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NUMERICAL QUENCHING VERSUS BLOW-UP FOR A NONLINEAR
PARABOLIC EQUATION WITH NONLINEAR BOUNDARY OUTFLUX

KOUAKOU CYRILLE N’DRI1, KIDJEGBO AUGUSTIN TOURÉ, AND GOZO YORO

ABSTRACT. In this paper, we study numerical approximations for positive so-
lutions of a semilinear heat equations, ut = uxx + up, in a bounded interval
(0, 1), with a nonlinear flux boundary condition at the boundary ux(0, t) = 0,
ux(1, t) = −u−q(1, t). By a semi-discretization using finite difference method,
we get a system of ordinary differential equations which is expected to be
an approximation of the original problem. We obtain some conditions under
which the positive solution of our system quenches or blows up in a finite time
and estimate its semidiscrete blow-up and quenching time. We also estimate
the semidiscrete blow-up and quenching rate. Finally, we give some numerical
results to illustrate our analysis.

1. INTRODUCTION

In this paper, we consider the following initial-boundary value problem:

(1.1)


ut = uxx + up, 0 < x < 1, 0 < t <∞,
ux(0, t) = 0, 0 < t <∞,
ux(1, t) = −u−q(1, t), 0 < t <∞,
u(x, 0) = u0(x), 0 ≤ x ≤ 1,

where p, q > 0 and u0(x) is a positive function with u′0(0) = 0, u′0(1) = −u−q0 (1).
Physically, (1.1) can be treated as a heat conduction model that incorporates
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the effects of reaction and nonlinear outflux. Mathematically, (1.1) is a combi-
nation of the following two problems:

ut = uxx + up, 0 < x < 1, t > 0,

ux(0, t) = 0, t > 0,

ux(1, t) = 0, t > 0,

u(x, 0) = u0(x), 1 ≤ x ≤ 0,

(1.2)

and 
ut = uxx, 0 < x < 1, t > 0,

ux(0, t) = 0, t > 0,

ux(1, t) = −u−q(1, t), t > 0,

u(x, 0) = u0(x), 1 ≤ x ≤ 0.

(1.3)

Problems (1.2) and (1.3) has been widely analyzed (see [5–8] and the refer-
ences cited therein). In particular, it is well known that if p > 1 all positive
solutions of problem (1.2) blow up in finite time (see [5]) and that the rate
near the blow-up time Tb is (Tb − t)

−1
p−1 , [2].

Regarding problem (1.3), Keng Deng and Mingxi Xu in [8] considered a non-
linear diffusion equation (ψ(u))t = uxx, 0 < x < 1 with a singular boundary
condition ux(1, t) = −g(u(1, t)), they proved finite time quenching for the so-
lution. They are also established results on the quenching set and rate. More-
over in [7] the authors was shown that u quenches in finite time for all u0,
and the only quenching point is x = 1. They estimated the quenching rate by
(Tq − t)

1
2(q+1) .

Let us give the two following definitions.

Definition 1.1. We say that the classical solution u of (1.1) quenches in a finite
time if there exists a finite time Tq such that min

0≤x≤1
u(x, t) > 0 for t ∈ [0, Tq) but

lim
t→T−q

min
0≤x≤1

u(x, t) = 0.

Definition 1.2. We say that the classical solution u of (1.1) blows up in a finite
time if there exists a finite time Tb such that ‖u(t)‖∞ < ∞ for t ∈ [0, Tb) but
lim
t→Tb
‖u(t)‖∞ =∞.

From now on, we denote by Tq and Tb the quenching time and the blow up
time respectively of problem (1.1).
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Concerning problem (1.1), K. Deng and C. L Zhao [10] established crite-
ria for finite time blow-up and quenching, they are discussed to the blow-up
and quenching sets and obtained the blow-up and quenching rates. They also
characterized the sets of stationary states and analyzed their instability in [9].

Here, our objective is the numerical study of (1.1). To the best of our knowl-
edge, very few works are concerned with the numerical study of this kind of
problem. For previous works on numerical study we refer to ( [1, 11–16] and
the references therein ). Here we give some assumptions under which the so-
lution of a semidiscrete form of (1.1) quenches or blows up in a finite time
depends upon certain conditions on the initial data and estimate its semidis-
crete quenching or blow-up time. We show that the rate estimate near blow-up
time is the same as (1.3), but the one near quenching time is different that
(1.3). We also prove that, under suitable assumptions on the initial datum, the
semidiscrete quenching or blow-up time converges to the theoretical one when
the mesh size goes to zero.

The paper is written in the following manner. In the next Section, we present
a semidiscrete scheme of (1.1). In section 3, we give some properties concern-
ing our semidiscrete scheme. In Section 4, under some conditions, we prove
that the solution of the semidiscrete form blows up in a finite time, study the
convergence of semidiscrete blow-up time and estimate the semidiscrete rate
near the blow up time. In Section 5, under some conditions, we prove that
the solution of the semidiscrete form quenches in a finite time, study the con-
vergence of semidiscrete quenching time and estimate the semidiscrete rate
near the quenching time. Finally, in the last section, we give some numerical
experiments.

