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NUMERICAL QUENCHING VERSUS BLOW-UP FOR A NONLINEAR
PARABOLIC EQUATION WITH NONLINEAR BOUNDARY OUTFLUX

KOUAKOU CYRILLE N’DRI!, KIDJEGBO AUGUSTIN TOURE, AND GOZO YORO

ABSTRACT. In this paper, we study numerical approximations for positive so-
lutions of a semilinear heat equations, u; = u,, + u?, in a bounded interval
(0,1), with a nonlinear flux boundary condition at the boundary u,(0,¢) = 0,
uz(1,t) = —u~%(1,t). By a semi-discretization using finite difference method,
we get a system of ordinary differential equations which is expected to be
an approximation of the original problem. We obtain some conditions under
which the positive solution of our system quenches or blows up in a finite time
and estimate its semidiscrete blow-up and quenching time. We also estimate
the semidiscrete blow-up and quenching rate. Finally, we give some numerical
results to illustrate our analysis.

1. INTRODUCTION

In this paper, we consider the following initial-boundary value problem:

Up = Ugy + UP, O<z<l1, 0<t<oo,
+(0,1) =0, 0<t :
1.1 u(0,1) <t< oo
ur(1,t) = —u™9(1,t), 0<t< o0,
u(z,0) = ug(x), 0<z<1,
where p, ¢ > 0 and u,(z) is a positive function with uy(0) = 0, uy(1) = —ug ?(1).

Physically, (1.1) can be treated as a heat conduction model that incorporates
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the effects of reaction and nonlinear outflux. Mathematically, (1.1) is a combi-
nation of the following two problems:

Up = Ugy + UL, O<zxz<l1,t>0,
1.2) u.(0,t) =0, t>0,
up(1,) = 0, t>0,
u(z,0) = up(x), 1<z<0,
and
Ut = Ugy, O<SU<1,1€>O7
1.3) e (0,) = 0, t>0,
' ug(1,t) = —u=9(1,t), t>0,
u(z,0) = up(x), 1<z<0.

Problems (1.2) and (1.3) has been widely analyzed (see [5-8] and the refer-
ences cited therein). In particular, it is well known that if p > 1 all positive
solutions of problem (1.2) blow up in finite time (see [5]) and that the rate
near the blow-up time 7j, is (T}, — t)p%ll , [2].

Regarding problem (1.3), Keng Deng and Mingxi Xu in [8] considered a non-
linear diffusion equation (¢(u)); = us,, 0 < z < 1 with a singular boundary
condition u,(1,t) = —g(u(1,t)), they proved finite time quenching for the so-
lution. They are also established results on the quenching set and rate. More-
over in [7] the authors was shown that u quenches in finite time for all wq,
and the only quenching point is + = 1. They estimated the quenching rate by
(T, — t)Te

Let us give the two following definitions.

Definition 1.1. We say that the classical solution u of (1.1) quenches in a finite
time if there exists a finite time T, such that Orggl u(z,t) > 0 for t € [0,1,) but
lim min u(x,t) = 0.

t—T,; 0<z<1

Definition 1.2. We say that the classical solution u of (1.1) blows up in a finite
time if there exists a finite time T, such that ||u(t)||. < oo for t € [0,T}) but

i [[u(t)]c = oo,

From now on, we denote by 7}, and 7} the quenching time and the blow up
time respectively of problem (1.1).
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Concerning problem (1.1), K. Deng and C. L. Zhao [10] established crite-
ria for finite time blow-up and quenching, they are discussed to the blow-up
and quenching sets and obtained the blow-up and quenching rates. They also
characterized the sets of stationary states and analyzed their instability in [9].

Here, our objective is the numerical study of (1.1). To the best of our knowl-
edge, very few works are concerned with the numerical study of this kind of
problem. For previous works on numerical study we refer to ( [1,11-16] and
the references therein ). Here we give some assumptions under which the so-
lution of a semidiscrete form of (1.1) quenches or blows up in a finite time
depends upon certain conditions on the initial data and estimate its semidis-
crete quenching or blow-up time. We show that the rate estimate near blow-up
time is the same as (1.3), but the one near quenching time is different that
(1.3). We also prove that, under suitable assumptions on the initial datum, the
semidiscrete quenching or blow-up time converges to the theoretical one when
the mesh size goes to zero.

