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STROOCK-VARADHAN SUPPORT THEOREM FOR RANDOM EVOLUTION
EQUATION IN BESOV-ORLICZ SPACES

JOCELYN HAJANIAINA ANDRIATAHINA1, DINA MIORA RAKOTONIRINA,
AND TOUSSAINT JOSEPH RABEHERIMANANA

ABSTRACT. We consider the family of stochastic processesX = {Xt, t ∈ [0; 1]} ,
where X is the solution of the Itô stochastic differential equation

dXt = σ(Xt, Zt)dWt + b(Xt, Yt)dt

whose coefficients Lipschitzian depend on Z = {Zt, t ∈ [0; 1]} and Y =

{Yt, t ∈ [0; 1]}. We prove that the trajectories of X a.s. belong to the Besov-
Orlicz space defined by the fonction M(x) = ex

2 − 1 and the modulus of
continuity ω(t) =

√
t log(1/t). The aim of this work is to characterize the

support of the law X in this space.

1. INTRODUCTION

Let X := {Xt, t ∈ [0, 1]} be the solution of the following random evolution
equation, see [6]:

(1.1)


dXt = σ(Xt, Zt)dWt + b(Xt, Yt)dt

X0 = x

where x ∈ Rd is the starting point and (Wt) is the standard Brownian motion
taking values in Rd defined on some well filtered probability space (Ω,F ,Ft,P).
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We suppose that Y and Z are progressively measurable random process belong
to Lq(q ≥ 1) and their respectively topological support are a compact subset in
B

1/2,0
M which is an separable subset of B1/2

M . Furthermore, W is independent of
(Y, Z) and we always assume that the coefficients σ : Rd ×Rl −→ Rd ⊗Rk and
b : Rd × Rm −→ Rd satisfy the following hypotheses:

(H0) : The function b is jointly measurable in (x, y) and there exists a constant
K > 0 such that:

|b(x, y)| ≤ K(1 + |x|), ∀(x, y) ∈ Rd × Rm

|b(x, y)− b(x′, y′)| ≤ K(|x− x′|+ |y − y′|), ∀ x, x′ ∈ Rd; y, y′ ∈ Rm.

(H1) : The function σ is jointly measurable in (x, z) and there exists K > 0

such that:

|σ(x, z| ≤ K, ∀ (x, z) ∈ Rd × Rl

|σ(x, z)− σ(x′, z′)| ≤ K(|x− x′|+ |z − z′|), ∀ x, x′ ∈ Rd; z, z′ ∈ Rl.

(H2) : b is C1, σ is C2 and there exists some positive constant K such that:
max

{
tr(σσ∗(x, z)), 〈x, b(x, y)〉

}
≤ K(1+ |x|2), ∀x ∈ Rd; y ∈ Rm; z ∈ Rl.

Here 〈x, y〉 is the Euclidean inner product in Rd.

Let Ω = C([0, 1],Rd) be the set of continuous functions from [0, 1] to Rd

equipped with the usual topology of uniform convergence defined by the norm
||f ||∞ = sup0≤t≤1 | f(t) | and let H =

{
h(t) =

∫ t
0
ḣ(s)ds, ḣ ∈ L2([0, 1])

}
be the Cameron-Martin space, that is the subset of Ω and for all h ∈ H,
ψ ∈ suppY , and χ ∈ suppZ, S(h, ψ, χ) is the solution of ordinary differential
equation(ODE):

(1.2)


dS(h, ψ, χ)t =

(
b(S(h, ψ, χ)t, ψt)− 1

2
(∇xσ)σ(S(h, ψ, χ)t, χt)

)
dt

+σ(S(h, ψ, χ)t, χt)ḣtdt

S(h, ψ, χ)0 = x

where suppY is the support of the distribution of Y , suppZ is the support of
the distribution of Z.

In this paper, we characterize the support theorem of X in Besov-Orlicz
spaces B1/2

M . The aim is to prove the characterization of the support P ◦ X−1

as the closure S of the set {S(h, ψ, χ), h ∈ H, ψ ∈ suppY and χ ∈ suppZ} in
B

1/2,0
M . We use the approximation theorem of the stochastic system adapted

linear interpolation of ωn of ω and Millet result, see [8], to prove our result.
So, we check the convergence in probability of ||S(ωn, ψ, χ) − X||ω1/2,M,∞ and
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of ||X(ωn − ω + h) − S(h, ψ, χ)||ω1/2,M,∞ to 0 where the law of transformation
Tn of ω defined by Tn(ω) = ωn − ω + h is absolutely continuous with respect to
P.

