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BLOW-UP FOR SEMIDISCRETE FORMS OF SOME NONLINEAR
PARABOLIC EQUATIONS WITH CONVECTION

N’GUESSAN KOFFI1, DIABATE NABONGO, AND TOURE KIDJEGBO AUGUSTIN

ABSTRACT. This paper concerns the study of the numerical approximation for
the following parabolic equations with a nonlinear convection term

ut(x, t) = uxx(x, t)− g(u(x, t))ux(x, t) + f(u(x, t)), 0 < x < 1, t > 0,
ux(0, t) = 0, ux(1, t) = 0, t > 0,
u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,

where f : [0,+∞)→ [0,+∞) is C3 convex, nondecreasing function,
g : [0,+∞)→ [0,+∞) is C1 convex, nondecreasing function,

lim
s→+∞

f(s) = +∞, lim
s→+∞

g(s) = +∞, lim
s→+∞

f(s)

g(s)
= +∞

and
∫ +∞

c

ds

f(s)
< +∞ for c > 0. We obtain some conditions under which

the solution of the semidiscrete form of the above problem blows up in a
finite time and estimate its semidiscrete blow-up time. We also prove that the
semidiscrete blow-up time converges to the real one, when the mesh size goes
to zero. Finally, we give some numerical results to illustrate ours analysis.

1. INTRODUCTION

Consider the following boundary value problem

ut = uxx − g(u)ux + f(u), 0 ≤ x ≤ 1, t > 0,(1.1)
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ux(0, t) = 0, ux(1, t) = 0, t > 0,(1.2)

u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,(1.3)

where f : [0,+∞)→ [0,+∞) is C3 convex, nondecreasing function,
g : [0,+∞)→ [0,+∞) is C1 convex, nondecreasing function, lim

s→+∞
f(s) = +∞,

lim
s→+∞

g(s) = +∞, lim
s→+∞

f(s)

g(s)
= +∞,

∫ +∞

c

ds

f(s)
< +∞ for c > 0, u0 ∈ C2([0, 1]),

u0 is nonincreasing on (0,1) and verifies

u
′

0(0) = 0, u
′
0(1) = 0,

u
′′

0(x)− g(u0(x))u
′

0(x) + f(u0(x)) ≥ 0, 0 ≤ x ≤ 1 .

Definition 1.1. We say that the solution u of (1.1)–(1.3) blows up in a finite
time if there exists a finite time Tb such that ‖u(., t)‖∞ < +∞ for t ∈ [0, Tb) but

lim
t→T−b

‖u(., t)‖∞ = +∞.

The time Tb is called the blow-up time of the solution u.

These equations arise in the theory of fluid convection. Convection refers
to the transfer of thermal energy within a moving fluid or between a moving
fluid and a solid wall. This energy transfer is carried out by two combined
modes which are advection and diffusion. The first equations is a heat equation
including a nonlinear convection term g(u)ux and a nonlinear source f(u). It
is the term of convection which ensures the movement, generates instability
and is also responsible of the turbulent appearance (here we’ll refer to it as
intermittent since we are in one dimension) when it happens (see [9], [10],
[11], [13], [17]).

The theoretical study of blow-up solutions for the reaction-diffusion equa-
tions with a nonlinear convection term has been the subject of investigations
of many authors (see [2], [5], [6], [7], [8], [13], [14], [15] and the refer-
ences cited therein). Local in time existence and uniqueness of the solution
have been proved(see [3], [4], [12], [18] and the references cited therein).
Here, we are interesting in the numerical study using a semidiscrete form of
(1.1)–(1.3). We give some assumptions under which the solution of a semidis-
crete form of (1.1)–(1.3) blows up in a finite time and estimate its semidiscrete
blow-up time. We also show that the semidiscrete blow-up time converges to
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the theoretical one when the mesh size goes to zero. A similar study has been
undertaken (see [1], [10], [13]).

The paper is organized as follows. In the next section, we present a semidis-
crete scheme of (1.1)–(1.3) and give some lemmas which will be used through-
out the paper. In section 3, under some conditions, we prove that the solution
of the semidiscrete form of (1.1)–(1.3) blows up in a finite time. In section
4, we study the convergence of the semidiscrete blow-up time. Finally, in last
section, taking some discrete forms of (1.1)–(1.3), we give some numerical
experiments.

2. PROPERTIES OF THE SEMIDISCRETE SCHEME

In this section, we give some lemmas which will be used later. We start by the
construction of the semidiscrete scheme. Let I be a positive integer and let h =

1/I. Define the grid xi = ih, 0 ≤ i ≤ I. Approximate the solution u of (1.1)–
(1.3) by the solution Uh = (U0, . . . , Ui, . . . , UI)

T and approximate the initial
condition u0 of (1.1)–(1.3) by the initial condition ϕh = (ϕ0, . . . , ϕi, . . . , ϕI)

T

of the following semidiscrete equations
dUi
dt

= δ2Ui − g(Ui)δ
0Ui + f(Ui), 1 ≤ i ≤ I − 1, t ∈ [0, T hb ),(2.1)

dU0(t)

dt
= δ2U0(t) + f(U0(t)), t ∈ [0, T hb ),(2.2)

dUI(t)

dt
= δ2UI(t) + f(UI(t)), t ∈ [0, T hb ),(2.3)

Ui(0) = ϕi > 0, 0 ≤ i ≤ I,(2.4)

where

δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, 1 ≤ i ≤ I − 1,

δ2U0(t) =
2U1(t)− 2U0(t)

h2
, δ2UI(t) =

2UI−1(t)− 2UI(t)

h2
,

δ0Ui(t) =
Ui+1(t)− Ui−1(t)

2h
, 1 ≤ i ≤ I − 1,

δ0U0(t) = 0, δ0UI(t) = 0,
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δ+ϕi =
ϕi+1 − ϕi

h
, 0 ≤ i ≤ I − 1,

δ+ϕi ≤ 0, 0 ≤ i ≤ I − 1 .

