
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.1, 145–150
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.1.13

A NOTE ON PROPERTIES OF EXPONENTIAL POWER DISTRIBUTION

A. A. OLOSUNDE

ABSTRACT. The most common generalization of the normal, Kotz-symmetric
and double exponential distribution functions was the exponential power dis-
tribution. This distribution had been found useful in modelling real life data as
studied in the literature. The present study found it necessary to fill the void in
the literature by presenting some properties which characterized exponential
power distribution and further made it useful in applications.

1. INTRODUCTION

The random variable X has the univariate exponential power distribution if
it can be expressed as

(1.1) f(x;µ, σ, β) =
1

σΓ
(

1 + 1
2β

)
21+ 1

2β

exp

{
−1

2

∣∣∣∣x− µσ
∣∣∣∣2β
}
,

where the parameters µ ∈ < and σ ∈ (0,∞) are respectively scale and loca-
tion parameters β ∈ (0,−∞) is the shape parameter which regulates the tails
of the distribution such that when β = 1 the density (1.1) is normal; but for
β = 1/2 we have double exponential distribution; β → ∞, we have uniform
distribution; and when β < 1, the density function has heavier tail than the
normal distribution and can be useful in providing robustness against outliers,
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it should be noted that the shape parameter β determines the kurtosis of the
distribution. The density function (1.1) has been used in robust inference [3]
where the parameters of the distribution were estimated via moments. Also,
applications of this distribution had been found in [6] in modelling poultry
feeds data. For brevity we denote the density function (1.1) as EPD(µ, σ, β),
where µ, σ, and β are as defined above. In addition, its central moment esti-
mated by [2] are:

E(X) = µ;

E |X − E(X)| =
σ2

1
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β
)
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)
;

and
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σ22
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(
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) ;

E(X − E(X))3 = 0;

E(X − E(X))4 =
σ42

4
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)
;

and Kurtosis

=
Γ( 5

2β
)Γ( 1

2β
)

Γ2( 3
2β

)
.

The results indicate that the sample mean X is the estimate of the true mean
µ while the shape parameter can be numerically obtained from the estimate of
the kurtosis. Substituting shape parameter estimate into V ar(X) we estimate
the scale parameter σ.

2. SOME CHARACTERIZATIONS

Proposition 2.1. Let X be a random variable with density function (1.1), then∣∣∣∣X − µσ

∣∣∣∣β ∼ Γ( 1
2β
, 2) .

In the Proposition 2.1 the parameters: −∞ < µ < ∞, σ > 0, and β > 0

are location, scale and shape parameters respectively for the density function
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(1.1), also Γ(.) is a gamma function. Values for Γ(.) for various β can be ob-
tained from [1]. Note that the complementary incomplete gamma function is
defined by

Γ(a, x) =

∫ ∞
x

ta−1 exp(−t)dt .

Proof. By transformation techniques, we have that:

fY (y) = | d
dy
g−1(y)|fX(g−1(y)) = Γ(

1

2β
, 2), y > 0 .

the pdf (1.1) is a three parameter family, θ = (µ, σ, β). �

The following Corollary 2.1 can be deduce from above Proposition 2.1 .

Corollary 2.1. A random variable X having a density function (1.1) then,

(2.1) Z =

√
β

n

∣∣∣∣x− µσ
∣∣∣∣β ∼ EPD(0,

1

n
, β) ,

and ∣∣∣∣x− µσ
∣∣∣∣β ∼ Γ(

1

2β
, 2)

are pivotal quantities.

Remark 2.1. The proposition 2.1 and the Corollary 2.1 are useful in deriving the
pivotal quantity which can be used to derive optimum confidence interval for the
parameter µ of density function (1.1), since it is independent of µ.

Proposition 2.2. Let X and Y be two independent random variables with each
having a density function (1.1) denoted by φ(.) with distribution function Φ(.).
Then:

i. V = max {X, Y } has distribution function ΦV (v) = Φ(v)2 and density
function φV (v) = 2φ(v)Φ(v).

ii. W = min {X, Y } has distribution function ΦW (w) = 1− [1−Φ(w)]2 and
density function φW (w) = 2φ(w)[1− Φ(w)].

Proof. (i.)