2. THE SEMIDISCRETE PROBLEM

Let I be a positive integer, we set h = 1/I, and we define the grid , xi = ih,
i = 0, . . . , I. Let T be a positive real such that [0, T ] is a time interval on
which the solution u of the continuous problem is defined. We approximate the
solution u of the problem (1.1) by the solution Uh = (U0(t), U1(t), . . . , UI(t))

T
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of the semidiscrete equations

dUi(t)

dt
= δ2Ui(t) + Up

i (t), 1 ≤ i ≤ I − 1, t > 0,(2.1)

dU0(t)

dt
= δ2U0(t) + Up

0 (t), t > 0,(2.2)

dUI(t)

dt
= δ2UI(t)−

2

h
U−qI (t) + Up

I (t), t > 0,(2.3)

Ui(0) = ϕi > 0, i = 0, . . . , I,(2.4)

where

δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, i = 1, . . . , I − 1,

δ2U0(t) =
2U1(t)− 2U0(t)

h2
, δ2UI(t) =

2UI−1(t)− 2UI(t)

h2
.

3. PROPERTIES OF THE SEMIDISCRETE PROBLEM

In this section, we give some important results which will be used later.

Definition 3.1. A function Uh ∈ C1([0, T ],RI+1) is an upper solution of (2.1)-
(2.4) if

dUi(t)

dt
− δ2Ui(t) ≥ Up

i (t), i = 0, . . . , I − 1, t ∈ [0, T ],

dUI(t)

dt
− δ2UI(t) +

2

h
U−qI (t) ≥ Up

I (t), t ∈ [0, T ],

U0
i ≥ ϕi, i = 0, . . . , I.

On the other hand, we say that Uh ∈ C1([0, T ],RI+1) is a lower solution of (2.1)-
(2.4) if these inequalities are reversed.

Lemma 3.1. Let ah(t) ∈ C0([0, T ],RI+1) and Vh(t) ∈ C1([0, T ],RI+1) such that

dVi(t)

dt
− δ2Vi(t) + ai(t)Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ [0, T ],

Vi(0) ≥ 0, 0 ≤ i ≤ I.

Then we have Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ [0, T ].
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Proof. Define the vector Zh(t) = eλtVh(t) where λ is such that

ai(t)− λ > 0 for 0 ≤ i ≤ I, t ∈ [0, T ].

Let m = min{Zi(t) : 0 ≤ i ≤ I, 0 ≤ t ≤ T}. Since for i ∈ {0, . . . , I}, Zi(t)
is a continuous function on the compact [0, T ], there exists i0 ∈ {0, . . . , I} and
t0 ∈ [0, T ] such that m = Zi0(t0). We observe that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0,(3.1)

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0, 1 ≤ i0 ≤ I − 1,(3.2)

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
≥ 0 if i0 = 0,(3.3)

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
≥ 0 if i0 = I.(3.4)

Moreover, by a straightforward computation, we get

dZi0(t0)

dt
− δ2Zi0(t0) + (ai0(t0)− λ)Zi0(t0) ≥ 0.(3.5)

Using (3.1)-(3.4), we deduce from (3.5) that (ai0(t0) − λ)Zi0(t0) ≥ 0, which
implies that Zi0(t0) ≥ 0. We deduce that Vh(t) ≥ 0 for t ∈ [0, T ] and the proof
is complete. �

Another form of the maximum principle for semidiscrete equations is the
comparison lemma below.

Lemma 3.2. Let g ∈ C(R× R,R) and Wh(t), Vh(t) ∈ C1([0, T ],RI+1) such that

dVi(t)

dt
− δ2Vi(t) + g(Vi(t), t) <

dWi(t)

dt
− δ2Wi(t) + g(Wi(t), t) ,

1 ≤ i ≤ I − 1, t ∈ (0, T ) ,

dV0(t)

dt
− δ2V0(t) + g(V0(t), t) <

dW0(t)

dt
− δ2W0(t) + g(W0(t), t) t ∈ (0, T ),

dVI(t)

dt
+

2

h
V −qI − δ2VI(t) + g(VI(t), t) <

dWI(t)

dt
+

2

h
W−q
I − δ

2WI(t) + g(WI(t), t)

Vi(0) < Wi(0) , i = 0, . . . , I.