As in [7], notice that the density of the set of bounded functions in L2 and
the continuity of the application (h, ψ, χ) 7−→ S(h, ψ, χ) ∈ B

1/2
M also allow

us to show that the adhesions of the sets {S(h, ψ, χ), h ∈ H, h ∈ L∞, ψ ∈
suppY and χ ∈ suppZ} and S coincide in B1/2,0

M .
In Varadhan-Stroock [11], the support Theorem was first proved for the case

Y ≡ 0 and Z ≡ 0 for the equation (1.1) in finite dimensional state spaces and
with finite dimensional Wiener processes. Many authors have tried to extend
their results for the same case but by different methods that we have also
adopted. Mellouk [7] have used also approximation methods of the stochastics
differential equation to prove the support Theorem in Besov-Orlicz spaces see
[3, 4, 8] for the Hölder norm see also [1] in separable Hilbert space driven by
Wiener processes without infinitesimal generators.

We know that the norm of B1/2
M is stronger than the function höderian space

order α < 1/2. This result makes it possible to generalize this case and the
support Theorem in Andriatahina and al. [2].

The rest of this paper is organized as follows. In Section 2, we introduce
some notions on the Besov-Orlicz spaces and we will show that the trajectory
of X is almost surely in B

1/2,0
M . In Section 3, we will give our main result and

some approximations in general of X solution of (1.1). Finally, Section 4 will
be devoted to the proof of the main result.

Throughout this paper, Cp is a positive constant depending on some param-
eter p, and C is a constant depending on no specific parameter(except x0 and
K), whose value may be different from line to line by convention.

2. REGULARITY OF THE SOLUTIONS IN THE BESOV-ORLICZ SPACE

In this section, we give some notions on the Besov-Orlicz space. For more
details of this space, the reader may consult [5,9,10]. Let M(x) = ex

2 − 1 and
for all continuous function f : [0, 1]→ Rd, the Orlicz’s norm is defined by

||f ||M = inf
{
θ > 0,

1

θ

[
1 +

∫ 1

0

M(θ|f(t)|)dt
]}
.



190 J.H. ANDRIATAHINA, D.M. RAKOTONIRINA, AND T.J. RABEHERIMANANA

The modulus of continuity of f in Orlicz norm is

ωM(f, δ) = sup
0≤h≤δ

||∆hf ||M ,

where
∆hf(x) = 1[0,1−δ](x)[f(x+ h)− f(x)],∀h ∈ [0, 1].

Let ω1/2(t) =
√
t(1 + log(1/t)), for all t ∈ [0, 1]. Note that B1/2

M as the space of
continuous functions f : [0, 1]→ Rd such that

||f ||ω1/2,M,∞ = ||f ||M + sup
0≤t≤1

wM(f, t)

ω1/2(t)
<∞.

Notice that there is a isomorphism between B
1/2
M and some spaces of the se-

quences, see [5]. Let f0, f1 = f(1)− f(0), and for 0 ≤ j, 1 ≤ k ≤ 2j,

fj,k = 2 2j/2
[
f
(2k − 1

2j+1

)
− 1

2

(
f
( 2k

2j+1

)
+ f
(2k − 2

2j+1

))]
.

Let P0(t) = 1, P1(t) = t and Pj,k =
∫ 1

0
χj,k(s)ds be the basic function of Schauder

where {χj,k, j ≥ 0, 1 ≤ k ≤ 2j} is Harr’s system defined by χ1(t) = 1 and
χj,k = 2j/2

(
1[ k−1

2j
, 2k−1

2j+1 ]−1[ 2k−1

2j+1 ,
k

2j
]

)
. Then f(t) = f0P0(t)+f1P1(t)+

∑
j,k fj,kPj,k(t).

Theorem 2.1. [5]

i) For po ≥ 1, f belongs to B1/2
M if and only if the norm

max
(
|f0|, |f1|, sup

p≥p0
sup
j≥0

2−
j
p

√
p

(j ∨ 1)−α ‖ fj,. ‖p
)
<∞

ii) f belongs at B1/2,0
M ( separable subspace of B1/2

M ) if and only if

limp∨j→∞
2−

j
2√
p
j−

1
2 ‖ fj,. ‖p= 0, where ‖ fj,. ‖p=

(∑2j

k=1 |fj,k|p
) 1

p .

Throughout, we need the following inequality

(2.1) sup
p

2−
j
p ||fj,.||p ≤ sup

k
|fj,k|.

