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NUMERICAL APPROXIMATION OF THE SPECTRUM FOR A FLEXIBLE
EULER-BERNOULLI BEAMS WITH A FORCE CONTROL IN ROTATION
AND VELOCITY ROTATION

FATOU N. DIOP!, HERMITH A. A. KOUASSI, AUGUSTIN K. TOURE,
AND JEAN-CLAUDE B. KOUA

ABSTRACT. In this paper, we use asymptotic techniques and the finite differ-
ences method to study the spectrum of the differential operator arising in the
exponential stabilization of the following differential equation vy + yzzez = 0,
0 < z < 1,t > 0 with boundary conditions y(0,¢) = y,(0,t) = 0,t > 0,
Yoz (1,8) = 0,8 >0, Yzu(1,t) = —ay.(1,t) — By.(1,t),t > 0.

1. INTRODUCTION

We consider the following evolutive system

(1.1) Yt + Yozze = 0, 0<z <1, >0,

(1.2) y(0,t) = y.(0,t) = 0,t >0,

(1.3) Yaoa(1,8) = 0,8 >0,

(1.4) Yoe(1,t) = —aye(1,t) — By.(1,8),1 >0,

where y is a scalar function of variable = and ¢; « and ( are two given positive
constants. This simplified model may represent a cable that is clamped at one
end and submitted to a force control in rotation and velocity rotation. We

Lcorresponding author

2010 Mathematics Subject Classification. 93C20, 93D15, 35B35, 35P10.
Key words and phrases. Beam equation, semigroup theory, asymptotic analysis, Riesz basis,

exponential stability.
305



306 F. N. DIOP, H. A. A. KOUASSI, A. K. TOURE, AND C. J. B. KOUA

assumed that the cable is completely flexible with constant length. The system
(1.1)—(1.4) has been studied when 5 = 0 in [7], where it has studied the
exponential stabilization. Then they get by explicit formules the location of
the spectrum. When control in velocity is added to the existing feedback, only
the behavior of the eigenvalues of large modulus can be analytically obtained.
One use in this case asymptotic techniques. The main goal of this work is to use
the finite differences method to elaborate a program that gives the complete
eigenvalues location of the system defined by (1.1)—(1.4), as a function of
positive feedback parameter o and . the paper is organized as follows. In
the next section we recall the formulation of the system (1.1)—(1.4) in the
context of the Cy semigroup of contractions. We then formulate the eigenvalue
problem and give the exact spectrum when 5 = 0. When § > 0 we show
asymptotic techniques are used to estimate eigenvalues of large modulus .

In the third section, we develop a numerical scheme based on the finite
differences method for the eigenvalues problem. Finally, in the last section, we
give some numerical experiments from our scheme.

2. FORMULATION OF THE SYSTEM IN THE Cy, SEMIGROUP OF
CONTRACTIONS THEORY

2.1. Energy space and energy norm. We consider the system (1.1)—(1.4)
and we let v = u;, W = (u,v)" . We introduce the following spaces:

V ={ue H*0,1);u(0) = uy(0) = 0},

H={(u,v)";ueV,oe L*0,1)} =V x L*(0,1)}.
The space H is called energy space of the system. We define the inner-product

1
((ur,v1) , (ug, v2)) = / (uiuy + viv)dz + Buyus.
0

The energy norm induced by the inner product is hence defined by

(o)l = / (") + 0] d + B ()" .

Finally letting
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the system (1.1)—(1.4) can be written as formally as

dVZ_t(t):AW(t), W (0) = Wy € H,

with D (A) = {(u,v)" € (H*(0,1) N V) X V/tgay (1) = 0,

2.2. Spectrum of the operator A. Let A denotes an eigenvalue of A and
W = (u,v)" € D(A) a corresponding eigenvector. We have

AW = AW,
or
v =AU
Upzoz = AV
u(0) =0
uz (0) =0
Uss (1) = —aw, (1) — Bus (1)
Ugaz (1) = 0.

u(0) =0,
Ugzz (1) = 0.