Here, [0, T hb ) is the maximal time interval on which ‖Uh(t)‖∞ < +∞, where

‖Uh(t)‖∞ = max
0≤i≤I

|Ui(t)|.

The time T hb can be finite or infinite. When the time T hb is finite, we say that
the solution Uh of (2.1)–(2.4) blows up in finite time, and the time T hb is called
the blow-up time of the solution Uh. When the time T hb is infinite, we say that
the solution Uh of (2.1)–(2.4) blows up globally or exist globally,

Lemma 2.1. Let ah(t), bh(t) ∈ C0([0, T ],RI+1) and let Vh(t) ∈ C1([0, T ],RI+1)

where bh(t)δ0Vh(t) ≤ 0 and ah(t) ≤ 0, such that

d

dt
Vi − δ2Vi + biδ

0Vi + aiVi ≥ 0, 0 ≤ i ≤ I, t ∈ (0, T ),(2.5)

Vi(0) ≥ 0, 0 ≤ i ≤ I.

Then we have

Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ (0, T ).

Proof. Let T0 be any quantity satisfying the inequality T0 < T and define the
vector Zh(t) = eαtVh(t) where α is such that

ai(t)− α > 0 for 0 ≤ i ≤ I, t ∈ [0, T0].

Let m = min
0≤i≤I,0≤t≤T0

Zi(t). Since, for i ∈ {0, ..., I}, Zi(t) is a continuous function

on the compact [0, T0], there exists i0 ∈ {0, ..., I} and t0 ∈ [0, T0] such that
m = Zi0(t0). We observe that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I,(2.6)

δ2Zi0(t0) =
Zi0+1 − 2Zi0 + Zi0−1

h2
≥ 0, 1 ≤ i0 ≤ I − 1,(2.7)

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
≥ 0 if i0 = 0,(2.8)

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
≥ 0 if i0 = I.(2.9)
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From (2.5), we obtain the following inequality

dZi0
dt
− δ2Zi0 + bi0δ

0Zi0 + (ai0 − α)Zi0 ≥ 0.

It follows from (2.6)–(2.9) that

(ai0(t0)− α)Zi0(t0) ≥ 0,

which implies that Zi0(t0) ≥ 0 because ai0(t0)−α > 0. We deduce that Vh(t) ≥ 0

for t ∈ [0, T0] and the proof is complete. �

Lemma 2.2. Let Vh(t), Wh(t) ∈ C1([0, T ],RI+1) and f, g ∈ C1(R × R,R) such
that

dVi
dt
− δ2Vi + g(Vi)δ

0Vi + f(Vi) <
dWi

dt
−

δ2Wi + g(Vi)δ
0Wi + f(Wi), 0 ≤ i ≤ I, t ∈ (0, T ),

Vi(0) < Wi(0), 0 ≤ i ≤ I.

Then we have

Vi(t) < Wi(t), 0 ≤ i ≤ I, t ∈ (0, T ).

Proof. Define the vector Zh(t) = Wh(t)−Vh(t). Let t0 be the first t > 0 such that
Zi(t) > 0 for t ∈ [0, t0), 0 ≤ i ≤ I, but Zi0(t0) = 0 for a certain i0 ∈ {0, ..., I}.
We remark that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0, 1 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
≥ 0 if i0 = 0,

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
≥ 0 if i0 = I.

Therefore, we have

dZi0(t0)

dt
− δ2Zi0(t0) + g(Wi0(t0))δ

0Zi0(t0) + g
′
(µi0(t0))δ

0Vi0(t0))Zi0(t0)

−f ′(βi0(t0))Zi0(t0) ≤ 0,
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where µi0(t0), βi0(t0) ∈ (Vi0(t0),Wi0(t0)), which contradicts the first strict in-
equality of the lemma and this ends the proof. �

Lemma 2.3. Let Uh be the solution of (2.1)–(2.4). Then we have

Ui(t) > 0 for 0 ≤ i ≤ I, t ∈ (0, T hb ).

Proof. Assume that there exists a time t0 ∈ (0, T hb ) such that Ui0(t0) = 0 for a
certain i0 ∈ {0, ..., I}. We observe that

dUi0(t0)

dt
= lim

k→0

Ui0(t0)− Ui0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I,

δ2Ui0(t0) =
Ui0+1(t0)− 2Ui0(t0) + Ui0−1(t0)

h2
> 0, 1 ≤ i0 ≤ I − 1,

δ2Ui0(t0) =
2U1(t0)− 2U0(t0)

h2
> 0 if i0 = 0,

δ2Ui0(t0) =
2UI−1(t0)− 2UI(t0)

h2
> 0 if i0 = I,

which implies that

dUi0(t0)

dt
− δ2Ui0(t0) + g(Ui0(t0))δ

0Ui0(t0)− f(Ui0(t0)) < 0, 1 ≤ i0 ≤ I − 1,

dU0(t0)

dt
− δ2U0(t0)− f(U0(t0)) < 0,

dUI(t0)

dt
− δ2UI(t0)− f(UI(t0)) < 0.