The proof of (2.1) can be found in [5].
In order to prove Theorem 2.2 by using the similar arguments in [7] we also

need the following lemmas.

Lemma 2.1. Under the assumptions (H0)− (H2), there exists an arbitrary con-
stant M > 0 which depends on x0, K and p such that for all p ≥ 2,

(2.2) E||X||p ≤M.
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Proof. For p = 2 and p = 3, Itô’s formula applied respectively to the functions
x2 and x3, and Gronwall’s inequality imply that:

E||X||2 ≤ (||x0||2 + 3K)e3K and E||X||3 ≤ (||x0||3 + 3K + 1)e9K/2.

Suppose that for all integer n ≥ 1, we have the reccurence relations

(2.3) E||X||2n ≤ Ce
3n(n+1)

2
K

and

(2.4) E||X||2n+1 ≤ Ce
3n(n+2)

2
K .

By Itô’s formula applied to the function f(x, y, z) = ||x||p+2, for all p and x ∈
Rd, y ∈ Rm and z ∈ Rl, we have:

df(Xt, Yt, Zt) = 〈 5f(Xt, Yt, Zt), σ(Xt, Zt)dWt 〉+ 〈 b(Xt, Yt),5f(Xt, Yt, Zt) 〉dt

+
1

2

∑
i,j

(σσ∗)ij(Xt, Zt)
∂2

∂xi∂xj
f(Xt, Yt, Zt)dt

= 〈 5f(Xt, Yt, Zt), σ(Xε
t , Zt)dWt 〉+ L(Xt, Yt, Zt)dt,

L is the infinitesimal generator of Xt.
By the condition (H2),

L(x, y, z) = (p+ 2)||x||p〈x, b(x, y)〉+ (p+ 2)||x||ptr(σσ∗)(x, z)

+ p(p+ 2)||x||p−2
∑
i

(σσ∗)iix
2
i

≤ (p+ 2)||x||p
[
p+K(1 + ||x||2)

]
.

As E
( ∫ t

0

〈 5f(Xs, Ys, Zs), σ(Xs, Zs)dWs 〉.
)

= 0, and Fubini’s Theorem, we have

that:

E(||Xt||p+2) ≤ ||x0||p + (p+ 2)(p+K)

∫ t

0

E||Xs||pds+ (p+ 2)K

∫ t

0

E||Xs||p+2ds.

By (2.3), (2.4) and Grownall’s inequality, there exists a constant C > 0 de-
pending on x0, p,K such that we have respectively:

E||X||2n+2 ≤ Ce
3(n+1)(n+2)

2
K and E||X||2n+3 ≤ Ce

3(n+1)(n+3)
2

K .

�
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Lemma 2.2. Under the assumptions (H0)− (H1) and (2.2), there exists an con-
stant M > 0 such that for all s, t ∈ [0, 1] and p ≥ 2,

(2.5) E(‖Xt −Xs‖p) ≤M(2K)ppp/2|t− s|p/2.

The proof of Lemma 2.2 is given in [7] by using the Burkholder’s inequality
and the isometry for p ∈ {2, 3}. For 2 ≤ p ≤ n−1 (n ≥ 4), Itô’s formula and the
recurrence hypothesis (2.5) allow us to show the result. But, in our situation,
we must add Lemma 2.1 because of the linear growth of b in the assumption
(H0).

Now, we have the following theorem.

Theorem 2.2. Suppose that the assumptions (H0)− (H2) are satisfied. Let X be
the solution of (1.1). Then

P
(
X. ∈ B

1
2
,0

M

)
= 1.

Proof. The proof is to show that the solution set (1.1) satisfying the conditions
i) and ii) of the Theorem 2.1.

Let α < 1
2
, for all j ≥ 0 and for all p ≥ p0, note that

δαj,p(X) :=
2−

j
p

√
p

(j ∨ 1)−α||Xj,.||p and θj,p(X) :=
2−

j
p

√
p

(j ∨ 1)−1/2||Xj,.||p.

We will show that for all p0 that we will specify later and for all α < 1
2
, we have

sup
j≥0

sup
p≥p0

δαj,p(X) <∞ p.s(2.6)

lim
j∨p→∞

θj,p = 0 p.s.(2.7)

Let λ > 0, and note that

Sλ(α) =
∑
j≥0

∑
p≥p0

P
{
δαj,p(X) > λ

}
.