The paper is written in the following manner. In the next Section, we present
a semidiscrete scheme of (1.1). In section 3, we give some properties concern-
ing our semidiscrete scheme. In Section 4, under some conditions, we prove
that the solution of the semidiscrete form blows up in a finite time, study the
convergence of semidiscrete blow-up time and estimate the semidiscrete rate
near the blow up time. In Section 5, under some conditions, we prove that
the solution of the semidiscrete form quenches in a finite time, study the con-
vergence of semidiscrete quenching time and estimate the semidiscrete rate
near the quenching time. Finally, in the last section, we give some numerical
experiments.

2. THE SEMIDISCRETE PROBLEM

Let I be a positive integer, we set h = 1/I, and we define the grid , z; = ih,
i = 0,...,1. Let T be a positive real such that [0,7] is a time interval on
which the solution u of the continuous problem is defined. We approximate the
solution u of the problem (1.1) by the solution Uj, = (Uy(t), Uy (t), ..., Us(t))”
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of the semidiscrete equations

(2.1) ﬁ%2:5%Mﬂ+Uﬂm 1<i<I—1,t>0,
(2.2) d%%”::ﬁwa+lg@L t >0,
(2.3) fg%ﬁzé%Mﬂ—%Uﬁ@y+WﬁL t>0,
2.4) Ui(0)=¢; >0, i=0,...,1,
where
5%Mw:lmﬁw—2%yy+mqux =1 I-1
#Mﬁ)zzw“)_ﬂ%@, yUKQZQUpmw—Qmu)

h2

3. PROPERTIES OF THE SEMIDISCRETE PROBLEM

In this section, we give some important results which will be used later.

Definition 3.1. A function U;, € C'([0,T],R'™!) is an upper solution of (2.1)-
(2.9) if
dU;(1)

—E——ﬁ%uszﬁm i=0,....,1 -1, t€l0,T],

W) 52,0y + 2070 > U3, t e 0.1

UY> g, i=0,...,1

On the other hand, we say that U, € C*([0, T],R!*1) is a lower solution of (2.1)-
(2.4) if these inequalities are reversed.

Lemma 3.1. Let a,(t) € C°([0, T],R™™") and V},(t) € C*([0, T], R"™) such that

%@ LRVt + a(OVi(t) >0, 0<i<I, te0T],

Vi(0) >0, 0<i<I.

Then we have Vi(t) > 0,0 <:¢ <1, t € [0,T].
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Proof. Define the vector Z,(t) = e*V},(t) where ) is such that
a;(t)=A>0 for 0<i<I, tel0,T]

Let m = min{Z;(t) : 0 < ¢ < [,0 <t < T}. Since fori € {0,...,I}, Z;(t)
is a continuous function on the compact [0, 7], there exists iy € {0,...,/} and
to € [0, 7] such that m = Z; (t,). We observe that

dZ;,(to) . Zig(to) — Zig(to — k)
. — = <

3.1) dt i k =
Z — 27 Zi_

G2 8z, = e 22 E Bl <o cp oy,
27 (to) — 27, (t .

(3.3) 52 Z;, (to) = 1“29 0(O)zo@f io =0,
271-1(to) — 27 (t

(3.4) §2Z;, (to) = 1“0; AO)zo¢f io = 1.

Moreover, by a straightforward computation, we get
dZ;,(to)
dt

Using (3.1)-(3.4), we deduce from (3.5) that (a;,(to) — \)Z;,(to) > 0, which
implies that Z;,(ty) > 0. We deduce that V},(¢) > 0 for ¢ € [0,7] and the proof
is complete. O

(35) - 5221'0 (to) + (aio (to) — )\)Zzg(to) Z 0.

Another form of the maximum principle for semidiscrete equations is the
comparison lemma below.

Lemma 3.2. Let g € C(R x R,R) and W, (t), Vi (t) € C1([0,T], RI*1) such that

T 52wy + 9(vi.1) < T i) 1 g(wi). ),
1<i<I—1,te(0,7),

%t(t) —&*Vo(t) + g(Vo(t), 1) < %‘;@) — 8Wo(t) + g(Wo(t),t) te(0,T),
W 2y 2w + 90,0 < T 4 2w 2wie) + g(Wi(e) 0

Vi(0) < Wi(0), i =0,...,1.