Then Vi(t) < Wi(t), 0 ≤ i ≤ I, t ∈ (0, T ).
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Lemma 3.3. Let g ∈ C(R× R,R) and Wh(t), Vh(t) ∈ C1([0, T ],RI+1) such that

dVi(t)

dt
− δ2Vi(t) + g(Vi(t), t) ≤

dWi(t)

dt
− δ2Wi(t) + g(Wi(t), t) ,

1 ≤ i ≤ I − 1 , t ∈ (0, T ) ,

dV0(t)

dt
− δ2V0(t) + g(V0(t), t) ≤

dW0(t)

dt
− δ2W0(t) + g(W0(t), t) ,

t ∈ (0, T ) ,

dVI(t)

dt
+

2

h
V −qI − δ2VI(t) + g(VI(t), t) ≤

dWI(t)

dt
+

2

h
W−q
I − δ

2WI(t) + g(WI(t), t)

Vi(0) ≤ Wi(0) i = 0, . . . , I.

Then Vi(t) ≤ Wi(t), 0 ≤ i ≤ I, t ∈ (0, T ).

Lemma 3.4. Let T > 0 and Uh be a solution of semidiscrete problem (2.1)-(2.4)
and assume that the initial data at (2.4 ) verifies ϕi > ϕi+1, 0 ≤ i ≤ I − 1. Then,
for i = 0, . . . , I − 1 and t ∈ (0, T ] we have:

Ui(t) > Ui+1(t).

Proof. Introduce the vector Zh such that Zi(t) = Ui+1(t) − Ui(t) for t ∈ (0, T ],
i = 0, . . . , I − 1. Let t0 be the first t > 0 such that Zi(t) < 0 for t ∈ [0, t0)

but Zi0(t0) = 0 for a certain i0 ∈ {0, . . . , I − 1}. Without loss of generality,
we suppose that i0 is the smallest integer checking the inequality above. We
observe that

d

dt
Zi0(t0) = lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≥ 0, 0 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
Zi0−1(t0)− 2Zi0(t0) + Zi0+1(t0)

h2
< 0, 1 ≤ i0 ≤ I − 2,

δ2Zi0(t0) =
Z1(t0)− 3Z0(t0)

h2
< 0, i0 = 0,

δ2Zi0(t0) =
ZI−2(t0)− 3ZI−1(t0)

h2
< 0, i0 = I − 1.

Moreover, by a straightforward computation, we get

d

dt
Zi0(t0)− δ2Zi0(t0)− (Up

i0+1 − U
p
i0

) > 0, 0 ≤ i0 ≤ I − 2,

d

dt
ZI−1(t0)− δ2ZI−1(t0) +

2

h
U−qI (t0)− (Up

I (t0)− UI−1(t0)) > 0, i0 = I − 1.

But these inequalities contradict (2.1)-(2.3) and this proof is complete. �
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Theorem 3.1. Assume that the problem (1.1) has a solution u ∈ C4,1([0, 1] ×
[0, T ]) and the initial condition ϕh at (2.4) verifies

‖ϕh − uh(0)‖∞ = ◦(1), as h→ 0(3.6)

where uh(t) = (u(x0, t), ..., u(xI , t))
T , t ∈ [0, T ]. Then, for h small enough, the

semidiscrete problem (2.1)-(2.4) has a unique solution Uh ∈ C1([0, T ],RI+1) such
that max

t∈[0,T ]
(‖Uh(t)− uh(t)‖∞) = O(‖ϕh − uh(0)‖∞ + h2) as h→ 0.

Proof. Let K > 0 be such that

‖ u(., t)‖∞ ≤ K for t ∈ [0, T ].(3.7)

Then the semidiscrete problem (2.1)-(2.4) has for each h, a unique solution
Uh ∈ C1([0, T ],RI+1). Let t(h) ≤ T be the greatest value of t > 0 such that

‖Uh(t)− uh(t)‖∞ < 1.(3.8)

The relation (3.6) implies t(h) > 0 for h small enough. Using the triangle
inequality, we obtain

‖Uh(t)‖∞ ≤ ‖u(., t)‖∞ + ‖Uh(t)− uh(t)‖∞ for t ∈ (0, t(h)),

which implies that

‖Uh(t)‖∞ ≤ 1 +K for t ∈ (0, t(h)).(3.9)

Let eh(t) = Uh(t) − uh(t) be the discretization error. Using the Taylor’s expan-
sion, we have for t ∈ (0, t(h))

dei
dt

= δ2ei(t) + pζp−1i (t)ei(t) +O(h2), i = 0, ..., I − 1,

d

dt
eI(t) = δ2eI(t) + pζp−1I (t)eI(t) +

2

h
qµ−q−1I (t)eI(t) +O(h2),

where ζi(t) is the intermediate value between Ui(t) and u(xi, t) for i = 0, . . . , I

and µI(t) the one between UI(t) and u(xI , t). Using (3.7) and (3.9), there exist
L et λ positive constants such that

d

dt
ei − δ2ei ≤ L|ei(t)|+ λh2, 0 ≤ i ≤ I − 1,

d

dt
eI − δ2eI ≤

L

h
|eI |+ λh2.
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Now, we consider the function Z ∈ C4,1([0, 1], [0, T ]) such that

Z(x, t) = e(α+1)t+c(−x2+1)(‖ϕh − uh(0)‖∞ + λh2), 0 ≤ i ≤ I.