But these inequalities contradict (2.1)–(2.3) and we obtain the desired result.
�

Lemma 2.4. Let Uh be the solution of (2.1)–(2.4). Then we have

Ui+1(t) < Ui(t) for 0 ≤ i ≤ I − 1, t ∈ (0, T hb ).

Proof. Introduce the vector Zh(t) defined as follows Zi(t) = Ui+1(t) − Ui(t) for
0 ≤ i ≤ I − 1. Let t0 be the first t>0 such that Zi(t) < 0 for t ∈ [0, t0) but
Zi0(t0) = 0 for a certain i0 ∈ {0, ..., I − 1}. Without loss of generality, we may
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suppose that i0 is the smallest integer which satisfies the above equality. It
follows that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≥ 0, 0 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
< 0, 1 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
< 0 if i0 = 0,

which implies that

dZi0(t0)

dt
− δ2Zi0(t0) + g(Ui0+1(t0))δ

0Zi0(t0)+

(g
′
(µi0(t0))δ

0Ui0(t0)− f
′
(βi0(t0)))Zi0(t0) > 0, 1 ≤ i0 ≤ I − 1,

dZ0(t0)

dt
− δ2Z0(t0) + g(U1(t0))δ

0Z0(t0)− f
′
(β0(t0))Z0(t0) > 0.

where β0(t0) ∈ (U1(t0), U0(t0)) and µi0(t0), βi0(t0) ∈ (Ui0+1(t0), Ui0(t0)).
Therefore, we have a contradiction because of (2.1)–(2.2). This ends the proof.

�

Lemma 2.5. Let Uh be the solution of (2.1)–(2.4). Then we have

dUi(t)

dt
> 0 for 0 ≤ i ≤ I, t ∈ (0, T hb ).

Proof. Consider the vector Zh(t) with Zi(t) =
d

dt
Ui(t), 0 ≤ i ≤ I. Let t0 be

the first t > 0 such that Zi(t) > 0 for t ∈ [0, t0) but Zi0(t0) = 0 for a certain
i0 ∈ {1, ..., I}. Without loss of generality, we may suppose that i0 is the smallest
integer which satisfies the above equality. We get

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
> 0, 1 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
> 0 if i0 = 0,

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
> 0 if i0 = I,
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which implies that

dZi0(t0)

dt
− δ2Zi0(t0) + g(Ui0(t0))δ

0Zi0(t0) +

(g
′
(Ui0(t0))δ

0Ui0(t0)− f
′
(Ui0(t0)))Zi0(t0) < 0, if 1 ≤ i0 ≤ I − 1,

dZ0(t0)

dt
− δ2Z0(t0) + g(U0(t0))δ

0Z0(t0)− f
′
(U0(t0))Z0(t0) < 0,

dZI(t0)

dt
− δ2ZI(t0) + g(UI(t0))δ

0ZI(t0)− f
′
(UI(t0))ZI(t0) < 0.

But these inequalities contradict (2.1)–(2.3) and lead to the desired result. �

Lemma 2.6. Let Uh be the solution of (2.1)–(2.4). Then we have

g
′
(Ui(t))f(Ui(t)) > −h(δ0Ui(t))g(Ui(t))f

′′
(Ui−1(t)), 1 ≤ i ≤ I − 1, t ∈ (0, T hb ).

Proof. Define the vectors Zh(t), Kh(t) and Vh(t) such that Zi(t) = Ki(t) − Vi(t)
with Ki(t) = g

′
(Ui(t))f(Ui(t)) and Vi(t) = −h(δ0Ui(t))g(Ui(t))f

′′
(Ui−1(t)) for

1 ≤ i ≤ I − 1. Let t0 be the first t > 0 such that Zi(t) > 0 for t ∈ [0, t0) but
Zi0(t0) = 0 for a certain i0 ∈ {0, ..., I}. We may suppose that i0 is the smallest
integer which satisfies the above equality. It follows that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
> 0, 1 ≤ i0 ≤ I − 1,

which implies that

dZi0(t0)

dt
− δ2Zi0(t0) + g(Ki0(t0))δ

0Zi0(t0)+

(g
′
(µi0(t0))δ

0Vi0(t0)− f
′
(βi0(t0)))Zi0(t0) < 0, 1 ≤ i0 ≤ I − 1,

where µi0(t0), βi0(t0) ∈ (Vi0(t0), Ki0(t0)).
But this inequalities contradict (2.1)–(2.3) and we obtain the desired result.

