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STROOCK-VARADHAN SUPPORT THEOREM FOR RANDOM EVOLUTION
EQUATION IN BESOV-ORLICZ SPACES

JOCELYN HAJANIAINA ANDRIATAHINA!, DINA MIORA RAKOTONIRINA,
AND TOUSSAINT JOSEPH RABEHERIMANANA

ABSTRACT. We consider the family of stochastic processes X = {X;,¢ € [0;1]},
where X is the solution of the It0 stochastic differential equation

dXt = O'(Xt, Zt)th + b(Xt, }/t)dt

whose coefficients Lipschitzian depend on Z = {Z;,t € [0;1]} and ¥ =
{Y:,t € [0;1]}. We prove that the trajectories of X a.s. belong to the Besov-
Orlicz space defined by the fonction M(z) = ¢*° — 1 and the modulus of
continuity w(t) = +/tlog(1/t). The aim of this work is to characterize the
support of the law X in this space.

1. INTRODUCTION

Let X := {X;,t € [0,1]} be the solution of the following random evolution
equation, see [6]:

dXt = O'(AXVt7 Zt)th + b(Xt, }/;)dt
(1.1)
XO =X

where x € R? is the starting point and (W;) is the standard Brownian motion
taking values in R? defined on some well filtered probability space (2, F, F;, P).
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We suppose that Y and Z are progressively measurable random process belong
to L9(¢ > 1) and their respectively topological support are a compact subset in

Bl/ % which is an separable subset of Bl/ ®. Furthermore, W is independent of
(Y, Z) and we always assume that the coefficients o : R? x R — R? ® R* and

b: R? x R™ — R? satisfy the following hypotheses:
(Hp) : The function b is jointly measurable in (z,y) and there exists a constant
K > 0 such that:
b(z,y)] < K(1+]z]), V(r,y) € R xR™
b(z,y) —b(@',y)| < K(z—2|+ly—vy), Va2’ eRy yy eR™
(Hy) : The function o is jointly measurable in (z, z) and there exists K > 0
such that:
lo(z,2] <K, V(z,z) € RIxR!
lo(x,2) —o(2',2)] <K(lz—2|+|z—2), Vzo eR% z 2 eR

(Hp) : b is C', o is C? and there exists some positive constant K such that:
max {tr(aa*(:p,z)), (x, b(x,y)>} < K(1+|z]?), Vz € R,y € R™; 2 € R
Here (z,y) is the Euclidean inner product in R<.

Let Q = C([0,1],R?) be the set of continuous functions from [0, 1] to R?
equipped with the usual topology of uniform convergence defined by the norm
[/l = supg<rey | f(t) | and let H = {h(t) = [jh(s)ds,h € L*([0,1])}
be the Cameron-Martin space, that is the subset of Q and for all h € H,
v € suppY, and x € suppZ, S(h, 1, x) is the solution of ordinary differential
equation(ODE):

dS(h, ¥, x): = (b(S(ha¢aX)t7¢t) - %( o)o(S(h, ¥, )taXt))
(1.2) +0(S(h, 1, X ), X ) hedt

S(hy,x)o= =
where suppY is the support of the distribution of Y, suppZ is the support of
the distribution of 7.

In this paper, we characterize the support theorem of X in Besov-Orlicz
spaces B]l\f. The aim is to prove the characterization of the support P o X!
as the closure S of the set {S(h,9,x),h € H, € suppYand x € suppZ} in
B}\f’o. We use the approximation theorem of the stochastic system adapted
linear interpolation of w™ of w and Millet result, see [8], to prove our result.
So, we check the convergence in probability of ||S(w", 1, x) — X||s, ,.m,0c and
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of |[X(w" —w + h) = S(h, ¥, X)|lw, »,M,00 to 0 where the law of transformation
T,, of w defined by T},(w) = w™ — w + h is absolutely continuous with respect to
P.

As in [7], notice that the density of the set of bounded functions in I.? and
the continuity of the application (h,,x) —— S(h,¥,x) € B]l\f also allow
us to show that the adhesions of the sets {S(h,¥,x),h € H,h € L® ¢ €
suppY and x € suppZ} and S coincide in 311\42,0.

In Varadhan-Stroock [11], the support Theorem was first proved for the case
Y =0 and Z = 0 for the equation (1.1) in finite dimensional state spaces and
with finite dimensional Wiener processes. Many authors have tried to extend
their results for the same case but by different methods that we have also
adopted. Mellouk [7] have used also approximation methods of the stochastics
differential equation to prove the support Theorem in Besov-Orlicz spaces see
[3, 4, 8] for the Holder norm see also [1] in separable Hilbert space driven by
Wiener processes without infinitesimal generators.