Using Tchebychev inequality and Lemma 2.2, we have:

P
{
δαj,p(X) > λ

}
≤ 2−j

pp/2λp(j ∨ 1)αp

2j∑
k=1

E | Xj,k |p

≤ 2−j2jp/22p

λppp/2(j ∨ 1)αp

2j∑
k=1

sup
|t−s|≤2−(j+1)

E | Xt −Xs |p
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≤
(M
λ

)p 1

(j ∨ 1)αp
.

Choosing p0 ≥ 1
α

and λ > 0 large enough, we deduce the convergence of the
series Sλ(α) and Borel-Cantelli’s Lemma leads to the validity of (2.6).

By (2.1), we have supj≥0 θj,p(X) ≤ 1√
p

supj≥0 supk |Xj,k| and by Borell-Cantelli’s

Lemma, it suffices to show the convergence of the series Rλ =
∑

j P
{

(j ∨

1)−1/2 supk |Xj,k| > λ
}

to prove (2.7). Indeed, the exponential inequality on
the stochastic integrals leads to the existence of the positive constants C ′ and
C ′′ such that for all λ > 0 large enough,

P
{

(j ∨ 1)−1/2 sup
k
|Xj,k| > λ

}
= P

{
sup
k
|Xj,k| > λ(j ∨ 1)1/2

}
= P

{∣∣X k

2j+1
−X k−1

2j+1

∣∣ > λ(j ∨ 1)1/22−(j/2)−1
}

≤ C ′ exp
(
− C ′′λ

2(j ∨ 1)

K2

)
.

So, supj≥0 θj,p(X) <∞. This proves relation (2.7), completing the proof of the
Theorem. �

3. MAIN RESULT AND APPROXIMATIONS

We want to show that the following Theorem characterizes the support of
the law of X solution of (1.1) in B1/2,0

M .

Theorem 3.1. If σ is of class C2, bounded together with its partial derivatives of
order one and two, and b is globally Lipschitz, the support of the law of X in B

1
2
,0

M

is the closure of the set S = {S(h, ψ, χ), h ∈ H, ψ ∈ suppY, χ ∈ suppZ} where
S(h, ψ, χ) is given by (1.2).

(L) : Given an integer n > 0, let Dn = {i2−n; 0 ≤ i ≤ 2n} be the set of
n-dyadic points. ωn is the linear interpolation adapted to ω defined by ω̇nt =

2n[ω(k2−n)− ω((k + 1)2−n)] for t ∈ [k2−n, (k + 1)2−n[, k ≥ 1 and 0 overwise.
The approximation of stochastic integrals by the Riemann sum’s imply that
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Xn(ω) is solution of the Itô’s stochastic differential equation(SDE)
(3.1)

Xn
t = x0+

∫ t

0

σ(Xn
s , Zs)dWs−

∫ t

0

σ(Xn
s , Ys)ω̇

n
s ds+

∫ t

0

σ(Xn
s , Zs)ḣsds+

∫ t

0

b(Xn
s , Ys)ds.

Let Xn be the function Xn : ωn 7−→ X(ωn) and X(ωn) is the function
X(ωn) : (Y, Z) 7−→ X(ωn)(Y, Z) = Xn solution of (3.1). Let S(ωn, ψ, χ) satis-
fies:

S(ωn, ψ, χ)t = S(ωn, ψ, χ)0 +

∫ t

0

σ(S(ωn, ψ, χ)s, χs)ω̇
n
s ds+

∫ t

0

(
b(S(ωn, ψ, χ)s, ψs)

−1

2
(∇xσ)σ(S(ωn, ψ, χ)s, χs)

)
ds.

By Proposition 2.1 in [8], Theorem 2.2 will be obtained by results of the fol-
lowing convergences. For all δ > 0,

lim
n

P(‖S(ωn, ψ, χ)−X(ω)‖ω1/2,M,∞ > δ) = 0,(3.2)

lim
n

P(‖X(ω − ωn + h)− S(h, ψ, χ)‖ω1/2,M,∞ > δ) = 0.(3.3)

The sequences of the processes (Xn
. ) and (S(ωn, ψ, χ).) are respectively the

special cases of (Kn
. ) and (K̃n

. ), solutions of the following stochastic differential
equations

Kn
t = x+

∫ t

0

F (Kn
s , Zs)dWs +

∫ t

0

G(Kn
s , Zs)ω̇

n
s ds+

∫ t

0

H(Kn
s , Zs)ḣsds

+

∫ t

0

I(Kn
s , Zs)ds+

∫ t

0

B(Kn
s , Ys)ds,(3.4)

and

K̃n
t = x+

∫ t

0

F (K̃n
s , χs)dWs +

∫ t

0

G(K̃n
s , χs)ω̇

n
s ds+

∫ t

0

H(K̃n
s , χs)ḣsds

+

∫ t

0

I(K̃n
s , χs)ds+

∫ t

0

B(K̃n
s , ψs),(3.5)

where F,G,H, I : Rd × Rl −→ Rd ⊗ Rk and B : Rd × Rm −→ Rd are Lipschitz
functions, G of class C2, bounded together with its partial derivatives of order
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one and two. Let (Lt) be the solution of the stochastic differential equation:

Lt = x+

∫ t

0

[F (Ls, Zs) +G(Ls, Zs)]dWs +

∫ t

0

H(Ls, Zs)ḣsds+

∫ t

0

[B(Ls, Ys)

+I(Ls, Zs)]ds+

∫ t

0

∇G(Ls, Zs)[F (Ls, Zs) +
1

2
G(Ls, Zs)]ds.(3.6)

We consider the following convergences which have the partucular cases of
(3.2) for F = 0;G = σ;H = 0; I = −1

2
(∇σ)σ and B = b, and (3.3) for F =

σ;G = −σ;H = σ, I = 0 and B = b. For all ε > 0,

(3.7) lim
n

P
(
||Kn − L||ω1/2,M,∞ > ε

)
= 0

and

(3.8) lim
n

P
(
||K̃n − L||ω1/2,M,∞ > ε

)
= 0.

Using a similar estimate to Lemma 2.2, there exist a constant Cp > 0 such that
for all s, t ∈ [0, 1] and p ≥ 2,

(3.9) E
(
|Lt − Ls|2p

)
≤ Cp|t− s|p.

We suppose that for t ∈ [0, 1] and p ≥ 2,

(3.10) E|ψt − Yt|2p <∞ ,

(3.11) E|χt − Zt|2p <∞.

Furthermore, for all t ∈ [0, 1] and let t̄n = k
2n
, tn = k−1

2n
∨ 0, we have

(3.12) lim
n→∞

sup
t∈[0,1]

E|Zt − Ztn|
2p = 0.

By triangular inequality and (3.11), we have

(3.13) sup
t∈[0,1]

|χt − χtn|
2p <∞.
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4. PROOF OF THE MAIN RESULT

The following Proposition is derived from what we said previously.

Proposition 4.1. Let (Kn
t ), (K̃n

t ) and (Lt) be defined by (3.4), (3.5) and (3.6)
respectively with a function h such that ḣ is bounded. For any ε > 0,

limn P
(
||Kn − L||ω1/2,M,∞ > ε

)
= 0 and limn P

(
||K̃n − L||ω1/2,M,∞ > ε

)
= 0.

Proof. The proof is done in two cases. We suppose that we have (L). Let
F,G,H, I, B be the bounded functions and B satisfy the linear growth condi-
tion. Let ε > 0, γ < 1 and p ≥ 1, note that

Rn := P( sup
j≥nγ

sup
p
θj,p(K

n − L) > ε)

and

Tn := P( sup
j≥nγ

sup
p
θj,p(K̃

n − L) > ε).

To show (3.7) and (3.8), it suffices to prove the convergences to 0 of Rn and
Tn. Indeed, by (2.1) and Tchebychev’s inequality,

Rn ≤
∑
j≤nγ

∑
1≤k≤2j

P(|(Kn − L)j,k| > ε(j ∧ 1)1/2)

≤ 1

ε2p

∑
j≤nγ

2j2jp22p

jp
sup

|t−s|≤2−(j+1)

E
(
| (Kn

t − Lt)− (Kn
s − Ls) |2p

)
.(4.1)

For all s, t ∈ [0, 1],

E
(
|(Kn

t − Lt)− (Kn
s − Ls)|2p

)
≤ Cp

4∑
i=0

Ri

where

R0 = E
(∣∣∣ ∫ t

s

[F (Kn
u , Zu)− F (Lu, Zu)]dWu

∣∣∣2p),
R1 = E

(∣∣∣ ∫ t

s

G(Kn
u , Zu)ω̇

n
u −G(Lu, Zu)dWu

∣∣∣2p)
R2 = E

(∣∣∣ ∫ t

s

[H(Kn
u , Zu)−H(Lu, Zu)]ḣudu

∣∣∣2p)
R3 = E

(∣∣∣ ∫ t

s

[
(I(Kn

u , Zu) +B(Kn
u , Yu))− (I(Lu, Zu) + I(Lu, Yu))

]
du
∣∣∣2p)

R4 = E
(∣∣∣ ∫ t

s

∇G(Lu, Zu)[F (Lu, Zu) +
1

2
G(Lu, Zu)]du

∣∣∣2p).
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By Burkholder’s inequality, Schwartz’s inequality and Fubini’s Theorem together,
we have

R0 +R2 +R3 ≤ CpK
2p(|t− s|p + 1)

(∫ t

s

E|Kn
u − Lu|2du

)p
.