�

Lemma 2.7. Let Uh ∈ C1([0, T ], RI+1) such that Uh > 0. Then we have

δ2f(Ui) ≥ f
′
(Ui)δ

2Ui for 0 ≤ i ≤ I.
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Proof. Apply Taylor’s expansion to obtain

f(U1) = f(U0) + (U1 − U0)f
′
(U0) +

(U1 − U0)
2

2
f
′′
(η0),

f(Ui+1) = f(Ui) + (Ui+1 − Ui)f
′
(Ui) +

(Ui+1 − Ui)2

2
f
′′
(θi), 1 ≤ i ≤ I − 1,

f(Ui−1) = f(Ui) + (Ui−1 − Ui)f
′
(Ui) +

(Ui−1 − Ui)2

2
f
′′
(ηi), 1 ≤ i ≤ I − 1,

f(UI−1) = f(UI) + (UI−1 − UI)f
′
(UI) +

(UI−1 − UI)2

2
f
′′
(ηI),

where θi is an intermediate between Ui and Ui+1 and ηi the one between Ui−1
and Ui. The first and last equalities imply that

δ2f(U0) = f
′
(U0)δ

2U0 +
(U1 − U0)

2

h2
f
′′
(η0),

δ2f(UI) = f
′
(UI)δ

2UI +
(UI−1 − UI)2

h2
f
′′
(ηI).

Combining the second and third equalities, we see that

δ2f(Ui) = f
′
(Ui)δ

2Ui +
(Ui+1 − Ui)2

2h2
f
′′
(θi) +

(Ui−1 − Ui)2

2h2
f
′′
(ηi), 1 ≤ i ≤ I − 1.

Use the fact that f(s) is a convex function and Uh > 0 to complete the rest of
the proof. �

Lemma 2.8. Let Uh ∈ C1([0, T ], RI+1) such that Uh > 0. Then we have

δ0f(Ui) ≤ f
′
(Ui)δ

0Ui + h(δ0Ui)
2f
′′
(Ui−1), 0 ≤ i ≤ I.

Proof. Using Taylor’s expansion, we obtain

δ0f(Ui) = f
′
(Ui−1)δ

0Ui +
(Ui+1 − Ui−1)2

4h
f
′′
(Ui−1) +

(Ui+1 − Ui−1)3

12h
f
′′′

(ζi),

0 ≤ i ≤ I,

where ζi ∈ (Ui+1, Ui−1).
Using Lemma 2.4 and Uh > 0, we have the desired result. �
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3. SEMIDISCRETE BLOW-UP SOLUTIONS

In this section under some assumptions, we show that the solution Uh of
(2.1)–(2.4) blows up in a finite time and estimate its semidiscrete blow-up
time.

Theorem 3.1. Let Uh be the solution of (2.1)–(2.4), then the solution Uh blows
up in a finite time T hb with following estimate

T hb ≤
∫ +∞

ϕhmin

dσ

f(σ)
,

where ϕhmin = min
0≤i≤I

{ϕi} .

Proof. Consider the following differential equation

α̇(t) = f(α(t)), t ∈ (0, Tα),

α(0) = ϕhmin,

with Tα =

∫ +∞

ϕhmin

dσ

f(σ)
.

Introduce the vector Vh(t) such that Vi(t) = α(t), 0 ≤ i ≤ I, t ∈ (0, Tα).
Let the vector Zh(t) defined as follows Zh(t) = Uh(t) − Vh(t). It is not hard to
see that, for t ∈ (0, T1),

dZi(t)

dt
− δ2Zi(t) + g(Ui(t))δ

0Zi(t) + (g
′
(µi(t))δ

0Vi(t)− f
′
(βi(t)))Zi(t) ≥ 0,

0 ≤ i ≤ I,

dZ0(t)

dt
− δ2Z0(t) + g(U0(t))δ

0Z0(t) + (g
′
(µ0(t))δ

0V0(t)− f
′
(β0(t)))Z0(t) ≥ 0,

dZI(t)

dt
− δ2ZI(t) + g(UI(t))δ

0ZI(t) + (g
′
(µI(t))δ

0VI(t)− f
′
(βI(t)))ZI(t) ≥ 0,

Zi(0) ≥ 0,

where µi(t) and βi(t) are intermediate values between Vi(t) and Ui(t)) . T1 =

min{Tα, T hb } . Due to Lemma 2.1, we have Ui(t) ≥ Vi(t), 0 ≤ i ≤ I, t ∈ (0, T1).
We deduce that

T hb ≤ Tα ≤
∫ +∞

ϕhmin

dσ

f(σ)
.

�
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The following theorem gives a best result than the previous.

Theorem 3.2. Let Uh be the solution of (2.1)–(2.4). Suppose that there exists a
positive integer λ such that

δ2ϕi − g(ϕi)δ
0ϕi + f(ϕi) ≥ λf(ϕi), 0 ≤ i ≤ I.(3.1)

Then, the solution Uh blows up in a finite time T hb and we have the following
estimate

T hb ≤
1

λ

∫ +∞

‖ϕh‖∞

dσ

f(σ)
.

Proof. Let [0, T hb ) be the maximal time interval on which ‖Uh(t)‖∞ < +∞. Our
aim is to show that T hb is finite and satisfies the above inequality. Introduce the
vector Jh(t) such that

Ji(t) =
dUi(t)

dt
− λf(Ui(t)), 0 ≤ i ≤ I.

A straightforward calculation gives

dJi
dt
− δ2Ji =

d2Ui

dt2
− λf ′(Ui)

dUi
dt
− δ2(dUi

dt
) + λδ2f(Ui), 1 ≤ i ≤ I − 1.