We know that the norm of B}\f is stronger than the function hoderian space
order v < 1/2. This result makes it possible to generalize this case and the
support Theorem in Andriatahina and al. [2].

The rest of this paper is organized as follows. In Section 2, we introduce
some notions on the Besov-Orlicz spaces and we will show that the trajectory
of X is almost surely in B]l\f’o. In Section 3, we will give our main result and
some approximations in general of X solution of (1.1). Finally, Section 4 will
be devoted to the proof of the main result.

Throughout this paper, C), is a positive constant depending on some param-
eter p, and C is a constant depending on no specific parameter(except z, and
K), whose value may be different from line to line by convention.

2. REGULARITY OF THE SOLUTIONS IN THE BESOV-ORLICZ SPACE

In this section, we give some notions on the Besov-Orlicz space. For more
details of this space, the reader may consult [5,9,10]. Let M(x) = e — 1 and
for all continuous function f : [0, 1] — R?, the Orlicz’s norm is defined by

| fl[as = inf {9 > o,%p +/0 M (0] f(t)])dt] }



190 J.H. ANDRIATAHINA, D.M. RAKOTONIRINA, AND T.J. RABEHERIMANANA

The modulus of continuity of f in Orlicz norm is

wa(f,0) = Sup || Anf|]ar,

where

Apf(x) = 1p1-5@)[f(x +h) = f(z)],Vh € [0, 1].
Let wy5(t) = 1/t(1 + log(1/t)), for all ¢ € [0, 1]. Note that Bif as the space of
contmuous functions f : [0, 1] — R? such that

1k = 111+ sap, R < o,
Notice that there is a isomorphism between BM and some spaces of the se-
quences, see [5]. Let fo, fi = f(1) — f(0),and for 0 < j,1 < k < 27,
f=22 1B - (125 + 1D
Let Po(t) =1,P(t) =tand P, = fo Xj.k(s)ds be the basic function of Schauder
where {x;xj > 0,1 < k < 27} is Harr’s system defined by x;(t) = 1 and

Xk = 2j/2(1[k ooy~ 2oy ))- Then f(t) = foPo(t)+ frPi(t)+>2, 4 finPin(t).

2J ’2j+1 27 F T

Theorem 2.1. [5]
i) For p, > 1, f belongs to B * if and only if the norm

J

max (| fol, 1], supsup%ovl) N fily) < oo

P2po j=
ii) f belongs at _BM ¥ ( separable subspace of BM %) if and only if
Lm0 22572 || i llp= 0, where || f5, = (4, 1fl?) .
Throughout, we need the following inequality

) sup 2741, < sup | £
p

The proof of (2.1) can be found in [5].
In order to prove Theorem 2.2 by using the similar arguments in [7] we also
need the following lemmas.

Lemma 2.1. Under the assumptions (Hg) — (Hs), there exists an arbitrary con-
stant M > 0 which depends on xzy, K and p such that for all p > 2,

(2.2) E[|X[[" < M.
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Proof. For p = 2 and p = 3, Itd’s formula applied respectively to the functions
22 and 3, and Gronwall’s inequality imply that:

E|[ X2 < (||zo]? 4+ 3K)e*! and E||X||> < (||zo||> + 3K + 1)e™5/2,

Suppose that for all integer n > 1, we have the reccurence relations

(2.3) ]EHXHzn < C 3n(n+1)K
and
(24) E||X||2n+1 < Ce 3n(n+2>K

By Itd’s formula applied to the function f(z,y,z) = ||z|[P*?, for all p and x €
R? y € R™ and z € R!, we have:

df (Xe, Yy, Z:) = (Vf(X, Y, Zy), 0(Xs, Zt)th )+ (0(Xe, V1), V(X Yy, Zy) )dt

+ —Z go*)ij (X, Zy)

8 a f(XtuiftuZt)d

= < Vf(Xtu }/tu Zt)u (Xfa Zt)th > + E(Xt) }/157 Zt>dt7

L is the infinitesimal generator of X;.
By the condition (Hz),

L(z,y,2) = (p+2)z]["(x,b(z,y)) + (p + 2)||2|["tr(00")(z, 2)

+ o +2)l2]P72 Y (00 )]

i

< (p+2)llPlp+ K1+ |[J2|)].