Then V(t) < W;(t), 0 <i < I, te (0,7).
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Lemma 3.3. Let g € C(R x R, R) and W,(t), Vi (t) € C* ([0, T], RI*') such that

d‘ffét(t) — *Vi(t) + g(Vilh), 1) < dVCVZ;(t> — W) + g(Wi(), 1),
1<i<I-1,te(0,7),

d‘ilt( D i) + gvalt). 1) < dVZ;;“) = 8 Wo(t) + g(Wo (1), 1)

te(0,7),

DD 4 2y v + 90,0 < T 4 2w W) + g WD), 1)

Vi(0) < Wi(0) i=0,...,1.
Then Vi(t) < Wi(t), 0 <i < I, t € (0, 7).

Lemma 3.4. Let T' > 0 and U}, be a solution of semidiscrete problem (2.1)-(2.4)
and assume that the initial data at (2.4 ) verifies p; > p;11, 0 < i < I — 1. Then,
fori=0,...,] —1landt € (0,7] we have:

Ul(t) > Ui+1 (t)

Proof. Introduce the vector Z;, such that Z;(t) = U;;1(t) — U;(t) for t € (0,7],
i =0,...,] —1. Let ty be the first ¢ > 0 such that Z;(t) < 0 for ¢t € [0,)
but Z; (ty) = 0 for a certain iy € {0,...,1 — 1}. Without loss of generality,
we suppose that i, is the smallest integer checking the inequality above. We
observe that

%Zio(to) = lim Zu(to) = f =k 5o o<ip<r—1
527, (1) = Zoalfo) = 2222@”) T Ziall) oy <o,
527, (to) = Zy(to) ;2320(150) <0, ig=0,
§2Z;, (to) = Zi-2(t) ;2321‘1@0) <0, dg=1—1.
Moreover, by a straightforward computation, we get
%Zio(tﬂ) P Zy(t) — (P, —UP) >0, 0<ig<I—2,

d 2 _ .
£Z[_1(t0) — 5221_1(t0) + EUI q(to) — (U})(to) — U[_l(t())) > O, 90 = I—1.

But these inequalities contradict (2.1)-(2.3) and this proof is complete. O
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Theorem 3.1. Assume that the problem (1.1) has a solution u € C**([0, 1] x
[0, T]) and the initial condition ¢, at (2.4) verifies

(3.6) lon — up(0)]|oo = o(1), as h—0

where u(t) = (u(xo,t),...,u(xs, )", t € [0,T]. Then, for h small enough, the
semidiscrete problem (2.1)-(2.4) has a unique solution U, € C*([0, T, R'*!) such
that trer%gt%g](HUh(t) —up(H)lso) = O(|lon — un(0)||se +h?) as h — 0.

Proof. Let K > 0 be such that
(3.7) | u(.,t)]|o < K fortel0,T].

Then the semidiscrete problem (2.1)-(2.4) has for each h, a unique solution
Uy, € CY([0,T],RI*1). Let t(h) < T be the greatest value of ¢t > 0 such that

(3.8) 1UR(1) = un(8)]|o < 1.

The relation (3.6) implies ¢(h) > 0 for h small enough. Using the triangle
inequality, we obtain

1Un(D)lloe < [[ul D)lloc + [[U(E) — un(t)lloc - for & € (0,¢(h)),
which implies that
(3.9 |UL(t)]|oo <1+ K for te(0,t(h)).
Let en(t) = Up(t) — up(t) be the discretization error. Using the Taylor’s expan-

sion, we have for t € (0,t(h))

Qi _ 520, ) 4 pc?  (es(t) + O(D), =0, T —1,

d _ 2

Ser(t) = Fer(t) + p ™ (Ber(t) + Zaur " (Der(t) + O0R)

where (;(t) is the intermediate value between U;(¢) and u(z;,t) fori =0,...,1
and y,(t) the one between Uy (t) and u(zy,t). Using (3.7) and (3.9), there exist
L et ) positive constants such that

d
Eei — (52€i S L|€Z(t)‘ + )\hQ, 0 S ) S I — 1,

d L
%6[ — (5261 < E’€[| + \R2.
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Now, we consider the function Z € C**(]0, 1], [0, T']) such that
Z(w,t) = e (g — 0y (0)]|oo + AR?), 0 <i < T

A simple computational give

dZ (x;,t)
dt
az;
dt
From lemma (3.2), we obtain Z;(t) > e;(t), for t € (0,¢(h)), i = 0,...,1. By
analogy, we also prove that Z;(t) > —e;(t), for t € (0,¢(h), i = 0, ..., . Hence
we have Z;(t) > |e;(t)|, for t € (0,¢(h)),i =0, ..., I. We deduce that