By Proposition 3.3 in [2], for large enough n and the hypothesis (L), there
exists an positive constant C ′′′ such that E|Kn

u − Lu|2 ≤ C ′′′. Thus,

R0 +R2 +R3 ≤ CpK
2p(|t− s|p + |t− s|2p).

Since (∇G)F and (∇G)G are Lipschitzian,

R4 ≤ CpK
2p|t− s|2p.

We have

R1 ≤ Cp(R1,0 +R1,1),

where

R1,0 = E

(∣∣∣∣∫ t

s

|G(Kn
u , Zu)−G(Kn

un
, Zun)||ω̇nu |du

∣∣∣∣2p
)

R1,1 = E

(∣∣∣∣∫ t

s

G(Kn
un
, Zun)ω̇ns du−G(Lu, Zu)dWu

∣∣∣∣2p
)
.

Let a > 1, b > 1 such that 1
a

+ 1
b

= 1. By Hölder’s inequality and Fubini’s
Theorem, we have

R1,0 ≤ |t− s|2p−1

∫ t

s

{
E|G(Kn

u , Zun)−G(Kn
un
, Zu)|2pa

} 1
a
{
E|ω̇nu |2pb

} 1
b du

≤ K2p|t− s|2p−12np
∫ t

s

{
E(|Kn

u −Kn
un
|+ |Zu − Zun|)

2pa
} 1

adu

≤ CpK
2p|t− s|2p−12np

∫ t

s

{
E|Kn

u −Kn
un
|2pa + E|Zu − Zun|

2pa
} 1

adu.

By (4.7) and (3.12), we have

R1,0 ≤ CpK
2p|t− s|2p.

By (3.9), we obtain

R1,1 ≤ CpK
2p|t− s|p.

Therefore,

R1 ≤ CpK
2p(|t− s|p + |t− s|2p).
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Finally, we have for all m ∈]1
2
, 1[

E
(
|(Kn

t − Lt)− (Kn
s − Ls)|2p

)
≤ CCpK

2p
(
2−(2m−1)np|t− s|p(1−m)

)
.

This last inequality and (4.1) imply

Rn ≤ C
CpK

2p

ε2p

∑
j≤nγ

j−p
(
2j−(n−j)p(2m−1)

)
and finish the proof of (3.7) when p(2m− 1) > γ

1−γand n going to∞.
By (2.1) and Tchebychev’s inequality, we have

(4.2) Tn ≤
1

ε2p

∑
j≤nγ

2j2jp22p

jp
sup

|t−s|≤2−(j+1)

E
(
| (K̃n

t − Lt)− (K̃n
s − Ls) |2p

)
.

For all s, t ∈ [0, 1],

E
(
| (K̃n

t − Lt)− (K̃n
s − Ls) ≤ Cp

4∑
i=0

Ti

where

T0 = E
(∣∣∣ ∫ t

s

[F (K̃n
u , χu)− F (Lu, Zu)]dWu

∣∣∣2p),
T1 = E

(∣∣∣ ∫ t

s

G(K̃n
u , χu)ω̇

n
u −G(Lu, Zu)dWu

∣∣∣2p)
T2 = E

(∣∣∣ ∫ t

s

[H(K̃n
u , χu)−H(Lu, Zu)]ḣudu

∣∣∣2p)
T3 = E

(∣∣∣ ∫ t

s

[
(I(K̃n

u , χu) +B(K̃n
u , ψu))− (I(Lu, Zu) + I(Lu, Yu))

]
du
∣∣∣2p)

T4 = E
(∣∣∣ ∫ t

s

∇G(Lu, Zu)[F (Lu, Zu) +
1

2
G(Lu, Zu)]du

∣∣∣2p).
Burkholder’s inequality, Schwartz’s inequality and Fubini Theorem togetheur
imply

T0 + T2 ≤ CpK
2p
(∫ t

s

E|(K̃n
u − Lu) + (χu − Zu)|2du

)p
.

By Schwartz’s inequality and Fubini Theorem,

T3 ≤ CpK
2p|t− s|p

(∫ t

s

E|(K̃n
u − Lu) + (χu − Zu) + (Yu − ψu)|2du

)p
.