A simple computational give

dZ(xi, t)

dt
− δ2Z(xi, t) > L|z(xi, t)|λh2, 0 ≤ i ≤ I − 1,

dZI
dt
− δ2ZI >

L

h
|Z(xI , t)|+ λh2.

From lemma (3.2), we obtain Zi(t) > ei(t), for t ∈ (0, t(h)), i = 0, ..., I. By
analogy, we also prove that Zi(t) > −ei(t), for t ∈ (0, t(h), i = 0, ..., I. Hence
we have Zi(t) > |ei(t)|, for t ∈ (0, t(h)), i = 0, ..., I. We deduce that

‖Uh(t)− uh(t)‖∞ ≤ (‖ϕh − uh(0)‖∞ + λh2)e(α+1)t+c, for t ∈ (0, t(h)).

Next we prove that t(h) = T . Suppose that T > t(h), from (3.8), we obtain

1 = ‖Uh(t(h))− uh(t(h))‖∞ ≤ (‖ϕh − uh(0)‖∞ + λh2)e(α+1)T+c.(3.10)

Since (‖ϕh − uh(0)‖∞ + λh2)e(α+1)T+c → 0 as h → 0, we deduce from (3.10)
that 1 ≤ 0, which is impossible. �

4. BLOW UP, BLOW UP RATE

In this section, under some assumptions, we show that the solution Uh of
(2.1)-(2.4) blows up in a finite time. We assume that the initial data is a
positive function and verifies.

(u0(x))xx + up0(x) ≥ 0 for x ∈ [0, 1].(4.1)

Lemma 4.1. Let Uh be a solution of (2.1)-(2.4) and the initial data at (2.4)
verifies

δ2ϕi + ϕpi > 0, 0 ≤ i ≤ I.(4.2)

Then, dUi(t)
dt

> 0 for 0 ≤ i ≤ I, t ∈ (0, T hb ).

Proof. Consider the vector Zh(t) such that Zi(t) = dUi(t)
dt

, 0 ≤ i ≤ I, t ∈ [0, T hb ).
Let t0 be the first t ∈ (0, T hb ) such that Zi(t) > 0 for t ∈ [0, t0), but Zi0(t0) = 0
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for a certain i0 ∈ {0, . . . , I}. Without loss of generality, we suppose that i0 is
the smallest integer checking the inequality above. We observe that:

d

dt
Zi0(t0) = lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I,

δ2Zi0(t0) =
Zi0−1(t0)− 2Zi0(t0) + Zi0+1(t0)

h2
> 0, 1 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
> 0, i0 = 0,

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
> 0, i0 = I.

Moreover, by a straightforward computation, we get

d

dt
Zi0(t0)− δ2Zi0(t0)− pU

p−1
i0

(t0)Zi0(t0) < 0, 0 ≤ i0 ≤ I − 1,

d

dt
ZI(t0)− δ2ZI(t0)− (

2

h
qU−q−1I (t0) + pUp−1

I (t0))ZI(t0) < 0, i0 = I.

But these inequalities contradict (2.1)-(2.3) and this proof is complete. �

The following result gives a property of the operator δ2.

Lemma 4.2. Let Uh ∈ RI+1 be such that Uh ≥ 0. Then, we have

δ2(Up
i ) ≥ pUp−1

i δ2Ui, 0 ≤ i ≤ I.

Proof. Let us introduce function f(s) = sp. Using taylor’s expansion we get

δ2f(U0) = f
′
(U0)δ

2U0 +
(U1 − U0)

2

h2
f
′′
(ζ0),

δ2f(UI) = f
′
(UI)δ

2UI +
(UI−1 − UI)2

h2
f
′′
(ζI),

δ2f(Ui) = f
′
(Ui)δ

2Ui +
(Ui+1 − Ui)2

2h2
f
′′
(ηi) +

(Ui−1 − Ui)2

2h2
f
′′
(ζi), 1 ≤ i ≤ I − 1,

where ηi is an intermediate value between Ui and Ui+1 and ζi the one between
Ui and Ui−1. The result follows taking into account the fact that Uh ≥ 0. �

Introduce the functionals

I(t) =
1

2

∫ 1

0

u2xdx−
1

p+ 1

∫ 1

0

up+1dx+
1

−q + 1
u−q+1(1, t) and J(t) =

∫ 1

0

u2dx
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and the semidiscrete approximations

Ih(t) =
1

2

I−1∑
i=0

(Ui+1 − Ui)2

h
− 1

p+ 1

I∑
i=0

hUp+1
i +

1

−q + 1
U−q+1
I(4.3)

Jh(t) =
I∑
i=0

hU2
i .