— 62 Z (x5, t) > Llz(x, t)|AR?, 0<i<T—1,

52Z[ > —|Z<(L’1, )| + )\h2

1UA(®) = un()loe < (lon — un(0)]|so + AR?)el DT for ¢ € (0,4(h)).
Next we prove that ¢(h) = 7. Suppose that 7" > ¢(h), from (3.8), we obtain
(3.10) 1= [[Un(t(h)) — un(t(h)llosc < (llon — un(0)lloc + ARZ)el@ VT,

Since (||on — un(0)]|oo + AR2)e@FT+e — 0 as h — 0, we deduce from (3.10)
that 1 < 0, which is impossible. O

4. BLOW UP, BLOW UP RATE

In this section, under some assumptions, we show that the solution U, of
(2.1)-(2.4) blows up in a finite time. We assume that the initial data is a
positive function and verifies.

(4.1) (uo(x)) e + ub(x) > 0 for z € [0,1].

Lemma 4.1. Let U, be a solution of (2.1)-(2.4) and the initial data at (2.4)
verifies

(4.2) SFoit+ el >0, 0<i<I.

Then, Ui ~ ( for 0 <i < I, t € (0,T}).

Proof. Consider the vector Z,(t) such that Z;(t) = dt( Lo<i<I telo, M.

Let to be the first t € (0,7}}) such that Z;(t) > 0 for t € [0,t,), but Z;,(to) = 0
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for a certain iq € {0,...,I}. Without loss of generality, we suppose that i, is
the smallest integer checking the inequality above. We observe that:
d _ Ziy(to) — Zig(to — k) :
< < <
dtZ (to) Ilﬂ_f)% L _07 O_ZO _Ia
Ziy , (to) — 2Z;, + Zig. s .
02 Ziy (to) = — (o) hQ() O+()>0> 1<ip<1I-—-1,
2Z1(t0) - 220<t0) .
(52 10(150) 12 > 0, 19 = 0,
271 4(tg) — 2Z4(t
(SQZZ‘O(t()) = ! 1< 0)h,2 [( 0) > 0, ig =1.

Moreover, by a straightforward computation, we get

d _ .
EZiO (to) — 52Zi0 (to) — pUZI; 1(t0)Zi0 (to) < 0, 0 < 10 < I— 1,
d 2 . _ .
EZI(tO) — 6°Z;(to) — (EQUI T (to) + pUT ™ (t0)) Zi(to) < 0, ip = I.
But these inequalities contradict (2.1)-(2.3) and this proof is complete. O

The following result gives a property of the operator 6.
Lemma 4.2. Let U, € R'*! be such that U, > 0. Then, we have
SH(UP) > pUP™'5%U;, 0<i<I.

Proof. Let us introduce function f(s) = sP. Using taylor’s expansion we get

0°f(Us) = [ (U)o + wf (Co),

21wy = F ey + P20 gy,

2w = £ e+ GO gy Ot 208 ey v cicr o
where 7); is an intermediate value between U; and U, ; and (; the one between
U; and U,_;. The result follows taking into account the fact that U, > 0. O

Introduce the functionals

1 [ I 1 !
I(t) == 2dr — —— Ptig ——u (1, ¢ d J(t :/ d
(1) 2/0u1,$ p+1/0u :1:+_q+1u (1,t) an (1) Ouac
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and the semidiscrete approximations
I

1 — (Ui — Uy)? 1 41 1 —g+1
, — _ LUP Y rra
(4.3) In(1) 5 E - o ZE:O Ui + " 1UJ

For the functional J using the condition (4.1) and the Jensen’s inequality we
obtain after integration by parts

d 1 1
—J(t) = —2u " (1,¢) — 2/ uidw + 2/ uP M dw
1
> —2u~7T(1,0) 4+ 2(1 — )\)/ uPtdx
0

|
> 2yt (1,0) + 2(1 — A g2

In [10] the author showed that if the condition (4.1) is satisfies thfiln there
exists 7}, < oo such that lim |lu(.,?)||,: = oo, which implies that lim —J(t) =
t—)Tb t—>Tb dt

+oo forp > 1.