The estimate T4 is none other than R4 we have already seen above.
We have

T1 ≤ Cp(T1,0 + T1,1),
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where

T1,0 = E

(∣∣∣∣∫ t

s

|G(K̃n
u , χu)−G(K̃n

un
, χun)||ω̇nu |du

∣∣∣∣2p
)

T1,1 = E

(∣∣∣∣∫ t

s

G(K̃n
un
, χun)ω̇ns du−G(Lu, Zu)dWu

∣∣∣∣2p
)
.

Let a > 1, b > 1 satisfying 1
a

+ 1
b

= 1. By Hölder’s inequality and Fubini’s
Theorem, we have

T1,0 ≤ |t− s|2p−1

∫ t

s

{
E|G(K̃n

u , χun)−G(K̃n
un
, χu)|2pa

} 1
a
{
E|ω̇nu |2pb

} 1
b du

≤ K2p|t− s|2p−12np
∫ t

s

{
E(|K̃n

u − K̃n
un
|+ |χu − χun|)

2pa
} 1

adu

≤ CpK
2p|t− s|2p−12np

∫ t

s

{
E|K̃n

u − K̃n
un
|2pa + |χu − χun|

2pa
} 1

adu.

By the same reasoning as (4.7), we obtain

E
(
|K̃n

u − K̃n
un
|p
)
≤ CpK

ppp/22−n(p/2).

Therefore, (3.13) and the last inequality imply

T1,0 ≤ CpK
2p|t− s|2p.

By (3.9), T1,1 and R1,1 have the same estimate, and the Proposition 3.4 in [2]
and the hypothesys (L) prove that there exists an positive constant C ′′′′ such
that E|K̃n

u − Lu|2 ≤ C ′′′′ and more (3.10) and (3.11), for all 1
2
< m < 1

E
(
| (K̃n

t − Lt)− (K̃n
s − Ls) |2p

)
≤ CCpK

2p
(
2−(2m−1)np|t− s|p(1−m)

)
.

Finally, taking this last inequality in (4.2), for a large enough n, we obtain the
convergence to 0 of Tn.

Now, we suppose the case where Dn =
{

supn |ω̇nt | ≤ 25n/8
}
. For all p ≥ 1,

P(Dc
n) ≤ Cp2

−n((p/8)−1). We can now study the convergences in probability on
Dn. Thus, we will first show that there exist a constant M > 0 such that for all
p ≥ 2 and 0 ≤ s < t ≤ 1, we have the following estimates

(4.3) E(1Dn|Kn
t −Kn

s |p) ≤ (MK)ppp/2
[
|t− s|p/2 + |t− s|p2np/8

]
(4.4) E(1Dn|K̃n

t − K̃n
s |p) ≤ (MK)ppp/2

[
|t− s|p/2 + |t− s|p2np/8

]
.
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Indeed,

E(1Dn|Kn
t −Kn

s |p) ≤ Cp

(
E
(∣∣∣ ∫ t

s

F (Kn
u , Zu)dWu

∣∣∣p)+ E
(
1Dn

∣∣∣ ∫ t

s

G(Kn
u , Zu)ω̇

n
s du
∣∣∣p)

+E
(∣∣∣ ∫ t

s

H(Kn
u , Zu)ḣudu

∣∣∣p)+ E
(∣∣∣ ∫ t

s

[I(Kn
u , Zu) +B(Kn

u , Yu)]du
∣∣∣p))

≤ Cp

3∑
i=0

Ni.

By the Lemma 2.2, Schwartz’s inequality, Hölder’s inequality and Fubini’s The-
orem together, we have

N0 +N2 +N3 ≤ CpK
ppp/2|t− s|p/2.

N1 = E
(

1Dn|
∫ t

s

G(Kn
u , Zu)ω̇

n
s du|p

)
≤ E

(∣∣∣∣∫ t

s

|G(Kn
u , Zu)−G(Kn

un
, Zun)||ω̇nu |du

∣∣∣∣p)
+ E

(
1Dn

∣∣∣∣∫ t

s

G(Kn
un
, Zun)ω̇nudu−G(Kn

ūn , Zūn)dWu

∣∣∣∣p)+ E
(∣∣∣∣∫ t

s

G(Kn
ūn , Zūn)dWu

∣∣∣∣p)
= N1,0 +N1,1 +N1,2.