For the functional J using the condition (4.1) and the Jensen’s inequality we
obtain after integration by parts

d

dt
J(t) =− 2u−q+1(1, t)− 2

∫ 1

0

u2xdx+ 2

∫ 1

0

up+1dx

≥− 2u−q+1(1, 0) + 2(1− λ)

∫ 1

0

up+1dx

≥− 2u−q+1(1, 0) + 2(1− λ)J
p+ 1

2
.

In [10] the author showed that if the condition (4.1) is satisfies then there

exists Tb < ∞ such that lim
t→Tb
‖u(., t)‖L1 = ∞, which implies that lim

t→Tb

d

dt
J(t) =

+∞ for p > 1.

Let the functionals Ih(t) and Jh(t) as defined in (4.3). Multiplying both sides
of (2.1) by hdUi

dt
and hdUi, respectively, and then taking the sum from i = 0 to

i = I, we obtain

−
I∑
i=0

h
(dUi
dt

)2
=

d

dt

(1

2

I−1∑
i=0

(Ui+1 − Ui)2

h
− 1

p+ 1

I∑
i=0

hUp
i +

1

−q + 1
U−q+1
I

)
,

which implies that the semidiscrete functional Ih(t) is non increasing for t ∈
[0, T hb ). Further,

d

dt

I∑
i=0

hU2
i = 2

(
−

I−1∑
i=0

(Ui+1 − Ui)2

h
+

I∑
i=0

hUp+1
i − U−q+1

I

)
= −4Ih +

2p− 2

p+ 1

I∑
i=0

hUp+1
i +

2q + 2

−q + 1
U−q+1
I ,

and a straightforward calculation gives

d2Jh
dt2

= −4
dIh
dt

+ 2(q + 1)U−qI
dUI
dt

+ 2(p− 1)
I∑
i=0

hUp
i

dUi
dt
.
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Using the lemma (4.1) we obtain for p > 1

d2Jh
dt2
≥ −4

dIh
dt

.

Using the Hölder inequality and the expressions above, we obtain(dJh
dt

)2
≤ 4
( I∑
i=0

hU2
i

)( I∑
i=0

h
(dUi
dt

)2)
≤ Jh

d2Jh
dt2

which implies that
d2Jh
dt2

≥ −λdJh
dt

where λ in a non-negative constant and

dJh
dt

=
I∑
i=0

hUi
dUi
dt

.

Using the theorem 3.1 we obtain the following result, see [17].

Theorem 4.1. Assume that the solution u of (1.1) blows up in a finite time Tb
such that u ∈ C4,1([0, 1] × [0, Tb)). We also assume that the initial data at (2.4)
satisfies the condition (4.2) and the error of initial data is of order ◦(1). Then for
h small enough, the solution Uh of problem (2.1)-(2.4) blows up in finite time T hb
for p > 1, 0 < q < 1 and we have

lim
h→∞

T hb = Tb.

Theorem 4.2. Assume that the hypotheses in theorem 4.1 remains true. We also
assume that the condition

f(s)g
′
(s)− f ′(s)g(s) ≥ 0 for s ≥ 0 ,(4.4)

hold. Then, near the blow-up time T hb , the solution Uh of problem (2.1)-(2.4) has
a following blow-up rate estimate

‖Uh(t)‖∞ ∼ (T hb − t)
−1
p−1 ,(4.5)

in the sense that there exist two positive constants K1, K2 such that

K1(T
h
b − t)

−1
p−1 ≤ ‖Uh(t)‖∞ ≤ K2(T

h
b − t)

−1
p−1 for t ∈ (0, T hb ).

Proof. Introduced the vector Jh(t) defined as follow

Ji =
dUi
dt
− εUp

i , 0 ≤ i ≤ I ,(4.6)

with ε is a positive constant. By a straightforward computation we get
d

dt
Ji − δ2Ji =

d

dt
(
dUi
dt
− δ2Ui)− εpUp−1

i

dUi
dt

+ εδ2Up
i , 0 ≤ i ≤ I.
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Using Lemma 4.2 and the equality (4.6), we obtain from the condition (4.4)

d

dt
Ji − δ2Ji ≥ pUp−1

i Ji, 0 ≤ i ≤ I − 1 ,

d

dt
JI − δ2JI ≥ (pUp−1

I +
2

h
U−q−1I )JI .

From (4.2),we observe that Ji(0) ≥ 0 for 0 ≤ i ≤ I if ε is sufficiently small.
We deduce from lemma 3.1 that Ji(t) ≥ 0, 0 ≤ i ≤ I, which yields the desired
upper bound.

The following result concerns the lower bound for the quenching rate.
Let i0 be such that Ui0(t) = max

0≤i≤I
Ui(t). We can observe that

δ2Ui0(t) =
Ui0+1(t)− 2Ui0(t) + Ui0−1(t)

h2
≤ 0, 1 ≤ i0 ≤ I ,

δ2U0(t) =
2U1(t)− 2U0(t)

h2
≤ 0, i0 = 0 ,

δ2UI(t) =
2UI−1(t)− 2UI(t)

h2
≤ 0, i0 = I.