Letting \ = 72, we get

4
Ugpze + T U= Oa

Uzgz (1) = 0,

2.1) Uge (1) = —(a7? + Bu, (1),
ug (0) =0,
u (0) = 0.
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The Shkalikov’s characteristic polynomial associated with equation (2.1) is

. 144
wh41 = <w2 — \/§w+1) (w2+\/§w+1> = 0 and its zeros are w; = \;;,
-1+ —1—1 1—2 .
Wy = , w3 = ——, wy = ——. The solutions of (2.1) take the form:
R I RO
U(ZU) :CleTwlx+026Tw2r+036Tw3r+c467-w4m.
Let us set:
F, = T?’w?emi, 1=1,....4

G, = (a72+7wi—|—ﬁ)7wiemi 1=1,...4.

Then we get the following matrix equation:

R F Fy Fy Ch 0
Gi1 Gy Gz Gy Co| |0
TW] TwWe Tws TWy cs | | o

1 1 1 1 Cy 0

A necessary and sufficient condition for this matrix equation to have nontriv-
ial solutions for Cy, Cy, C3, and C, is that the following charasteristic determi-
nant

F 5 F
Gl G2 G3 G4
TW] TWy TwWz TWy
1 1 1 1

A(r) =

vanishes. By developing A (7) with respect to the last row, we get

A(r) = T{ (w3 —wy) (F1Gy — F3G1) + (wg — ws3) (F1G4 — F4Gh)
+ (w3 — wy) (F2Gy — FyGa) + (wg — wy) (F3Gy — F2G3)
+ (wo — wy) (F3G1 — F1G3) + (w1 — we) (F3G4 — F4G3) }
Next, we set

Wij = (wi—wj) 1§Z,j§4
T; = FG;—FG; 1<i4,j<4
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so that
A (1) =7 (WasThg + WasTiy + WarTog + Wi Tg + WayTsy + Wi Tsy)

where

Wy = —V2, Wy =iv2, Wy = (-1 —14) V2

Wi = V2, Wa = (—1-1i)V2, Win=v2

Ty, = 73 _\/57'2 —2i (ar® + ﬂr)} V2

Ty = 7 -’i\/§7‘2 +2i (ar® + Br)} emV?

Ty = \/5_(1 — )7

Ty = 73 -—z'\/§7'2 +2i (ar® + BT)] e V2

T3 = \/5(1 +1i)7°

Ty = 70| —=V2r2—2i (0473 + ﬁT)} e~iTVZ,

After simplification, we get

A(r) = 7'7{ [—27_1 + 2v/2ia + 2\/5@’&7'_2} V2
— [2r ' + 2v2ia + 2\/52'57_2} e iTV?
— |27+ 2v20 + 2v287 72| 2

+ _—2771 +2v2a + 2\/567'*2} e V2 871}.

We observe that for |7| sufficiently large, the dominant term of each expres-
sion in bracket is nonzero. In the view of Shkalikov’s theory, the boundary
conditions are said to be regular.

We also mention that for § = 0, the previous characteristic determinant is the
same as that found in [7] (p.37), where the author proves that the eigenvalues
with sufficiently large modulus are asymptotically simple and isolated.

We claim that the above result is also true when 3 # 0. The properties just
mentioned are very essential in order to use the fundamental Theorem 3.1
of Shkalikov’s theory [8] (p.1328) in the perspective of finding a Riesz basis
property for the operator A in the energy space H.
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We set

P (1) = (=7 + V2iar? + 2iB)e™? — (1 + V2iar? + V2iB)e™™V2
— (1 +V2a7% + V28)e™? + (-7 + V2ar? + V2B)e V2 — 47
Q (1) = (7 +V2a7* +V20)e™? + (7 + V2iar + V2iB)e ™2
and note that
A(r) = QTSP(T)_

Our next task is to show that the zeros of () are asymptotically those of P,
in a sector of the complex plan to be determined. For the approach used, the
reader is referred to [5], [7]. We consider the convex polygon C' whose center
is O and which has vertices only at the following complex plane points: /2,
iv2, —\/2, —i\/2 denoted by C;, Cs, Cs, C, and plotted in the complex plane
according to the following underlined figure:

354 £2 T+ €, T4

3n,
i

—3.'LM+ £

Let the sides of the polygon C be taken in counterclockwise succession with
any one be designated by /;, that is to say the segment [C;, Ci;,] and 6; be the
inclination angle of the outer normal to the side /;. We denote by D; the line
defined by

Di={2€C/Arg(2) =0, ;1 +e <0 <0;+¢, i=1,.,4},
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where ¢ is sufficiently small but otherwise arbitrary positive real number. Let
S; be the sector described by the following relation:

{z € C/|z| large enough, 6, 1 +c < Arg(z) <0, +¢€}.

Such a sector is thus associated with each side of the polygon and the set of
these sectors completely fills out the complex plane, so that we have:

4
=1
A straightforward calculation shows that the following holds for any 7 € C
P(-1)=-P(r), P(7)=P(7)

It follows that the set of zeros of P (7) is symmetric with respect to the origin
of the complex plane and also symmetric with respect to the real axis. This
allows us to study P (1), for instance, in the following typical sector:

S1 = {z € C/ |z| large enough, — % +e < Arg(z) < Z + 5} :

When 2 lies on the line Dy, it is readily computed that

=]

‘Zajecjz| _ e|z\(xj cos(0)+y; sin(0)+a; 221,

where C; = z;+iy;. It follows that the relative magnitude of the terms ]zaj ecﬂ'z‘
are ultimately determined by the relative magnitude of the associated quanti-
ties z; cos (0) + y; sin (0); these, however, are represented geometrically by the
orthogonal projection vectors C; = x; + iy; upon the line D;. These projections
are as follows:

p1=V2cos (), po=V2sin(0), ps = —v2cos(0), ps = —V2sin (6),

and from this interpretation, it is easily seen that by virtue of the restriction
upon the range of 6, C; ¢ [, here (j # 1, 2) and

z;cos (0) + y;sin (0) < xq cos (0) + yy sin ().

Thus, for z € 51, j # 1, 2, we get:

a; Ciz _ _a;, Ciz
2%e% = 2% ei%e; (2),

where
£ (2) = || el cos(O)y; sin(6))—(o1 cos(6)-+y1 sin(0))
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and where ¢; (z) — 0 when |z| — +o0o. We recall here the fundamental result
of Langer [6], which allows us to study the asymptotical behavior of the zeros
of the exponential sums.

2.3. Asymptotic behavior of the eigenvalues.

Theorem 2.1. Let ) be a function defined in C as
Q)= 2" (a5 +¢5(2)) €97,
=0

where a; € C, ag, a,, # 0, v; € R, C; € C and the functions ¢; are analytic in all
sector S; (for a fixed i) and which approach zero uniformly when |z| goes to +oo,
such a function will be called an e—function. Then in this sector S;, the zeros of @
are asymptotically represented by those of the relative sum et G2 e%i* where
K is the subset of {1, ...,n} which does not contain indexes j such that C; € [,.

According to this theorem, the zeros of P in S; are asymptotically those of )
which are themselves asymptotically represented by those of

V2 4ieT ™V = .

Now, the zeros of the above equation take the form wr (n — 1), where n € N
and w = l—jg is a zero of the Shkalikov’s characteristic polynomial (2.1) . This
allows us to search for an asymptotic expansion of zeros of P in the form

1 r oy 1
n= )+ 5+0( )
T, W7 (n 4) + - + 2 + <n3)

where x and y are complex constants to be determined later. We insert the
above expression of 7,, in the one of ) (7) . After a direct computation we get:

Q1) = (~1)" K (1—1) {n [m (1+14) + V2aw?r2X (1 + z')] - i (1+ ) wrX

2
+ 2w — \/T—aw%ZX (141) + V2aw?7%Y (141)

A 1
+\/§CEOJ2’/T2X2+E+O( )}

n?
where A is a complex which depends on = and y. By choosing the complex
number in such a way that the coefficients of n?~%, i = 1, 2 in Q (7,,) vanish, we
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get

:-4+¢¢iy:3¢ﬂ1+nywv§@+3m’
4o 1672

upon substitution of these values in the expression of 7,,, we get:

1 1 1
Thw=|n——|wr+ V2(=14i)+0 , neN.
4 damn

n2

Taking into account that \, = 72, we finally get

1 1 1\? 1
M=——4+0(=)+i|[n—=) 7*+0(= ]|, neN.
« n 4 n?