Let a > 1, b > 1 such that 1
a

+ 1
b

= 1. Hölder’s inequality gives

N1,0 ≤ |t− s|p−1

∫ t

s

{
E|G(Kn

u , Zun)−G(Kn
un
, Zu)|pa

} 1
a
{
E|ω̇nu |pb

} 1
b du

≤ Kp|t− s|p−125np/8

∫ t

s

{
E(|Kn

u −Kn
un
|+ |Zu − Zun|)

pa
} 1

adu

≤ CpK
p|t− s|p−125np/8

∫ t

s

{
E|Kn

u −Kn
un
|pa + E|Zu − Zun|

pa
} 1

adu.

We show (4.3) for the particular cases s = un and t = u by following the same
arguments of the previous proof. Therefore,

sup
s

E

(∣∣∣ ∫ s

sn

{F (Kn
u , Zu)dWu +H(Kn

u , Zu)ḣudu+ [I(Kn
u , Zu) +B(Kn

u , Yu)]du}
∣∣∣p)

≤ CpK
ppp/22−np/2.(4.5)



STROOCK-VARADHAN SUPPORT THEOREM. . . 201

Otherwise,

E

(∫ s

sn

∣∣G(Kn
u , Zu)ω̇

n
s du
∣∣p) ≤ CpE

((
2n
∫ s̄n

sn

|G(Kn
u , Zu)|du

)p
|Wsn

−Wsn−2−n∨0|p
)

+ CpE
((

2n
∫ s

s̄n

|G(Kn
u , Zu)|du

)p
|Ws̄n −Wsn

|p
)

≤ CpK
p
[
E
(
|Wsn

−Wsn−2−n∨0|p
)

+ E
(
|Ws̄n −Wsn

|p
)]

≤ CpK
p2−np/2.(4.6)

The inequalities (4.5) and (4.6) imply

(4.7) E
(
|Kn

u −Kn
un
|p
)
≤ CpK

ppp/22−n(p/2) ,

and (3.12) leads to the existence of a constant C > 0 such that

E|Zu − Zun|
p ≤ C2−np/2.

Next,

N1,0 ≤ CpK
ppp/22np/8|t− s|p.

By Lemma 2.2, we have

N1,1 ≤ CpK
ppp/2|t− s|p/2.

By Lemma 2.2 again, Hölder’s inequality and Fubini’s Theorem, we have

N1,2 ≤ CpK
ppp/2|t− s|p/2.

Finally,

N1 ≤ CpK
ppp/22np/8|t− s|p.

The proof of (4.3) is complete. The proof of (4.4) is similar through (3.13).
For 0 < α ≤ 1

2
, γ < 1, let fn(α) = supj>nγ supp≥p0 2−(j/p)p−(p/2)jα||(Kn − L)j,.||p

and gn(α) = supj>nγ supp≥p0 2−(j/p)p−(p/2)jα||(K̃n − L)j,.||p.
To finish the proof of the Theorem 2.1, by the Borel Cantelli’s Lemma we show
that the sequences 1Dnfn(α) and 1Dngn(α) are bounded almost surely. We only
deal with the boundedness of 1Dnfn(α) because the proof is similar.
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Indeed,

P
(
Dn ∩ {fn(α)} ≥ δ

)
≤
∑
j>nγ

∑
p≥p0

[
P
(
Dn ∩ {||(Kn)j,.||p ≥ δ2(j/p−1)jαp1/2}

)
+P
(
{||(Lj,.||p ≥ δ2(j/p−1)jαp1/2}

)]
≤
∑
j>nγ

∑
p≥p0

2−j2jp/22p

δppp/2jαp

2j∑
k=1

(
sup

|t−s|≤2−(j+1)

E
(
1Dn | Kn

t −Kn
s |p

)
+ Γ

)

where Γ = sup|t−s|≤2−(j+1) E
(
| Lt − Ls |p

)
.

By (4.3) and (3.9), there exist a constants C and C(K) such that for p0 >

(1/α) ∨ 2, δ > 2C(K) et γ > 1/4,

P
(
Dn ∩ {fn(α)} ≥ δ

)
≤ C

∑
j>nγ

∑
p≥p0

(2n/8KM

δ

)p( 1

jαp

)
≤ C

(C(K)

δ

)p0 ∑
j>nγ

(
j−αp0

)
.

We deduce the boundedness of the sequence 1Dnfn(α) in L2, therefore bounded
almost surely by the Borel Cantelli’s Lemma and gives its convergence to 0

almost surely and in L1. �

Remark 4.1. For the case σ and b unbounded, we considere τN = {t : |Xt| ≥
N} ∧ 1 and we make the same idea in [7] to prove that X. belongs to B1/2,0

M . A
classical truncation argument gives the support Theorem .
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