Let the functionals /,,(¢) and J,,(¢) as defined in (4.3). Multiplying both sides
of (2.1) by hdUZ and hdU;, respectively, and then taking the sum from i = 0 to
1=1,we obtaln

_§h<

which implies that the semidiscrete functional /,(¢) is non increasing for ¢ €
[0, T}"). Further,

I
= Z hU2 _ 2( (Uz+1h— U;)? I Z thH _ U;qul)
=0

I
2p_QZhUp+l 2q+2U q+1
1 &= —q+11

AUN2  d (1 (U — !
ﬁ) :Eﬂéig h p+1§;

7=

—q+1
1qu+>’

and a straightforward calculation gives

&2, I, WUs
L R TR Y g et S hU
WE g T2t DU Z ;
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Using the lemma (4.1) we obtain for p > 1

£y il
dat? — dt

Using the Holder inequality and the expressions above, we obtain

(S <a(Son) (S(5)) < 't

d*J dJ,
dch > _)\d_th where ) in a non-negative constant and

which implies that
I

dJy, dU;
o = 2 hUg

1=0

Using the theorem 3.1 we obtain the following result, see [17].

Theorem 4.1. Assume that the solution u of (1.1) blows up in a finite time T,
such that v € C*'([0,1] x [0,T})). We also assume that the initial data at (2.4)
satisfies the condition (4.2) and the error of initial data is of order o(1). Then for
h small enough, the solution Uy, of problem (2.1)-(2.4) blows up in finite time T}
forp>1,0< q < 1and we have

lim T} = T;.

h—o00

Theorem 4.2. Assume that the hypotheses in theorem 4.1 remains true. We also
assume that the condition

(4.4) F(8)g(s) = f (s)g(s) 20 for s>0,

hold. Then, near the blow-up time T}, the solution U,, of problem (2.1)-(2.4) has
a following blow-up rate estimate

(4.5) 1U(#) oo ~ (T3 — 1)7T,
in the sense that there exist two positive constants K, K, such that
Ki(T) — )77 < |Un(t) | < Ka(T — )77 for ¢ € (0,T}).

Proof. Introduced the vector .J,(t) defined as follow

au;
.6 i =— <i<I,
(4.6) J, 7 0<i<
with ¢ is a positive constant. By a straightforward computation we get
d 9 d dU; p—1dU; 20, :
L= — — <i<I.
dtJZ 0°J; dt(dt U;) — epU;] o +e6°U, 0<i<
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Using Lemma 4.2 and the equality (4.6), we obtain from the condition (4.4)

%Ji—fS?JinUf‘lJi, 0<i<I-1,
d 2 p—1 2 —q—1
EJ[—(s J[ Z (pUI +EUI )J[

From (4.2),we observe that J;(0) > 0 for 0 < ¢ < [ if ¢ is sufficiently small.
We deduce from lemma 3.1 that J;(t) > 0, 0 < i < I, which yields the desired
upper bound.

The following result concerns the lower bound for the quenching rate.

Let ig be such that U; (t) = max U;(t). We can observe that

Ui0+1 (t> — 2Uio (t) + UiO*l(t)

82U, () = 13 <0, 1<iyp<I,

52U (t) = 2U1(t)h—22Uo(t) <0, iy=0,

52U () = QU“(t)h; 201(t) <0, ip=1I.
We can see that dU;—(;(t) < Uy, (t) for 0 < iy < I. Integrating this inequality over
(t,T}") and we obtain the result desired. O]

5. QUENCHING, QUENCHING RATE

In this section, under some assumptions, we show that the solution U, of
(2.1)-(2.4) quenches in a finite time.

We note that if the initial data is a subsolution then the solution is monotone,
non-decreasing function with respect to t and verifies:

(5.1) (uo(2))ze +ub(x) <0 for x€][0,1].

Lemma 5.1. Let U, be a solution of (2.1)-(2.4) and the initial data at (2.4)
verifies

(5.2) o+l <0, 0<i<I.

Then, d[gt(t) <0for0<i<Itel0Th.
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Proof. Consider the vector Z,(t) such that Z;(t) = %’t(t), 0<i<I,tel0,T]).