t
As E(/ (Vf(X,,Ys, Zy),0(X,, Z)dW, ).) = 0, and Fubini’s Theorem, we have
0
that:

t t
BIXIP™) < lloll + (p+ 20+ K) [ EIXIPds + o+ 2K [ BIX.|P2s
0 0

By (2.3), (2.4) and Grownall’s inequality, there exists a constant C' > 0 de-
pending on z, p, K such that we have respectively:

3(n+1)(n+2) K

|| X]|*+2 < Ce™™ and E[|X[]>"** < Ce

3(n+D)(n+3)
2
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Lemma 2.2. Under the assumptions (Hgy) — (H;) and (2.2), there exists an con-
stant M > 0 such that for all s,t € [0,1] and p > 2,

(2.5) (|| X, — X,|[P) < M2K)PpP/?|t — s|P/2.

The proof of Lemma 2.2 is given in [7] by using the Burkholder’s inequality
and the isometry for p € {2,3}. For2 <p <n—1 (n > 4), Itd’s formula and the
recurrence hypothesis (2.5) allow us to show the result. But, in our situation,
we must add Lemma 2.1 because of the linear growth of b in the assumption
(Ho)-

Now, we have the following theorem.

Theorem 2.2. Suppose that the assumptions (Hg) — (Hz) are satisfied. Let X be
the solution of (1.1). Then

1o
P(X € By ) =1.

Proof. The proof is to show that the solution set (1.1) satisfying the conditions
i) and ii) of the Theorem 2.1.
Let a < %, for all j > 0 and for all p > p,, note that

J

3.

TX) = 2 GV Xl and 65,(X) = GV )X
We will show that for all p, that we will specify later and for all & < , we have
(2.6) jl;}gi;l}g 6;-’fp(X) < 00 p.s
2.7) j\/lzi)r—{loo 0, =0 p.s.

Let A > 0, and note that
Si(a) =3 > p{or,(xX) > 2}
720 p=po
Using Tchebychev inequality and Lemma 2.2, we have:
9 2
& < P
P{55,(0) > A} < PPNV 1) ;E R

27

9—3i9ir/29p

: sup E| X, — X, P
APpP/2(5 \/ 1)ep i [t—s|<2-GD) | Xi |
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= (%)ﬁ

Choosing py > < and A > 0 large enough, we deduce the convergence of the
series S, («) and Borel-Cantelli’s Lemma leads to the validity of (2.6).

By (2.1), we have sup,- 0;,(X) < \/Lﬁ sup;>q supy, | X; | and by Borell-Cantelli’s

Lemma, it suffices to show the convergence of the series Ry, = }_; P{(j \Y%
1)~V 2supy, | X .| > /\} to prove (2.7). Indeed, the exponential inequality on
the stochastic integrals leads to the existence of the positive constants C’ and
C"” such that for all A > 0 large enough,

IP’{(j V1) Y2 sup | X > )\} = IP’{ sup | X x| > A(Jj V 1)1/2}
k k

- P{\XL — X | >AGV 1)1/227(3'/2%1}

27+1
< Clexp (- C"——=—).

S0, sup;>q 0;,(X) < oc. This proves relation (2.7), completing the proof of the
Theorem. O

3. MAIN RESULT AND APPROXIMATIONS

We want to show that the following Theorem characterizes the support of
the law of X solution of (1.1) in B}Vf’o.

Theorem 3.1. If o is of class C?, bounded together with its partial derivatives of
order one and two, and b is globally Lipschitz, the support of the law of X in B]%f
is the closure of the set S = {S(h,¥,x),h € H,v € suppY,x € suppZ} where
S(h,v, x) is given by (1.2).

(L) : Given an integer n > 0, let D,, = {i27";0 < ¢ < 2"} be the set of
n-dyadic points. w” is the linear interpolation adapted to w defined by W} =
2"Mw(k2™™) —w((k+1)27™)] for t € [k27", (k 4+ 1)27"[, k > 1 and O overwise.
The approximation of stochastic integrals by the Riemann sum’s imply that
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X"(w) is solution of the It0’s stochastic differential equation(SDE)
(3.1)

t t
Xr _a;0+/ ) AW, — / ”ds+/ J(X;‘,Zs)hsds+/ b(X",Y,)ds.
0 0

Let X" be the function X" : w" — X (w") and X (w") is the function
Xw") : (Y, 2) — X(w")(Y,Z) = X™ solution of (3.1). Let S(w", 1, x) satis-
fies:

awwW»::ﬂwwm%+éawWﬂmm&mewgé@wwﬂmm&%>
5 (V20)o (S, . ), ) s

By Proposition 2.1 in [8], Theorem 2.2 will be obtained by results of the fol-
lowing convergences. For all § > 0,

(3.2) 117?1]1)(||S(Wn7 v, X) - X<w)||w1/2,M700 > 5) =0,
(3.3) Hm P([| X (w — w" + k) = S(h, ¥, X)w, jp.M,00 > ) = 0.