We can see that dUi0
(t)

dt
≤ Ui0(t) for 0 ≤ i0 ≤ I. Integrating this inequality over

(t, T hb ) and we obtain the result desired. �

5. QUENCHING, QUENCHING RATE

In this section, under some assumptions, we show that the solution Uh of
(2.1)-(2.4) quenches in a finite time.

We note that if the initial data is a subsolution then the solution is monotone,
non-decreasing function with respect to t and verifies:

(u0(x))xx + up0(x) ≤ 0 for x ∈ [0, 1] .(5.1)

Lemma 5.1. Let Uh be a solution of (2.1)-(2.4) and the initial data at (2.4)
verifies

δ2ϕi + ϕpi < 0, 0 ≤ i ≤ I.(5.2)

Then,
dUi(t)

dt
< 0 for 0 ≤ i ≤ I, t ∈ [0, T hq ).
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Proof. Consider the vector Zh(t) such that Zi(t) = dUi(t)
dt

, 0 ≤ i ≤ I, t ∈ [0, T qh).
Let t0 be the first t ∈ (0, T hq ) such that Zi(t) < 0 for t ∈ [0, t0), but Zi0(t0) = 0

for a certain i0 ∈ {0, . . . , I}. Without loss of generality, we suppose that i0 is
the smallest integer checking the inequality above. We observe that:

d

dt
Zi0(t0) = lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≥ 0, 0 ≤ i0 ≤ I,

δ2Zi0(t0) =
Zi0−1(t0)− 2Zi0(t0) + Zi0+1(t0)

h2
< 0, 1 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
< 0, i0 = 0,

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
< 0, i0 = I.

Moreover, by a straightforward computation, we get

d

dt
Zi0(t0)− δ2Zi0(t0)− pU

p−1
i0

(t0)Zi0(t0) > 0, 0 ≤ i0 ≤ I − 1,

d

dt
ZI(t0)− δ2ZI(t0)− (

2

h
qU−q−1I (t0) + pUp−1

I (t0))ZI(t0) > 0, i0 = I.

But these inequalities contradict (2.1)-(2.3) and the proof is complete. �

Lemma 5.2. Let Uh ∈ RI+1 be such that Uh > 0. Then we have

δ2(U−qi ) ≥ −qU−q−1i δ2Ui, 0 ≤ i ≤ I.

Proof. Let us introduce function f(s) = s−q. Using Taylor’s expansion we get

δ2f(U0) = f
′
(U0)δ

2U0 +
(U1 − U0)

2

h2
f
′′
(ζ0),

δ2f(UI) = f
′
(UI)δ

2UI +
(UI−1 − UI)2

h2
f
′′
(ζI),

δ2f(Ui) = f
′
(Ui)δ

2Ui +
(Ui+1 − Ui)2

2h2
f
′′
(ηi) +

(Ui−1 − Ui)2

2h2
f
′′
(ζi), 1 ≤ i ≤ I − 1.

where ηi is an intermediate value between Ui and Ui+1 and ζi the one between
Ui and Ui−1. The result follows taking into account the fact that Uh is nonneg-
ative. �

Define the functional J and its approximation by

J(t) =

∫ 1

0

u(x, t)dx, t ∈ [0, T qh); and Jh(t) =
I∑
i=0

hUi(t), t ∈ [0, T hq ).
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We can easily check that lim
t→T q

d

dt
J [u](t) = −∞. For this J we obtained after

integration by parts

d

dt
J [u] =

∫ 1

0

utdx = −u−q(1, t) +

∫ 1

0

updx.

Notice that the condition (5.1) implies ut ≤ 0. Let:

0 < ζ =

∫ 1

0

up0(x)dx/u−q(1, 0) < 1, which gives

d

dt
J [u] ≤ −u−q(1, t) + ζu−q(1, 0) ≤ (ζ − 1)u−q(1, t).

Since quenching occur only on the boundary (see [10]), we have lim
t→Tq

u−q(1, t) =

∞.
Let us assume that the initial data at (2.4) satisfies (5.2), by a simple com-

putation, we obtain for t ∈ [0, T qh), p > 0 and q > 0

d2

dt2
Jh(t) = qU−q−1I (t)

d

dt
UI(t) + p

I∑
i=0

hUp−1
i (t)

d

dt
Ui(t) .

From lemma (5.1), we have d2

dt2
Jh(t) ≤ −c ddtJh(t) where c is a non-negative

constant and d
dt
Jh(t) =

I∑
i=0

h
dUi
dt

.

Using Theorem 3.1 we obtain the following result , see [17].