ΦV (v) = P (V ≤ v) = P (max {X, Y } ≤ v)

= P (X ≤ v)P (Y ≤ v) = [Φ(v)]2 .
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differentiate the distribution function to derive the density function by
using chain rule

φV (v) =
d

dv
ΦV (v) = 2Φ(v)φ(v) .

(ii.) in a similar manner we have:

ΦW (w) = P (W ≤ w) = P (min {X, Y } ≤ w) = 1− P (min {X, Y } ≥ w)

= 1− P (X ≥ w)P (Y ≥ w) = 1− (1− Φ(w))2 .

differentiate the distribution function to derive the density function by
using chain rule

d

dv
ΦW (w) = 2φW (w)(1− Φ(w)) .

�

Remark 2.2. The Proposition 2.2 is useful in deriving the skewed version of the
symmetric distribution for exponential power distribution with skewing parame-
ter equal to unity. The skewed version has been found useful in modelling finan-
cial/income data etc.

Proposition 2.3. A random variable X defined as in (1.1) above has the single
entropy

ln(2σβ1/βΓ(1 +
1

β
)) +

1

β
.

Proof. Given H(X) = −
∫
< f(x) ln f(x)dx, then let f(x) be (1.1) we have that:

H(X) = E

{
|x− µ|2β

βσβ

}
− E

{
ln

(
2σββ1/βΓ

(
1 +

1

β

))}
.

and the result (2.1) follow immediately after. �

Remark 2.3. Proposition 2.3 is useful in diagnosing exponential power within
the the normal distribution [5], it can be also useful in goodness-of-fit test.

Proposition 2.4. Let Y ∼ N(0, 1), then Z = |Y | has half normal distribution,
further, let X has exponential power with shape parameter β, then:

E(h(X)) = E(h(Y )) = E(h(Z)) ,

if and only if h(.) is an even function and E(|h(X)|) <∞ .
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Proof. Since Z = |Y |, it is clear that E(h(X)) = E(h(Z)), now

E(h(X)) =

∫ 0

−∞
h(x)f(x)dx+

∫ ∞
0

h(x)f(x)dx = 2

∫ ∞
0

h(x)f(x)dx = E(h(Z)) .

�

In [7] the theory and applications of log-concave version of the density func-
tion (1.1) was given. Furthermore, then we have the followings;

Proposition 2.5. Let X be random variable with the probability density function
(1.1), Then

i. the density function (1.1) is log-convex, when 0 < β < 1
2
; but log-concave

when β ≥ 1
2
;

ii. the distribution function of (1.1) is log-convex, when 0 < β < 1
2
; but

log-concave when β ≥ 1
2
; and

iii. the hazard function of (1.1) is log-convex, when 0 < β < 1
2
; but log-

concave when β ≥ 1
2
.

Proof. To proof the given proposition 2.5 it is sufficient to proof that if (ln g(x))′′ <

0 then it is log-concave otherwise log-convex. Given the density function (1.1),
then the distribution function is obtained after some algebra as if x ≤ µ

(2.2) F (x) =
Γ( 1

2β
, ( (µ−x)

σ
)2β)

2Γ( 1
2β

)
,

and if x > µ then,

(2.3) F (x) = 1−
Γ( 1

2β
, ( (x−µ)

σ
)2β)

2Γ( 1
2β

)
.

Also, the hazard rate function defined by h(x) = f(x)/[1−F (x)] It is immediate
from equation (1.1), (2.2) and (2.3) that the hazard rate function is given by

(2.4) h(x) =

2β exp

{
−
∣∣∣ (x−µ)σ

∣∣∣2β}
σ
{

2Γ( 1
2β

)− Γ
(

1
2β
, [ (µ−x)

σ
]2β
)} ,

if x ≤ µ

(2.5) h(x) =

2β exp

{
−
∣∣∣ (x−µ)σ

∣∣∣2β}
σΓ
(

1
2β
, [ (µ−x)

σ
]2β
) ,
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if x > µ. Twice differentiating the natural logarithm of the functions (1.1),
(2.2), (2.3), (2.4)and (2.5) the results in Proposition 2.5 follows immediately.
It is noteworthy to mention that the complementary incomplete gamma func-
tion encountered during calculations that is Ψ(y) = dlogΓ(x)/dx is a special
function which [4] have presented their properties. h(x) is an increasing func-
tion of x for β ≥ 1/2 . �
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