The sequences of the processes (X") and (S(w",v,x).) are respectively the
special cases of (K") and (K"), solutions of the following stochastic differential
equations

t
Kf:x+/F(K§,ZS)dWS+/ G(K™, "ds+/H Vhads
0
(3.4) / I(K™, Z.)ds + / B(K™,Y,)ds,
0 0
and

t t t
—W:$+/FM?MW%+/GWﬂm%%+/HM$MW%
0 0 0
t t _
(3.5) /IW&@@+/BM&%»
0 0

where F,G,H,I : R? x Rl — R?® R* and B : R? x R™ — R? are Lipschitz
functions, G of class C?, bounded together with its partial derivatives of order
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one and two. Let (L;) be the solution of the stochastic differential equation:
t t . t
Li==x +/ |F(Ls, Zs) + G(Ls, Zs)|dW; +/ H(Lg, Zs)hgds +/ [B(Ls, Ys)
0 0 0
t
1
(3.6) +I(Ls, Zs)]ds + / VG(Ls, Zy)[F(Ls, Zs) + éG(LS, Zs)|ds.
0
We consider the following convergences which have the partucular cases of

(3.2) for F = 0;G = 0;H = 0;1 = —4(Vo)o and B = b, and (3.3) for F' =
0;G=—0;H =0, =0and B =b. Forall e > 0,

(3.7) HmP(|[K™ = Lu, 000 > €) =0
and
(3.8) HmP([|K™ = Ll|w, , 0100 > €) = 0.

Using a similar estimate to Lemma 2.2, there exist a constant C}, > 0 such that
forall s,t € [0,1] and p > 2,

(3.9) E(|Ly — Ls[?) < Cylt — s
We suppose that for ¢ € [0, 1] and p > 2,

(3.10) Elyy; — Y;|? < 0o,

(3.11) E|x: — Zi|* < 0.

Furthermore, for all ¢ € [0,1] and let ¢, = £, ¢, = &1 v 0, we have

(3.12) lim sup E|Z, — Z, [ =0.

=00 ¢c[0,1]

By triangular inequality and (3.11), we have

(3.13) sup |x: — th|2p < 0.
t€[0,1] N
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4. PROOF OF THE MAIN RESULT

The following Proposition is derived from what we said previously.

Proposition 4.1. Let (K?), (K") and (L,) be defined by (3.4), (3.5) and (3.6)
respectively with a function h such that h is bounded. For any ¢ > 0,
lim, P(|[K" = Llluw, pat00 > €) = 0 and lim, P(||K™ = L||u, 511,00 > €) = 0.

Proof. The proof is done in two cases. We suppose that we have (L). Let
F,G,H, I, B be the bounded functions and B satisfy the linear growth condi-
tion. Lete > 0, v < 1 and p > 1, note that
R, :=P(sup supb;,(K" — L) > ¢)
jzny p
and
T, := P(sup supb,,,(K" — L) > ¢).

jzny p
To show (3.7) and (3.8), it suffices to prove the convergences to 0 of R, and

T,. Indeed, by (2.1) and Tchebychev’s inequality,

Rn < Z Z P(] L)jxl >e(G A1)?)
J<ny 1<k<27
1 279iP92p
4.1) < o - sup E( | (K" — L) — (K™ — L) |2p )
I<ny j ‘t75|§2*(ﬂ+1)

For all s,t € [0, 1],

B(I(K? = Le) = (KT = L)[*) <Gy 3 R

where .
Ry = E(/ " 7)) — F(Lu, Zy)] u2p>,
Ri = E( / G(K™, Z,)i" — G(Lu, Z2) )
Ry — E(/ H(LU,Z)]hudu‘2p>
Ry — E( / )+ BK™Y,)) = (I(Lu, Z) + I(Ly, Y..))] du 2,,>
Ry = E(/ VG (L, Z2)] (Lu,Zu)+§G(Lu,Zu)]du’2p>.
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By Burkholder’s inequality, Schwartz’s inequality and Fubini’s Theorem together,
we have

t
Ry + Ry + Ry < C, K (|t — s + 1)(/ E|K" — Lu]2du>p.