Theorem 5.1. Assume that the solution u of (1.1) quenches in a finite time Tq
such that u ∈ C4,1([0, 1] × [0, Tq)). We also assume that the initial data at (2.4)
satisfies the condition (5.2) and the error of initial data is of order ◦(1). Then for
h small enough, the solution Uh of problem (2.1)-(2.4) quenches in finite time T hq
for p > 0, q > 0 and we have lim

h→∞
T hq = Tq.

Theorem 5.2. Assume that the hypotheses of Theorem 5.1 remains true. We also
assume that the condition

f(s)g
′
(s)− f ′(s)g(s) ≥ 0 for s ≥ 0 ,(5.3)

holds. Then, near the quenching time T hq , the solution Uh of problem (2.1)-(2.4)
has a following quenching rate estimate

‖Uh(t)‖inf ∼ (T hq − t)
1

q+1 ,(5.4)
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in the sense that there exist two positive constants K1 and K2, such that

K1(T
h
q − t)

1
q+1 ≤ ‖Uh(t)‖inf ≤ K2(T

h
q − t)

1
q+1 for t ∈ (0, T hq )

Proof. Introduce the vector Jh(t) defined as follow

Ji =
dUi
dt
, 0 ≤ i ≤ I − 1, and JI =

dUI
dt

+ εU−qI ,(5.5)

where ε is a positive constant. By a straightforward computation we get

dJi
dt
− δ2Ji =

d

dt
(
dUi
dt
− δ2Ui), 0 ≤ i ≤ I − 1 ,

dJI
dt
− δ2JI =

d

dt
(
dUI
dt
− δ2UI)− εqU−q−1I

dUI
dt
− εδ2U−qI .

Using Lemma 5.2 and the equality (5.5), from condition (5.3) we obtain

dJi
dt
− δ2Ji = pUp−1

i Ji, 0 ≤ i ≤ I − 1 ,

dJI
dt
− δ2JI = (

2q

h
U−q−1I + pUp−1

I )JI .

From (5.2), we observe that Ji(0) ≤ 0 for 0 ≤ i ≤ I if ε is sufficiently small. It
follows from lemma 3.1 that Ji(t) ≤ 0 for 0 ≤ i ≤ I, t ∈ (0, T hq ), which implies
that dUI

dt
+εU−qI ≤ 0 for t ∈ (0, T hq ). Thanks to Lemma 3.4, UI(t) = ‖Uh(t)‖inf

and we obtain the desired lower bound. �

The following result concerns the upper bound for the quenching rate.
Let i0 be such that Ui0(t) = min

0≤i≤I
Ui(t). It is not difficult to see that

δ2Ui0(t) =
Ui0+1(t)− 2Ui0(t) + Ui0−1(t)

h2
≥ 0, 1 ≤ i0 ≤ I ,

δ2U0(t) =
2U1(t)− 2U0(t)

h2
≥ 0, i0 = 0 ,

δ2UI(t) =
2UI−1(t)− 2UI(t)

h2
≥ 0, i0 = I.

We can see that
dUI(t)

dt
≥ −2

h
U−qI . Integrating this inequality over (t, T hq ) and

we obtain the result desired.

Remark 5.1. Let us point out that the quenching rate for the numerical scheme,
(T hq − t)

1
q+1 , is different from the continuous one, (Tq − t)

1
2(q+1) , see [10].
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6. NUMERICAL EXPERIMENTS

In the section, we present some numerical approximations to the blow-up
and quenching time of problem (1.2), we also discuss to the blow-up and
quenching sets. We obtain such numerical approximations by integrating nu-
merically the semidiscrete problem (2.1)-(2.4) using the method presented by
Hirota and Ozawa [4]. This method is to transform the ODE into a tractable
form by the arc length transformation technique [S. Moriguti, C. Okuno,
R. Suekane, M. Iri, K. Takeuchi, Ikiteiru Suugaku - Suuri Kougaku no Hatten
(in Japanese), Baifukan, Tokyo, 1979.] and to generate a linearly convergent
sequence to the blow-up time. The resulting sequence is accelerated by the
Aitken ∆2 method. We use the DOP54 [3] as the adaptive code for the integra-
tion of the ODEs. In the following tables, in rows, we present the numerical
blow-up and quenching times , the steps, the orders of the approximations and
the rates corresponding to meshes of 16, 32, 64, 128, 256 and 512. The order (s)

of the method is computed from

log((T4h − T2h)/(T2h − Th))
log(2)

.

Parameters InitialStep, AbsTol and RelTol in DOP54 [3] are set like this
InitialStep = 0 and AbsTol = RelTol = 1.d− 15.

The first set of experiments were performed for the quenching in the case
where u0(x) = ε−1/q − ε

2
x2 + ε

2
with 0 < p ≤ 1, 0 < q ≤ 1, ε = 1.5. Let us define

the sequence sl by sl = 23.2l (l = 0, . . . , 10).