From Lemma 2.7, we have δ2f(Ui) ≥ f
′
(Ui)δ

2Ui, which implies that

dJi
dt
− δ2Ji ≥

d

dt
(
dUi
dt
− δ2Ui)− λf

′
(Ui)(

dUi
dt
− δ2Ui), 1 ≤ i ≤ I − 1.

dJi
dt
− δ2Ji ≥

d

dt
(−g(Ui)δ

0Ui + f(Ui))− λf
′
(Ui)(−g(Ui)δ

0Ui + f(Ui)),

1 ≤ i ≤ I − 1.

We have

dJi
dt
− δ2Ji ≥ −(g

′
(Ui)δ

0Ui − f
′
(Ui))Ji − g(Ui)δ

0(
dUi
dt

) + λf
′
(Ui)g(Ui)δ

0Ui

−λg′(Ui)f(Ui)δ
0Ui, 1 ≤ i ≤ I − 1.

By the Lemma 2.8, we obtain

dJi
dt
− δ2Ji + g(Ui)δ

0Ji + (g
′
(Ui)δ

0Ui − f
′
(Ui))Ji ≥ −λg

′
(Ui)f(Ui)δ

0Ui

−λhg(Ui)(δ
0Ui)

2f
′′
(Ui−1), 1 ≤ i ≤ I − 1,
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From Lemma 2.6, we get −λg′(Ui)f(Ui)δ
0Ui − λhg(Ui)(δ

0Ui)
2f
′′
(Ui−1) > 0. Us-

ing (2.2)–(2.4), we arrive at

dJi
dt
− δ2Ji + g(Ui)δ

0Ji + (g
′
(Ui)δ

0Ui − f
′
(Ui))Ji ≥ 0, 1 ≤ i ≤ I − 1,

dJ0
dt
− δ2J0 + g(U0)δ

0J0 + (g
′
(U0)δ

0U0 − f
′
(U0))J0 ≥ 0,

dJI
dt
− δ2JI + g(UI)δ

0JI + (g
′
(UI)δ

0UI − f
′
(UI))JI ≥ 0.

From (3.1), we observe that

Ji(0) = δ2ϕi − g(ϕi)δ
0ϕi + f(ϕi)− λf(ϕi) ≥ 0, 0 ≤ i ≤ I.

We deduce from Lemma 2.1 that Jh(t) ≥ 0 for t ∈ (0, T hb ), which implies that

dUi(t)

dt
≥ λf(Ui(t)), 0 ≤ i ≤ I, t ∈ (0, T hb ).

These estimates may be rewritten in the following form

dUi(t)

f(Ui(t))
≥ λdt, 0 ≤ i ≤ I.

Integrating the above inequalities over (t, T hb ), we arrive at

T hb − t ≤
1

λ

∫ Th
b

t

dUi(t)

f(Ui(t))
, 0 ≤ i ≤ I.(3.2)

Using the fact that ‖Uh(0)‖∞ = ‖ϕh‖∞ and taking t = 0 in (3.2), we get

T hb ≤
1

λ

∫ +∞

‖ϕh‖∞

dσ

f(σ)
.

�

Remark 3.1. The inequalities (3.2) imply that

T hb − t0 ≤
1

λ

∫ +∞

‖Uh(t0)‖∞

dσ

f(σ)
for t0 ∈ [0, T hb ).
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4. CONVERGENCE OF THE SEMIDISCRETE BLOW-UP TIME

In this section, under some assumptions, we show that the semidiscrete
blow-up time converges to the real one when the mesh size goes to zero. In
order to obtain the convergence of semidiscrete blow-up time, we firstly prove
the following theorem about the convergence of the semidiscrete scheme.

Theorem 4.1. Assume that (1.1)–(1.3) has a solution u ∈ C4,1([0, 1] × [0, T ])

and the initial condition at (2.4) satisfies

‖ϕh − uh(0)‖∞ = o(1) as h→ 0,(4.1)

where uh(t) = (u(x0, t), ..., u(xI , t))
T . Then, for h sufficiently small, the problem

(2.1)–(2.4) has a unique solution Uh ∈ C1([0, T ],RI+1) such that

max
0≤t≤T

‖Uh(t)− uh(t)‖∞ = O(‖ϕh − uh(0)‖∞ + h2) as h→ 0.

Proof. Let K > 0 be such that

‖u‖∞ ≤ K .

The problem (2.1)–(2.4) has for each h, a unique solution Uh ∈ C1([0, T hq ),RI+1).
Let t(h) the greatest value of t > 0 such that

‖Uh(t)− uh(t)‖∞ < 1 for t ∈ (0, t(h)).(4.2)

The relation (4.1) implies that t(h) > 0 for h sufficiently small. Let t∗(h) =

min{t(h), T}. By the triangular inequality, we obtain

‖Uh(t)‖∞ ≤ ‖u(x, t)‖∞ + ‖Uh(t)− uh(t)‖∞ for t ∈ (0, t∗(h)),

which implies that

‖Uh(t)‖∞ ≤ 1 +K, for t ∈ (0, t∗(h)).(4.3)

Let eh(t) = Uh(t)− uh(t) be the error of discretization.
Using Taylor’s expansion, we have for t ∈ (0, t∗(h)),

d

dt
ei(t)− δ2ei(t) + g(u(xi, t))δ

0ei(t) = (f
′
(βi(t))− g

′
(µi(t))δ

0u(xi, t))ei(t)

