + N(r, 00, V") + S(r, 9)
< N(r,0;Y*) 4+ N(r,0; X*) + N(r,00;Y*) + S(r,9)
~ ap_i(n+p+1) .  —
< P— p—1 .
< N(r,0:9) + N(r,0; Z% e s UV G
— ap—i(n+p+1) i
N
+ Togazﬂu—p—i—l—z)f )+ N(r,00;9)
(3.74) + S(r, f)+S(r,9).

Subsubcase 2.3.1 If m > 2, then using (3.39), (3.43)-(3.46) and (3.74) we

have
(375) (14 p+1)T(,9) < (p+ - )T(r,9)+ (0 )T f) + (0, /) + (1, 9).

Similarly we can show

(B76) (n-+p+ 1T () < (0 T, )+ (04 )T (r,6)+ S(r, ) +5(r,9).
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Adding (3.75) and (3.76) we have (n + p + 1)(T'(r, f) + T(r,g9)) < (2p +
S)T(r, f) + T(r,9)) + S(r, f) + S(r,g). Which implies that n < p+ 2 — 1
which is contradiction as n > p + % + 1.

Subsubcase 2.3.2 If m = 1 then using (3.39) and (3.74) we can show n < p+2
which is contradiction as n > p + 8. That is for all m , we arrive at a contradic-

tion. Now we claim that ¢ = 0. Therefore X* = Y*, that is
p p

a : a ,
(377) fn+1 Z P .fpfz _ gn+1 Z P .gp*z .
izon—l—p—i—l—z Z,:On—l—p+1—z

Let h = 5. If h is constant, then, substituting f = gh into (3.77), we deduce,

p

3.78 n+1 Ap—i p—i(prtptl=i _ 1) —
(3.78) g ;n+p+1—z‘g ( ) ’
which implies »X = 1, where x = (n+p+1,n+pn+p—1,..n+p+1—
i,..,n+ 1) and a,_; # 0 for some i = 0,1,...,p. Thus f = tg, for a constant
t, such that tX = 1, where y is previously defined. If i is not constant, then
by (3.78) f and g satisfy the algebraic equation R(f, g) = 0, where, R(¢,) =

n ap—i¢m7i n ap—iwmii
O i — VT X P

This complete the proof of the theorem. O

Remark 3.2. Let Q(f) = f3> — 1 and m = 1 in theorem 3.2, then it will reduce to
theorem 1.4.

Remark 3.3. In the theorem 3.2 for every case according to (> 0) , the value of
n is continuously decreasing for the increasing value of m.
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