We have then proven the following assertion:

1
Re (A\,) — —— asn —» +00.
a

3. FINITE DIFFERENCES METHOD

In this section we develop a numerical scheme based on the finite differ-
ences method for the eigenvalue problem associated with the evolutive system
defined by (1.1)—(1.4). In practice the spectral problem for such system is not
simple and cannot be solved by formula. Even when there is a formula, it might
be so complicated that we would prefer to visualize the eigenvalues by looking
at a graph. The finite differences method is an important technique of compu-
tation using quite simple equations and consists of replacing each derivative by
a difference quotient. Consider for instance, a function u (x) of one variable.
Choose a mesh size h = Ax. We approximate the value u (jh) for z = jh by a
number u; indexed by an integer j : u; ~ u (jh) . Using Taylor expansions

1 4 2
= ah) = () — by (@) + " (a0) — Sy () + 2Ry ()

3! 4]
1024

9 27 81
y(x;—3h) = y(z;) —3hy (z;) + §h2y" (z5) — yhgyg () + Eh4y4 (3)
243

_Hh5y5($i) 10 <h6)
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16
(= 20) =y () — 2hy () + 20" () = O () + 5 W
32
/ 1 2.1 1 3,3 1 4.4
y(xi—h) = y(@)—hy' (x:) + ShY (x:) — Ry’ (2) + Ry

2
1
—ah5y5(xi) + 0 (h°)

6 24

1 1 1
y(xz, +h) = y(z;)+hy (@) + 5’12?// (z) + ghgy?’ () + ﬂ’#?fl (3)

L) + 0 (1)

5!
(it 2h) = (o) + 2y (20) + 200 () + SHGP () + oy ()
PR () + 0 (1)
y(x; +3h) = y(x;)+3hy (x;) + ghzy” (z;) + ghz)’y‘3 (z;) + %h4y4 (z;)
F2 )+ 0 (1)
(b AR) = y(m) + Ahy (r) + W () + ST () + 0ty ()
8y ) +0 (1)

Also, using Taylor expansions we get

Y@ (z;) = y (zi — 2h) — 4y (z; — h) + 6y (z;) — 4y (xi + h) +y (2 + 2h)
1 - h4

+0 (h?),

3) 5y (z;) — 18y (z; — h) + 24y (x; — 2h) — 14y (x; — 3h) + 3y (x; — 4h)
yo () = 2h3
+0 (h?),
(3) () = =5y (z;) + 18y (z; + h) — 24y (x; + 2h) + 14y (x; + 3h) — 3y (z; + 4h)
Yy i) = e
+0 (h?),
y(2)($i): y () y ( ) h@;( A )+O(h2).
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We recall that the spectral problem to be solved is the following one

Yazz (1) =0

Yor (1) = — (@A + B) v (1)
Y (0) =0
y(0)=0.

With the above approximations in mind our spectral problem can be repre-
sented in the following discrete form:

(31) 4:[/1 — Y = O,
(3.2) Yico — 4yi1 4 6Y; — 4Yit1 + Yiso + MRy =0, i=2,..,n—2
(33) _2yn73 + 83/7L72 - 10yn71 + 4yn + (O»\h + 6h) (yan - 4yn71 + Byn) =0

3.4) 3Yn—a — 14yn_3 + 24y, — 18y,—1 + Yy, = 0,

where h = 1 denote the size, and y; = y (¢h), fori =2,-- -, n — 2.

The ﬁnitg differences method look for the complex number )\, such as it
exists a non zero vector (v, - - -, y,,) satisfies the above discrete problem. Now,
we consider the following matrix of order n.