−h
2

6
g(u(xi, t))uxxx(x̃i, t),

d

dt
e0(t)− δ2e0(t) = f

′
(β0(t))e0(t) +

h2

12
uxxxx(x̃0, t),
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d

dt
eI(t)− δ2eI(t) = f

′
(βI(t))eI(t) +

h2

12
uxxxx(x̃I , t),

where βi(t) is an intermediate value between u(xi, t) and Ui(t)
for i ∈ {0, ..., I}.
Using (4.3), there exists a constant M > 0 such that

d

dt
ei − δ2ei + g(u)δ0ei ≤M |ei|+Mh2, 1 ≤ i ≤ I − 1,

d

dt
e0(t)− δ2e0(t) ≤M |e0(t)|+Mh2,

d

dt
eI(t)− δ2eI(t) ≤M |eI(t)|+Mh2 .

Consider the vector Wh(t) such that

Wi(t) = e(M+1)t(‖ϕh − uh(0)‖∞ +Mh2), 0 ≤ i ≤ I.

A direct calculation yields

d

dt
Wi − δ2Wi + g(u)δ0Wi > M |Wi|+Mh2, 1 ≤ i ≤ I − 1,

d

dt
W0(t)− δ2W0(t) > M |W0(t)|+Mh2,

d

dt
WI(t)− δ2WI(t)δ

0 > M |WI(t)|+Mh2,

Wi(0) > ei(0), 0 ≤ i ≤ I.

It follows from Lemma 2.2 that

Wi(t) > ei(t) for t ∈ (0, t∗(h)), 0 ≤ i ≤ I.

By the same way, we also prove that

Wi(t) > −ei(t) for t ∈ (0, t∗(h)), 0 ≤ i ≤ I,

which implies that

Wi(t) > |ei(t)| for t ∈ (0, t∗(h)), 0 ≤ i ≤ I.

We deduce that

‖Uh(t)− uh(t)‖∞ ≤ e(M+1)T (‖ϕh − uh(0)‖∞ +Mh2), t ∈ (0, t∗(h)).
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Let us show that t∗(h) = T . Suppose that T > t(h). From (4.2), we obtain

1 = ‖Uh(k)− uh(k)‖∞ ≤ e(M+1)T (‖ϕh − uh(0)‖∞ +Mh2),(4.4)

where k=t(h). Since e(M+1)T (‖ϕh − uh(0)‖∞ + Mh2) → 0 when h → 0, we
deduce from (4.4) that 1 ≤ 0, which is impossible. Consequently t∗(h) = T ,
and we conclude the proof. �

Theorem 4.2. Suppose that the solution u of (1.1)–(1.3) blows up in a finite
time Tb such that u ∈ C4,1([0, 1] × [0, Tb),R) and the initial condition at (2.4)
satisfies

‖ϕh − uh(0)‖∞ = o(1) as h→ 0.

Assume that there exists a constant λ > 0 such that

δ2ϕi − g(ϕi)δ
0ϕi + f(ϕi) ≥ λf(ϕi), 0 ≤ i ≤ I.

Then the solution Uh of (2.1)–(2.4) blows up in a finite time T hb and

lim
h→0

T hb = Tb.

Proof. Let ε > 0. There exists a positive constant N such that

1

λ

∫ +∞

y

dσ

f(σ)
≤ ε

2
<∞ for y ∈ [N,+∞[.(4.5)

Since u blows up at the time Tb. There exists T1 ∈ (Tb − ε
2
, Tb) and h0(ε) > 0

such that

‖u(., t)‖∞ ≥ 2N for t ∈ [T1, Tb), h ≤ h0(ε).

Let T2 =
T1 + Tb

2
, then supt∈[0,T2] |u(., t)| < ∞ for h ≤ h0(ε). It follows from

Theorem 4.1 that supt∈[0,T2] ‖Uh(t) − uh(t)‖∞ ≤ N for h ≤ h0(ε). Applying
the triangular inequality, we get ‖Uh(t)‖∞ ≥ ‖uh(t)‖∞ − ‖Uh(t) − uh(t)‖∞ for
h ≤ h0(ε), which leads to ‖Uh(t)‖∞ ≥ N for t ∈ [0, T2], h ≤ h0(ε). From
Theorem 3.2, Uh blows up at the time T hb . We deduce from Remark 3.1 and
(4.5) that for h ≤ h0(ε)

|Tb − T hb | ≤ |Tb − T2|+ |T2 − T hb | ≤
ε

2
+

1

λ

∫ +∞

‖Uh(T2)‖∞

dσ

f(σ)
≤ ε,

which leads us to the desired result. �
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5. NUMERICAL EXPERIMENTS

In this section, we present some numerical approximations to the blow-up
time of (1.1)–(1.3). We use the following explicit scheme

U
(n+1)
i − U (n)

i

∆tn
=
U

(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
− g(U

(n)
i )(

U
(n)
i+1 − U

(n)
i−1

2h
) + f(U

(n)
i ),

1 ≤ i ≤ I − 1,

U
(n+1)
0 − U (n)

0

∆tn
=

2U
(n)
1 − 2U

(n)
0

h2
+ f(U

(n)
0 ),

U
(n+1)
I − U (n)