Let t, be the first ¢ € (0,7}") such that Z;(t) < 0 for t € [0,t,), but Z;,(to) = 0

for a certain iy € {0,...,I}. Without loss of generality, we suppose that i, is
the smallest integer checking the inequality above. We observe that:
d . Ziy(to) — Zio(to — k) :
7. = > < <
g Zolto) = lim K 20, 0zhsl,
Zis (to) = 273 (to) + Zig,, (t _
6° Ziy (to) = —= (fo) }22(°> °+<°)<0, 1<ig<I-1,
2Zl (to) - 2Z0(t0) .
52Zi0(t0) = e < O, 90 = O,
2Z1_1(to) — 2Z(to) .
52Zi0(t0) = 12 <0, 19= 1.
Moreover, by a straightforward computation, we get
d _ .
%Zio(to) — 5QZi0(t0) —prj 1(t0)Zi0(t0) > 0, 0 S 10 S I — 1,
d 2 - .
Ezl(to) — 6°Z;(to) — (EQUI T (to) + pUT ™ (t0)) Zi(to) > 0, ip = I.
But these inequalities contradict (2.1)-(2.3) and the proof is complete. O

Lemma 5.2. Let U;, € R'*! be such that U, > 0. Then we have
(U7 > —qU 0%, 0<i<I.

Proof. Let us introduce function f(s) = s~9. Using Taylor’s expansion we get

_ 2
1w = £ weeny + D0 )
_ 2
75wy = 7 ey + T2 g ),
U, 1—U; 2, ‘
77 = £ v+ GO gy Tt 2Ol ey 1 cicr

where 7; is an intermediate value between U; and U;,; and (; the one between
U; and U;_;. The result follows taking into account the fact that U, is nonneg-
ative. O

Define the functional J and its approximation by

J(t) = /Olu(x,t)dx, t€[0,77); and Ju(t) = ZhUi(t), telf0,T)).
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d
We can easily check that th%l %J [u](t) = —oo. For this J we obtained after
—T4q

integration by parts

d 1 1
— J[u] :/ wdxr = —uq(l,t)+/ uPdx.
Notice that the condition (5.1) implies u; < 0. Let:
1
0<(= / ug(x)dx/u?(1,0) < 1, which gives
0

%J[u] < —u(1,t) + Cu(1,0) < (¢ — Du9(1,¢).
Since quenching occur only on the boundary (see [10]), we have tlir% uI(1,t) =
0. !

Let us assume that the initial data at (2.4) satisfies (5.2), by a simple com-
putation, we obtain for ¢ € [0,7}/), p > 0and ¢ > 0
d2

d ! d
—_— = _q_l —_— ,p_l —_— .
e Jp(t) = qU; (1) dtUI(t) +p ?0 hUP™(t) dtU,(t).

@2
dt?
du;

dt
Using Theorem 3.1 we obtain the following result , see [17].

From lemma (5.1), we have <5 J,(t) < —c%Jh(t) where ¢ is a non-negative

T
constant and 4.J,(t) = Z h
i=0

Theorem 5.1. Assume that the solution u of (1.1) quenches in a finite time T,
such that u € C*'([0,1] x [0,T})). We also assume that the initial data at (2.4)
satisfies the condition (5.2) and the error of initial data is of order o(1). Then for
h small enough, the solution U, of problem (2.1)-(2.4) quenches in finite time T(f
for p >0, ¢ > 0and we have lim T, =T,.

h—o00

Theorem 5.2. Assume that the hypotheses of Theorem 5.1 remains true. We also
assume that the condition

/

(5.3) f(s)g (s) = f(s)g(s) =0 for s>0,

holds. Then, near the quenching time T}, the solution U, of problem (2.1)-(2.4)
has a following quenching rate estimate

(5.4) U () ling ~ (TI = t)7,
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in the sense that there exist two positive constants K, and K, such that
h -1 h -1 h
Kl(Tq - t) T < ||Uh(t>||mf < KQ(Tq - t) att fOT te (OaTq>

Proof. Introduce the vector J,(¢) defined as follow

dU; , dU
E, OS’LSI—l, and J] d]

where ¢ is a positive constant. By a straightforward computation we get
dJ; d dU;
8 J; =

(5.5) Ji = eUr e,

dt = glg ~O0) 0sisi-L
CZI 52 = jt(dzf §2U;) — eqU; "™ 1% — 82U
Using Lemma 5.2 and the equality (5.5), from condition (5.3) we obtain
‘il‘f Ji=pUP'J, 0<i<I—1,
dd‘? 6T = ( hq U/ 4 pUP .

