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NUMERICAL APPROXIMATION OF THE SPECTRUM FOR A FLEXIBLE
EULER-BERNOULLI BEAMS WITH A FORCE CONTROL IN ROTATION

AND VELOCITY ROTATION

FATOU N. DIOP1, HERMITH A. A. KOUASSI, AUGUSTIN K. TOURE,
AND JEAN-CLAUDE B. KOUA

ABSTRACT. In this paper, we use asymptotic techniques and the finite differ-
ences method to study the spectrum of the differential operator arising in the
exponential stabilization of the following differential equation ytt+yxxxx = 0,

0 < x < 1, t ≥ 0 with boundary conditions y(0, t) = yx(0, t) = 0, t ≥ 0,

yxxx(1, t) = 0, t ≥ 0, yxx(1, t) = −αyxt(1, t)− βyx(1, t), t ≥ 0.

1. INTRODUCTION

We consider the following evolutive system

ytt + yxxxx = 0, 0 < x < 1, t ≥ 0,(1.1)

y(0, t) = yx(0, t) = 0, t ≥ 0,(1.2)

yxxx(1, t) = 0, t ≥ 0,(1.3)

yxx(1, t) = −αyxt(1, t)− βyx(1, t), t ≥ 0,(1.4)

where y is a scalar function of variable x and t; α and β are two given positive
constants. This simplified model may represent a cable that is clamped at one
end and submitted to a force control in rotation and velocity rotation. We
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assumed that the cable is completely flexible with constant length. The system
(1.1)−(1.4) has been studied when β = 0 in [7], where it has studied the
exponential stabilization. Then they get by explicit formules the location of
the spectrum. When control in velocity is added to the existing feedback, only
the behavior of the eigenvalues of large modulus can be analytically obtained.
One use in this case asymptotic techniques. The main goal of this work is to use
the finite differences method to elaborate a program that gives the complete
eigenvalues location of the system defined by (1.1)−(1.4), as a function of
positive feedback parameter α and β. the paper is organized as follows. In
the next section we recall the formulation of the system (1.1)−(1.4) in the
context of the C0 semigroup of contractions. We then formulate the eigenvalue
problem and give the exact spectrum when β = 0. When β > 0 we show
asymptotic techniques are used to estimate eigenvalues of large modulus .

In the third section, we develop a numerical scheme based on the finite
differences method for the eigenvalues problem. Finally, in the last section, we
give some numerical experiments from our scheme.

2. FORMULATION OF THE SYSTEM IN THE C0 SEMIGROUP OF
CONTRACTIONS THEORY

2.1. Energy space and energy norm. We consider the system (1.1)−(1.4)
and we let v = ut, W = (u, v)T . We introduce the following spaces:
V = {u ∈ H2(0, 1);u(0) = ux(0) = 0} ,
H =

{
(u, v)T ;u ∈ V, v ∈ L2(0, 1)

}
= V × L2(0, 1)}.

The space H is called energy space of the system. We define the inner-product

〈(u1, v1) , (u2, v2)〉 =

∫ 1

0

(u′′1u
′′
2 + v1v2)dx+ βu′1u

′
2.

The energy norm induced by the inner product is hence defined by

‖(u, v)‖2H =

∫ 1

0

[
(u′′)2 + v2

]
dx+ β (u′)

2
.

Finally letting

A =

(
0 1
d4

dx4
0

)
,
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the system (1.1)−(1.4) can be written as formally as

dW (t)

dt
= AW (t) , W (0) = W0 ∈ H,

with D (A) = {(u, v)T ∈ (H4 (0, 1) ∩ V )× V/uxxx (1) = 0,

uxx (1) = −αvx(1)− βux(1)}.

2.2. Spectrum of the operator A. Let λ denotes an eigenvalue of A and
W = (u, v)T ∈ D (A) a corresponding eigenvector. We have

AW = λW,

or

v = λu

uxxxx = λv

u (0) = 0

ux (0) = 0

uxx (1) = −αvx (1)− βux (1)

uxxx (1) = 0.

Eliminating v from the above equations, we get

uxxxx + λ2u = 0,

u (0) = 0,

ux (0) = 0,

uxx (1) = −(αλ+ β)ux (1) ,

uxxx (1) = 0.

Letting λ = τ 2, we get

uxxxx + τ 4u = 0,

uxxx (1) = 0,

uxx (1) = −(ατ 2 + β)ux (1) ,

ux (0) = 0,

u (0) = 0.

(2.1)
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The Shkalikov’s characteristic polynomial associated with equation (2.1) is

ω4 + 1 =
(
ω2 −

√
2ω + 1

)(
ω2 +

√
2ω + 1

)
= 0 and its zeros are ω1 =

1 + i√
2
,

ω2 =
−1 + i√

2
, ω3 =

−1− i√
2

, ω4 =
1− i√

2
. The solutions of (2.1) take the form:

u (x) = C1e
τω1x + C2e

τω2x + C3e
τω3x + C4e

τω4x.