I

∆tn
=

2U
(n)
I−1 − 2U

(n)
I

h2
+ f(U

(n)
I ),

U
(0)
i = ϕi > 0, 0 ≤ i ≤ I,

where n ≥ 0, g(s) = sq, f(s) = sp, s ≥ 0, q ≥ 1, p ≥ q + 1, ∆tn =

min(h
2

2
, τ‖U (n)

h ‖1−p∞ ), with τ = const ∈ (0, 1) and ϕi =
1

12
+ (1 − (ih)2)2 for

0 ≤ i ≤ I.
Also we use the implicit scheme

U
(n+1)
i − U (n)

i

∆tn
=
U

(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
− g(U

(n)
i )(

U
(n+1)
i+1 − U (n+1)

i−1

2h
) + f(U

(n)
i ),

1 ≤ i ≤ I − 1,

U
(n+1)
0 − U (n)

0

∆tn
=

2U
(n+1)
1 − 2U

(n+1)
0

h2
+ f(U

(n)
0 ),

U
(n+1)
I − U (n)

I

∆tn
=

2U
(n+1)
I−1 − 2U

(n+1)
I

h2
+ f(U

(n)
I ),

U
(0)
i = ϕi > 0, 0 ≤ i ≤ I,

where n ≥ 0, g(s) = sq, f(s) = sp, s ≥ 0, q ≥ 1, p ≥ q + 1, ∆tn = τ‖U (n)
h ‖1−p∞

with τ = const ∈ (0, 1) and ϕi =
1

12
+ (1− (ih)2)2 for 0 ≤ i ≤ I.

In the tables 1-6, in rows, we present the numerical blow-up times, numbers of
iterations, the CPU times and the orders of the approximations corresponding
to meshes of 16, 32, 64, 128, 256, 512, 1024, 2048. The numerical blow-up
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time T n =
∑n−1

j=0 ∆tj is computed at the first time when ∆tn = |T n+1 − T n| ≤
10−16. The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

First case: (q, p) = (1, 4) and τ =
h2

2
.

Table 1: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I T n n CPU time s

16 0.95630084 5652 0.015 -
32 0.95322924 21640 0.093 -
64 0.95246070 82750 0.733 1.998

128 0.95226852 315844 5.351 1.999
256 0.95222047 1202803 38.969 1.999
512 0.95220846 4568988 301.440 2.000
1024 0.95220546 17307040 2129.460 2.000
2048 0.95220470 65351411 15709.004 2.000

Table 2: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Eu-
ler method

I T n n CPU time s

16 0.95486982 5564 0.046 -
32 0.95287040 21286 0.202 -
64 0.95237092 81338 1.326 2.001

128 0.95224607 310194 8.907 2.000
256 0.95221486 1180208 64.709 2.000
512 0.95220706 4478606 491.091 2.000
1024 0.95220510 16945512 3726.879 2.000
2048 0.95220462 63905292 28102.566 2.000
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Second case: (q, p) = (2, 4) and τ =
h2

2
.

Table 3: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I T n n CPU time s

16 1.03868306 5563 0.031 -
32 1.03585249 21302 0.109 -
64 1.03514423 81590 0.764 1.998

128 1.03496713 310812 5.382 1.999
256 1.03492285 1182920 36.785 1.999
512 1.03491178 4489383 273.048 2.000
1024 1.03490902 16988420 2054.393 2.000
2048 1.03490832 64077298 15534.408 2.000

Table 4: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Eu-
ler method

I T n n CPU time s

16 1.03693732 5448 0.031 -
32 1.03541307 20844 0.187 -
64 1.03503419 79755 1.373 2.008

128 1.03493961 303472 10.000 2.002
256 1.03491597 1153557 70.996 2.000
512 1.03491006 4371930 524.897 2.000
1024 1.03490859 16518615 9630.909 2.000
2048 1.03490822 62198077 44458.070 2.000

Third case: (q, p) = (3, 4) and τ =
h2

2
.
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Table 5: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I T n n CPU time s

16 1.10067937 5699 0.047 -
32 1.09816232 22460 0.141 -
64 1.09753226 82607 0.766 1.998

128 1.09737470 312896 5.344 1.999
256 1.09733531 1191036 39.125 1.999
512 1.09732547 4521852 292.969 2.000
1024 1.09732300 17118296 2204.078 2.000
2048 1.09732239 64596804 16831.391 2.000

Table 6: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Eu-
ler method

I T n n CPU time s

16 1.09876776 5486 0.032 -
32 1.09767989 21568 0.188 -
64 1.09741136 80444 1.266 2.018

128 1.09734446 304206 9.313 2.005
256 1.09732775 1156274 69.563 2.000
512 1.09732357 4382802 546.032 2.000
1024 1.09732253 16562097 13069.532 2.000
2048 1.09732227 62372008 39313.078 2.000

Remark 5.1. We observe that, the solution of our problem blows up in a finite
time and the convection term, responsible of the turbulence, delays the blow-up
generated by the reaction term.

In the following, we also give some plots to illustrate our analysis. For the
different plots, we used both explicit and implicit schemes in the case where
I = 16, (q, p) = (1, 4), (q, p) = (2, 4) and (q, p) = (3, 4).
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FIGURE 1. Evolution
of the discrete solution
with (q, p) = (1, 4)

(explicit scheme).