0 vv e e e 0
rt 0
0

h4
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0
B =
0
: 0 a«ah —4ah 3ah
0 cor e e 0
4 -1 0 0
-4 6 -4 1 0
1
0
O —
0
0 1 -4 6 —4 1
:o-ee oo 0 =2 84ph —10—4Bh 4+ 3ph
o --- 0 3 14 24 —18 5)

The set of equations (3.1) — (3.4) take the following matrix equation form:
(3.5) MNAY 4+ ABY +CY =0, Y = (y1, ..., y) ",

where the matrix A, B and C are defined as above.

Now, we introduce the following auxiliary vector:
Z =\Y,
then (3.5) is equivalent to the following system

AZ = \NAY
—CY = NAZ + \BY.

This is a generalized eigenvalues problem. For such a problem we may use
the "QZ" method [6]

PU =XQU; U= (ZY)".
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The matrix P and () are defined as follows

() e (n2)
Oy —-C A B

where Oy is the zero matrix of NV order.

4. NUMERICAL EXPERIMENTS

To evaluate the effect of parameters o and 5 on the spectrum, we give here in
the same field, the graphs of the spectrum for different values of the parameters
a and 3, we do the study for several cases:

First case: =0

a) a € ]0; 1[. We choose o = 0.3, & = 0.4 and a = 0.5 for n = 500

w10’

T T
+ alpha=03
+  alpha =0.4 ]
alpha =0.5

e
T

Partie imaginaire
da ra L o — ra w
T T T T T .
+
R
o

S
T

1 1
-G A -4 -3 -2 -1 a 1 2
Partie reelle

We observe that when the parameter a € ]0; 1] increases, without control in
rotation [ the location of the spectrum moves rapidly on the left-hand side of
the half plane.

b) a > 1. We choose o = 1, @« = 2 and « = 4 for n = 500
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w10
5 T T T T T T T
: + alpha =1
i S|+ apha=2|]
: Ipha =4
3l alpha
2k -
2
s 1 - .
=]
fay)
£ 0 + .
=
5 oAr .
o
2F 8
3t i
At i
_5 1 1 1 1 1 i - 1 1
-6 -5 -4 -3 2 -1 o 1 2

Partie reelle

We observe that when the parameter « increases, without control in rotation
3, the locationof the spectrum moves rapidly on the left-hand side of the half
plane.

Second case: 5 > 0

a) a € ]0; 1[. We fixe g = 10 take a = 0.25, « = 0.5 and o = 0.75 for n = 500

w10t
g T T T - +T T T
3 + alpha =025
4r + alpha=05 ]
E: Ipha =0.75
5] alpha
aL 4
=
= 1F 4
£
=2
£ 0 + + H i .
@
5 -1F 1
o
2 J
Al i
s N
35 I I E L X ':-l L I
-B Rl -4 -3 2 -1 0 1 2

Fartie reelle

we observe that when the parameter a € ]0; 1] without control in rotation S the
location of the spectrum moves rapidly on the left-hand side of the half plane.
b) a > 1. We fixe = 10 take « = 1, a = 2 and « = 4 for n = 500
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=
=

w
T

alpha =1
alpha =2 []
alpha =4

Partie imaginaire
[ T T = | - M
T T T + T T

IS
T

g3 5 -4 3 7 e
Partie reelle
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We observe that when the parameter « increases,without control in rotation
3, the location of the spectrum moves rapidly on the left-hand side of the half

plane.

Third case: We fixe a = 1 take 5 = 20 and § = 40 for n = 500

%10
5 . T T . —
+  beta =20
A +  beta=40[|
3 L .
2 L -
2
i 1 L -
£
=S
20 H+ + H
=
5 -1 q
o
2F 4
s _
A+ 4
5 . . . . .
5 A -4 3 2 -1 il

Partie reslle

We observe that the parameter § has no effect on the spectrum for a fixed
value of o and the location of the spectrum stays on the left-hand side of the

left half plane.
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5. CONCLUSION

From all previous observations we claim that the control feedback j in rota-
tion has no influence on the optimal decay rate of the energy. But the control

feedback in velocity rotation improves the optimal decay of the energy.
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