From (5.2), we observe that J;(0) < 0 for 0 < ¢ < [ if ¢ is sufficiently small. It
follows from lemma 3.1 that J;(t) < 0 for 0 < i < I, t € (0,7}"), which implies
that ©1+cU; 7 <0 for ¢ e (0,77). Thanks to Lemma 3.4, U;(t) = ||Ux(t) |ins
and we obtain the desired lower bound. O

The following result concerns the upper bound for the quenching rate.
Let iy be such that U;,(t) = OryiglUi(t). It is not difficult to see that

Ui0+1 (t) - QUio (t) + Uio—l(t)

82U, () = 2 >0, 1<i<I,
52U (1) — 2U(t) h—22UO(t) >0, ig=0.
52U (t) = QU[‘I(t)hQ_ 201 () >0, =1
We can see that %(t) > —%U ; °. Integrating this inequality over (¢,7}') and

we obtain the result desired.

Remark 5.1. Let us point out that the quenching rate for the numerical scheme,
1 1
(T} — t)=+1, is different from the continuous one, (T, — t)27, see [10].
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6. NUMERICAL EXPERIMENTS

In the section, we present some numerical approximations to the blow-up
and quenching time of problem (1.2), we also discuss to the blow-up and
quenching sets. We obtain such numerical approximations by integrating nu-
merically the semidiscrete problem (2.1)-(2.4) using the method presented by
Hirota and Ozawa [4]. This method is to transform the ODE into a tractable
form by the arc length transformation technique [S. Moriguti, C. Okuno,
R. Suekane, M. Iri, K. Takeuchi, Ikiteiru Suugaku - Suuri Kougaku no Hatten
(in Japanese), Baifukan, Tokyo, 1979.] and to generate a linearly convergent
sequence to the blow-up time. The resulting sequence is accelerated by the
Aitken A% method. We use the DOP54 [3] as the adaptive code for the integra-
tion of the ODEs. In the following tables, in rows, we present the numerical
blow-up and quenching times , the steps, the orders of the approximations and
the rates corresponding to meshes of 16, 32, 64, 128, 256 and 512. The order (s)
of the method is computed from

log((Tun — Ton)/(Ton, — Th))
log(2) '

Parameters InitialStep, AbsTol and RelTol in DOP54 [3] are set like this
InitialStep = 0 and AbsTol = RelTol = 1.d — 15.

The first set of experiments were performed for the quenching in the case
where ug(z) =e /41— 222 + S with 0 <p < 1,0 < ¢ <1, e = 1.5. Let us define
the sequence s; by s; = 23.2! (1 =0,...,10).

Table 1. Convergence behaviour of 7" to the Table 2. Convergence behaviour of 7" to the
quenching time T forp =1/2,q =1 quenching time 7' forp = 1/2,q = 1/2
I AL n s D I T n s j 2]
16 | 0.15911484 | 2942 | ... 0.5 16 | 0.16100315 | 3432 | ... 0.66
32 | 0.15682314 | 5609 | ... 0.5 32 | 0.15927478 | 6701 | ... 0.66
64 | 0.15610036 | 10754 | 1.66 | 0.5 64 | 0.15871679 | 13000 | 1.63 | 0.66
128 | 0.15588244 | 20734 | 1.73 | 0.5 128 | 0.15854545 | 25160 | 1.7 | 0.66
256 | 0.15581869 | 40569 | 1.77 | 0.5 256 | 0.15849462 | 49111 | 1.75 | 0.66
512 | 0.15580044 | 84323 | 1.80 | 0.5 512 | 0.15847990 | 99246 | 1.79 | 0.66
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Table 3. Convergence behaviour of T to the Table 4. Convergence behaviour of 7™ to the
quenching time T forp =1,¢ = 1/2 quenching time T forp=1,g =1
1 Al n s DI 1 A n s JJ
16 0.14332827 | 3257 o 0.66 16 0.15309520 | 2893 e 0.5
32 0.14167987 | 6357 o 0.66 32 0.15091834 | 5526 .. 0.5
64 0.14114245 | 12332 | 1.62 | 0.66 64 0.15022440 | 10602 | 1.65 | 0.5
128 | 0.14097635 | 23855 | 1.69 | 0.66 128 | 0.15001371 | 20439 | 1.72 | 0.5
256 | 0.14092684 | 46492 | 1.75 | 0.66 256 | 0.14995176 | 39964 | 1.77 | 0.5
512 | 0.14091245 | 93327 | 1.78 | 0.66 512 | 0.14993396 | 82561 | 1.80 | 0.5

Remark 6.1. The tables 1-4 show the convergence of T™ to the quenching time
of the solution of (1.1) when the condition 5.2 is satisfied, since the rate of con-
vergence is near 2, which is just the accuracy of the difference approximation in
space. Moreover, the estimated quenching rate converges steadily to that given
by (5.4). We also observe relationship between the quenching time and the flow
on the boundary and the absorption on the one hand and in the interior of the
domain on the other hand. In fact, when the flow on the boundary is constant
q = 1/2 and that the absorption in the interior of the domain increases by 1/2 to
1, the quenching time decreases from 0.16 to 0.14 whereas when the absorption in
the interior of the domain is constant (¢ = 1/2) and that the flow on the bound-
ary increases from 1/2 to 1, the quenching time remains substantially the same at
0.16. The absorption in the interior of the domain slows down the quenching.