By Proposition 3.3 in [2], for large enough n and the hypothesis (L), there
exists an positive constant C”” such that E|K" — L,|*> < C". Thus,

Ro+ Ry + R3 < C,K*(|t — s’ + |t — s]*).
Since (VG)F and (VG)G are Lipschitzian,

Ry < C, K|t — s|*.

We have
Ry < Cp(Rio+ Rya),
where
t 2p
Rl,O - E / ‘G(KZLL? Zu) - G(Kgnv Z%)H“Z’du )
t 2p
Ri,= E / G(Kgn,Zyn)w;‘du — G(Ly, Z,)dW, > )

Let @ > 1, b > 1 such that £ + ; = 1. By Holder’s inequality and Fubini’s
Theorem, we have

Rig <t — s> / BIGKT, 2,,) — GUKT., 2,) ™} (Bl )
< K|t — s|?P~1omp /t {E(K; — K} | +|Z, — Zgn|)2p“}%du
< Cp K|t — 5?7127 /t {E|K} — K} [ +E|Z, — Zo, [} du,
By (4.7) and (3.12), we have
Rio < C, K|t — s|*.

By (3.9), we obtain
Ry < C, K|t — s|P.
Therefore,
Ry < C,K*([t — s’ + |t — s|*).
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Finally, we have for all m €]3, 1]
E(|(K] — L) — (K — Ly)|*) < CC, K (27 @m=lne|g — gp(i=m)),

This last inequality and (4. 1) imply

Zj—p 21 (n—3)p(2m— 1))

J<ny

and finish the proof of (3.7) when p(2m — 1) > 125and n going to oo.
By (2.1) and Tchebychev’s inequality, we have

1 2797P92p - ~
42 T,<— > == sup  E(] (K7 — L) — (K7 — L) [*7).

2p P .
€ j<ny J [t—s|<2-G+1)

For all s,t € [0, 1],

where h
= (| [ 1P - Pk f”),
T, = E(/G " ) — G (L Za) )
n= 5| [H(Ks,m—H(Lu,zu)]hudu] ")
T, = E( /: [(1<K3,Xu)+3<f%g,¢u))—(J(Lu,zu)+1(Lu,yu))}dufp)
T, = ]E( /: VG(LU,Zu)[F(Lu,Zu)nL%G(LU,ZU)]dqu).

Burkholder’s inequality, Schwartz’s inequality and Fubini Theorem togetheur
imply
¢ ~ p
T+ Ty < C,,K2p</ E|(K™ — Ly) + (xu — Zu)|2du) .

By Schwartz’s inequality and Fubini Theorem,
t
Ty < Gyl — s / BJ(KY = Lu) + (X = Zu) + (Y — ) Pdu)

The estimate 7 is none other than R, we have already seen above.
We have
Ty <Cp(Tho+Th,),
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where
2p

)

Let @ > 1, b > 1 satisfying £ + ; = 1. By Holder’s inequality and Fubini’s
Theorem, we have

Tio=

/ IGURT, xa) — G(R™ x| du

T.=- E / G(RT  xu )0t — G(Ly, Z,)AWY,

S

Tig < [t— s / {EBIG(KT, xa,) — C(KL )P} {Ela 7} du
< K|t — s lznp/ (B(RE = K2 |+ [xu — Xu, )7} ¥ du

< C |t — s 12 / [EIRT — K2 [0 4 [y — v, [} o du

s

By the same reasoning as (4.7), we obtain
E(|f(§ _ f(gﬂ|p) < Cprpp/QQ—n(pﬂ)'
Therefore, (3.13) and the last inequality imply
Tio < C,K?|t — s|.

By (3.9), T1, and R;; have the same estimate, and the Proposition 3.4 in [2]
and the hypothesys (L) prove that there exists an positive constant C"” such
that E\f(g — L,|* < C" and more (3.10) and (3.11), for all % <m<1

B( | (K} = L) = (K2 = L) ) < CC R (27 Gn=brejg — s]rtm))

Finally, taking this last inequality in (4.2), for a large enough n, we obtain the
convergence to 0 of 7},.