Table 1. Convergence behaviour of Tn to the

quenching time T for p = 1/2, q = 1

I Tn n s pl

16 0.15911484 2942 . . . 0.5

32 0.15682314 5609 . . . 0.5

64 0.15610036 10754 1.66 0.5

128 0.15588244 20734 1.73 0.5

256 0.15581869 40569 1.77 0.5

512 0.15580044 84323 1.80 0.5

Table 2. Convergence behaviour of Tn to the

quenching time T for p = 1/2, q = 1/2

I Tn n s pl

16 0.16100315 3432 . . . 0.66

32 0.15927478 6701 . . . 0.66

64 0.15871679 13000 1.63 0.66

128 0.15854545 25160 1.7 0.66

256 0.15849462 49111 1.75 0.66

512 0.15847990 99246 1.79 0.66
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Table 3. Convergence behaviour of Tn to the

quenching time T for p = 1, q = 1/2

I Tn n s pl

16 0.14332827 3257 . . . 0.66

32 0.14167987 6357 . . . 0.66

64 0.14114245 12332 1.62 0.66

128 0.14097635 23855 1.69 0.66

256 0.14092684 46492 1.75 0.66

512 0.14091245 93327 1.78 0.66

Table 4. Convergence behaviour of Tn to the

quenching time T for p = 1, q = 1

I Tn n s pl

16 0.15309520 2893 . . . 0.5

32 0.15091834 5526 . . . 0.5

64 0.15022440 10602 1.65 0.5

128 0.15001371 20439 1.72 0.5

256 0.14995176 39964 1.77 0.5

512 0.14993396 82561 1.80 0.5

Remark 6.1. The tables 1-4 show the convergence of T n to the quenching time
of the solution of (1.1) when the condition 5.2 is satisfied, since the rate of con-
vergence is near 2, which is just the accuracy of the difference approximation in
space. Moreover, the estimated quenching rate converges steadily to that given
by (5.4). We also observe relationship between the quenching time and the flow
on the boundary and the absorption on the one hand and in the interior of the
domain on the other hand. In fact, when the flow on the boundary is constant
q = 1/2 and that the absorption in the interior of the domain increases by 1/2 to
1, the quenching time decreases from 0.16 to 0.14 whereas when the absorption in
the interior of the domain is constant (q = 1/2) and that the flow on the bound-
ary increases from 1/2 to 1, the quenching time remains substantially the same at
0.16. The absorption in the interior of the domain slows down the quenching.

Next, we give some plots to illustrate our analysis. In the figures below we
have used the case where I = 64. We can observe from figures 1-4 that the
semidiscrete solution quenches in a finite time at the last node, which is well
known in a theoretical point of view ( [10]).

Fig. 1. Evolution of the semidiscrete solution for

p = 0.5, q = 1
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Fig. 2. Profile of the approximation of u(x, T ) for

p = 0.5, q = 1
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Fig. 3. Evolution of the semidiscrete solution for

p = 1, q = 0.5
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Fig. 4. Profile of the approximation of u(x, T ) for

p = 1, q = 0.5

Now we consider blow-up for the two following cases. Firstly, we use u0 =

ε−1/q − ε
2
x2 + ε

2
, with p = 1.1, q = 0.9, ε = 0.5, sl = 2118.2l (l = 0, . . . , 10)

and secondly, u0 = ε−1/q − ε
2
x2 + ε

2
, p = 1.5, q = 0.5, ε = 0.5, sl = 252.2l

(l = 0, . . . , 10).

Fig. 5. Evolution of the semidiscrete solution for

global blow-up

Table 5. Convergence behaviour of Tn to the

blow-up time T for global blow-up

I Tn n s pl

16 9.28403723 14086 . . . 10

32 9.28397671 26522 . . . 10

64 9.28396158 64409 2.0 10

128 9.28395780 197898 2.0 10

256 9.28395685 737989 2.0 10
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Fig. 6. Profile of the approximation of u(x, T )

for global blow-up
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Fig. 7. Evolution of semi-discret solution for

global blow-up
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Fig. 8. Evolution of the semidiscrete solution for

blow-up inside

Table 6. Convergence behaviour of Tn to the blow-up

time T for blow-up inside

I Tn n s pl

16 0.99160415 9761 . . . 2

32 0.99158941 13431 . . . 2

64 0.99158572 20603 2.0 2

128 0.99158480 35780 2.0 2

256 0.99158457 86308 2.0 2
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Fig. 9. Profile of the approximation of u(x, T )

for blow-up inside
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Fig. 10. Evolution of semi-discret solution

for blow-up inside

Remark 6.2. As explained in remark 6.1, we see from tables 5 and 6 that T h

converges to the continuous one when condition (4.2) is satisfied. From figures
5-9 we can appreciate that blow-up can occur inside the domain, or in the whole
interval for different values of u0, which is in agreement with the theoretical results
in [10]. We also observe that the estimated blow-up rate converges steadily to that
given by (4.5).
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