Next, we give some plots to illustrate our analysis. In the figures below we
have used the case where / = 64. We can observe from figures 1-4 that the
semidiscrete solution quenches in a finite time at the last node, which is well
known in a theoretical point of view ( [10]).

numerical solution U,
o N
& o
Approximation of u(x,T)
s o -
5 & - &

o
=

\
\\
s
R

P 0
> 02 ) 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
0 space node

Fig. 1. Evolution of the semidiscrete solution for Fig. 2. Profile of the approximation of u(x,T') for

p=05¢g=1 p=205¢=1
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12
12 1
= 1 —~
2 :’ 08
£ 084 =
2 5
é 04 g
3
2 02- é 04
ol <
015 T s
01 ‘\\\\ //(///0 s ! 02
005 e 0a
s 02 0
time 0 o space 0 01 02 03 04 05 06 07 08 09 1
node
Fig. 3. Evolution of the semidiscrete solution for Fig. 4. Profile of the approximation of u(x,T') for
p=1,4g=05 p=1,4¢=05

Now we consider blow-up for the two following cases. Firstly, we use uy =
eV/a— 0?4 £ withp = 1.1, ¢ = 0.9, ¢ = 0.5, 5, = 282! (I = 0,...,10)
and secondly, ug = e /4 — 22 + £, p = 1.5, ¢ = 0.5, ¢ = 0.5, 5y = 2722
(1=0,...,10).

Table 5. Convergence behaviour of 7" to the

blow-up time 7" for global blow-up

I ™ n s I
16 9.28403723 | 14086 ... | 10
32 9.28397671 | 26522 ... | 10

64 | 9.28396158 | 64409 2.0 |10
128 | 9.28395780 | 197898 | 2.0 | 10
256 | 9.28395685 | 737989 | 2.0 | 10

Fig. 5. Evolution of the semidiscrete solution for

global blow-up
1.68827332265725 1107 16 2207
1.6882733226572 16
4
1.68827332265715 5
& 3
% b
§ 1.6882733226571 5
g § 10
% 1.68 65705 5
£ S5 8f
=
O 1.688273322657 %
g c 6f
< 2
1.68827332265695 % n
g
w
1.6882733226569 2}
1.68: 0 . . . . . . . . .
0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5 6 7 8 9 10
node temps
Fig. 6. Profile of the approximation of u(x,T') Fig. 7. Evolution of semi-discret solution for

for global blow-up global blow-up
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Table 6. Convergence behaviour of 7™ to the blow-up

time 7" for blow-up inside

1 T n s L
16 | 0.99160415 | 9761 2
32 | 099158941 | 13431 | ... | 2
64 | 0.99158572 | 20603 | 2.0 | 2
128 | 0.99158480 | 35780 | 2.0 | 2
256 | 0.99158457 | 86308 | 2.0 | 2
Fig. 8. Evolution of the semidiscrete solution for
blow-up inside
5 x10% 2 p 207
18 18r
16 aé: 16
F 14 3 141
% 08 2 os
i&ove E 06
0.4 :Ej 0.4r
02H 02r
Q0 O.‘l O.‘Z 013 014 015 0.‘6 0.‘7 0.‘8 OjQ 1 DO U‘l 0‘2 0‘3 O.‘4 O.‘S 016 017 O.‘S 0.9 1
node temps
Fig. 9. Profile of the approximation of u(x,T') Fig. 10. Evolution of semi-discret solution

for blow-up inside for blow-up inside

Remark 6.2. As explained in remark 6.1, we see from tables 5 and 6 that T"
converges to the continuous one when condition (4.2) is satisfied. From figures
5-9 we can appreciate that blow-up can occur inside the domain, or in the whole
interval for different values of uq, which is in agreement with the theoretical results
in [10]. We also observe that the estimated blow-up rate converges steadily to that
given by (4.5).
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