Now, we suppose the case where D,, = { sup, [w}'| < 2°"/8}. Forall p > 1,
P(D¢) < C,27"(®/8)=1) We can now study the convergences in probability on
D,,. Thus, we will first show that there exist a constant A/ > 0 such that for all
p>2and 0 < s <t <1,we have the following estimates

(4.3) E(1p,|K;" — KI'P) < (ME)PpP2 (|t — s[P? + |t — s|P27?/8]

4.4  E(lp,|K! — K"'P) < (MEPp2[[t — s/ + |t — s|P2m/%].
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Indeed,

E(Lp, [K7 — K1) < Gy \ /

)+E 1p, ‘ / Zu)wgdu)p>

+E ’/ H(K™, Z,)ha du +E (/ +B(K3,Yu)]du‘ ))

By the Lemma 2.2, Schwartz’s inequality, Holder’s inequality and Fubini’s The-
orem together, we have

Ny + Ny + N3 < C, KPpP/2|t — s|P/2.

t
( / G(K G(KT 2, )60

+ E(1n,

IN

)
/G(Kﬁn,Zun) wydu — G(Ky , Zy, )dW,

S

p t p
)+E(/ G(K? , Zy,)dW, )

Leta > 1, b > 1 such that £ + } = 1. Holder’s inequality gives

= Nio+ Nig+ Npp.

t
Mo < ]t—s|p‘1/ [EIG(KT, Z,,) - GKT , Z,)"}* {Elon ™} du
t 1
< KP|t— s|p—125”p/8/ {B(|K} — K} | + | Zy — Zu, |)P*} * du
t
< Cpr‘t— S’p125np/8/ {ElKZ _ K;L |pa+E’Zu _ Zgnlpa}%du.

We show (4.3) for the particular cases s = u,, and t = u by following the same
arguments of the previous proof. Therefore,

sup ( / {F(K", Z,)dW, + H(K", Z)hydu + [[(K", Z,) + B(K", Yu)]du})p)

(4.5) < C,Krpr2a=me/2,
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Otherwise,

E ( / S|G(K3,Zu)w?du|p> < CF (( 7" / e,z s, —Wsnz-nmp)
+ O]E( 2“/ G(K, Z,)|du)” |W§n—WSn|p)

C Kp Ws 72 ”VOl ) +E (|W§n - W§n|p)j|
(4.6) < CKP2" ”W-

IN

The inequalities (4.5) and (4.6) imply
4.7) E(|K; — Kp |P) < CKPpP/227m®/2)
and (3.12) leads to the existence of a constant C' > 0 such that
E|Z, — Zy, [P < C27/2,
Next,
Ny < C,KPpP/22m/8|¢ — o|p.
By Lemma 2.2, we have
Ny1 < C,KPpP2|t — s|P/2.
By Lemma 2.2 again, Holder’s inequality and Fubini’s Theorem, we have
Nyy < C,KPpP?|t — s|P/2.
Finally,
N, < C,KPpPl2amel8| — sP.

The proof of (4 3) is complete. The proof of (4.4) is similar through (3.13).
For 0 < oo < 1.y < 1, let f,(a) = supj.,, sup,s,, 2~ /P p= @2 (K™ — L); ||,
and g, (o) = Sup]m SUD,,, 27 0/P p= /2 O |(K™ — L); ],

To finish the proof of the Theorem 2.1, by the Borel Cantelli’s Lemma we show
that the sequences 1, f,(«) and 1p, g,,(«v) are bounded almost surely. We only
deal with the boundedness of 1, f,,(«) because the proof is similar.
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Indeed,
B(D 0 (ful0)} 28) < 30 37 [B(D2 0 (Il > 620770 57p2))
J>ny p=2po
P({II(L;.|l, = 62077~V 5°p!/2})]
9—j9ip/29p 2
sup E(1p, | K} — K!'[P)+T
ngl%) 5Ppp/2 ap Z <|t—s§2—(j+1) ( t )

where ' = Sup‘t_5|g2—(j+1) ]E( ’ Lt — LS ’p )
By (4.3) and (3.9), there exist a constants C' and C'(K) such that for p, >
(1/a) V2,6 >2C(K)ety>1/4,

PO @) 20) <o Y (B ()

J>ny p2po

(60 5 ()

j>ny
We deduce the boundedness of the sequence 1p,, f,,(«) in L2, therefore bounded

almost surely by the Borel Cantelli’'s Lemma and gives its convergence to 0
almost surely and in L. O

Remark 4.1. For the case o and b unbounded, we considere Ty = {t : |X;| >
N} A1 and we make the same idea in [7] to prove that X belongs to Bl/ 20 A
classical truncation argument gives the support Theorem .
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