FIGURE 2. Evolution
of the discrete solution
with (q, p) = (1, 4)

(implicit scheme).

FIGURE 3. Evolution
of the discrete solution
with (q, p) = (2, 4)

(explicit scheme).

FIGURE 4. Evolution
of the discrete solution
with (q, p) = (2, 4)

(implicit scheme).

FIGURE 5. Evolution
of the discrete solution
(q, p) = (3, 4) (explicit
scheme).

FIGURE 6. Evolution
of the discrete solution
with (q, p) = (3, 4)

(implicit scheme).



BLOW-UP FOR SEMIDISCRETE FORMS OF SOME. . . 287

REFERENCES

[1] L. ABIA, J. C. LÓPEZ-MARCOS, J. MARTÍNEZ: On the blow-up time convergence of
semidiscretizations of reaction-diffusion equations, Appl. Numer. Math., 26 (1998), 399 –
414.

[2] J. VON BELOW: An existence result for semilinear parabolic network equations with dy-
namical node conditions, Progress in partial Differential equations : elliptic and parabolic
problems, Pitman Research Notes in Math. Ser. Longman Harlow Essex, 266 (1992),
274–283.

[3] J. VON BELOW: Parabolic network equations, Tubingen, 2 edition, 1994.
[4] J. VON BELOW, C. DE COSTER: A Qualitative Theory for Parabolic Problems under Dy-

namical Boundary Conditions, Journal of Inequalities and Applications, 5 (2000), 467 –
486.

[5] J. VON BELOW, S. NICAISE: Dynamical interface transition in ramified media with diffu-
sion, Comm. Partial Differential Equations, 21 (1996), 274–283.

[6] J. VON BELOW, G. PINCET-MAILLY: Blow up for Reaction Diffusion Equations Under
Dynamical Boundary Conditions, Communications in Partial Differential Equations, 28
(2003), 223–247.

[7] J. VON BELOW, G. PINCET-MAILLY: Blow-up for some nonlinear parabolic problems
with convection under dynamical boundary conditions, Discrete and Continuous Dynami-
cal Systems, Supplement Volume (2007), 1031–1041.

[8] J. VON BELOW, G. PINCET-MAILLY, J-F. RAULT: Growth order and blow-up points
for the parabolic Burgers’ equation under dynamical boundary conditions, Discrete contin.
Dyn. Syst. Ser. S., 6(3) (2013), 825–836.

[9] A. CONSTANTIN, J. ESCHER: Global existence for fully parabolic boundary value prob-
lems, NoDEA, 13 (2006), 91–118.

[10] N. DIABATE, K. N’GUESSAN, A. K. TOURE: Blow-up for semidiscretizations of some
semilinear parabolic equations with a convection Term, Journal of Progressive Research in
Mathematics(JPRM), 5 (2) (2015), 499–518.

[11] G. R. GOLDSTEIN: Derivation and physical interpretation of general boundary conditions,
Adv. in Diff. Equ., 11 (2006), 457–480.

[12] P. E. MENSAH, M. M. TAHA, A. K. TOURÉ: Numerical approximation of the blow-
up time for a semilinear parabolic equation with nonlinear boundary conditions, Far East
journal of Mathematical Sciences (FJMS), 45 (2012), 125–167.

[13] G. PINCET-MAILLY, J-F. RAULT: Nonlinear convection in reaction-diffusion equations
under dynamical boundary conditions, Electronic Journal of Differential Equations 2013,
10 (2013), 1–14.

[14] J-F. RAULT: Phénoméne d’explosion et existence globale pour quelques problémes
paraboliques sous les conditions au bord dynamiques, PhD thesis, Université du Littoral
Céte d’Opale, 2010.



288 K. N’GUESSAN, N. DIABATE, AND A. K. TOURE

[15] J-F. RAULT: A Bifurcation for a Generalized Burgers’ Equation in Dimension One, Discrete
contin. Dyn. Syst. Ser. S. 5, 3 (2012), 683–706.

[16] P. SOUPLET: Finite time blow-up for a non-linear parabolic equation with a gradient term
and applications, Math. Methods Appl. Sci., 19 (1996), 1317–1333.

[17] P. SOUPLET: Recent results and open problems on parabolic equations with gradient non-
linearities, Electronic Journal of Differential Equations 2001, 20 (2001), 1–19.

[18] P. SOUPLET, F. WEISSLER: Self-Similar Subsolutions and Blow-up for Nonlinear Parabolic
equations, Journal of Mathematical Analysis and Applications, 212 (1997), 60–74.

DEPARTMENT OF ECONOMIC SCIENCES AND DEVELOPMENT

UNIVERSITY OF ALASSANE OUATTARA

01 BP V 18 BOUAKÉ 01, CÔTE D’IVOIRE

E-mail address: nkrasoft@yahoo.fr

DEPARTMENT OF ECONOMIC SCIENCES AND DEVELOPMENT

UNIVERSITY OF ALASSANE OUATTARA

01 BP V 18 BOUAKÉ 01, CÔTE D’IVOIRE

E-mail address: nabongo_diabate@yahoo.fr

INSTITUT NATIONAL POLYTECHNIQUE HOUPHOUÉT-BOIGNY

BP 1093 YAMOUSSOUKRO,CÔTE D’IVOIRE

E-mail address: latoureci@gmail.com