Let us set:

Fi = τ 3ω3
i e
τωi , i = 1, ..., 4

Gi =
(
ατ 2 + τωi + β

)
τωie

τωi i = 1, ..., 4.

Then we get the following matrix equation:
F1 F2 F3 F4

G1 G2 G3 G4

τω1 τω2 τω3 τω4

1 1 1 1



C1

C2

C3

C4

 =


0

0

0

0


A necessary and sufficient condition for this matrix equation to have nontriv-

ial solutions for C1, C2, C3, and C4 is that the following charasteristic determi-
nant

∆ (τ) =

∣∣∣∣∣∣∣∣∣
F1 F2 F3 F4

G1 G2 G3 G4

τω1 τω2 τω3 τω4

1 1 1 1

∣∣∣∣∣∣∣∣∣
vanishes. By developing ∆ (τ) with respect to the last row, we get

∆ (τ) = τ

{
(ω3 − ω4) (F1G2 − F2G1) + (ω2 − ω3) (F1G4 − F4G1)

+ (ω3 − ω1) (F2G4 − F4G2) + (ω4 − ω1) (F3G2 − F2G3)

+ (ω2 − ω4) (F3G1 − F1G3) + (ω1 − ω2) (F3G4 − F4G3)

}
.

Next, we set

Wij = (ωi − ωj) 1 ≤ i, j ≤ 4

Tij = FiGj − FjGi 1 ≤ i, j ≤ 4
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so that

∆ (τ) = τ (W34T12 +W23T14 +W31T24 +W41T32 +W24T31 +W12T34) ,

where

W34 = −
√

2, W23 = i
√

2, W31 = (−1− i)
√

2

W41 = i
√

2, W24 = (−1− i)
√

2, W12 =
√

2

T12 = τ 3
[√

2τ 2 − 2i
(
ατ 3 + βτ

)]
eiτ
√
2

T14 = τ 3
[
i
√

2τ 2 + 2i
(
ατ 3 + βτ

)]
eτ
√
2

T24 =
√

2 (1− i) τ 5

T32 = τ 3
[
−i
√

2τ 2 + 2i
(
ατ 3 + βτ

)]
e−τ
√
2

T31 =
√

2 (1 + i) τ 5

T34 = τ 3
[
−
√

2τ 2 − 2i
(
ατ 3 + βτ

)]
e−iτ

√
2.

After simplification, we get

∆ (τ) = τ 7
{[
−2τ−1 + 2

√
2iα + 2

√
2iβτ−2

]
eiτ
√
2

−
[
2τ−1 + 2

√
2iα + 2

√
2iβτ−2

]
e−iτ

√
2

−
[
2τ−1 + 2

√
2α + 2

√
2βτ−2

]
eτ
√
2

+
[
−2τ−1 + 2

√
2α + 2

√
2βτ−2

]
e−τ
√
2 − 8τ−1

}
.

We observe that for |τ | sufficiently large, the dominant term of each expres-
sion in bracket is nonzero. In the view of Shkalikov’s theory, the boundary
conditions are said to be regular.

We also mention that for β = 0, the previous characteristic determinant is the
same as that found in [7] (p.37), where the author proves that the eigenvalues
with sufficiently large modulus are asymptotically simple and isolated.

We claim that the above result is also true when β 6= 0. The properties just
mentioned are very essential in order to use the fundamental Theorem 3.1

of Shkalikov’s theory [8] (p.1328) in the perspective of finding a Riesz basis
property for the operator A in the energy space H.
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We set

P (τ) = (−τ +
√

2iατ 2 + 2iβ)eiτ
√
2 − (τ +

√
2iατ 2 +

√
2iβ)e−iτ

√
2

− (τ +
√

2ατ 2 +
√

2β)eτ
√
2 + (−τ +

√
2ατ 2 +

√
2β)e−τ

√
2 − 4τ

Q (τ) = (τ +
√

2ατ 2 +
√

2β)eτ
√
2 + (τ +

√
2iατ 2 +

√
2iβ)e−iτ

√
2

and note that

∆ (τ) = 2τ 5P (τ) .

Our next task is to show that the zeros of Q are asymptotically those of P ,
in a sector of the complex plan to be determined. For the approach used, the
reader is referred to [5], [7]. We consider the convex polygon C whose center
is O and which has vertices only at the following complex plane points:

√
2,

i
√

2, −
√

2, −i
√

2 denoted by C1, C2, C3, C4 and plotted in the complex plane
according to the following underlined figure:

Let the sides of the polygon C be taken in counterclockwise succession with
any one be designated by li, that is to say the segment

[
Ci, Ci+1

]
and θi be the

inclination angle of the outer normal to the side li. We denote by Di the line
defined by

Di = {z ∈ C/Arg (z) = θ, θi−1 + ε ≤ θ ≤ θi + ε, i = 1, ..., 4} ,
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where ε is sufficiently small but otherwise arbitrary positive real number. Let
Si be the sector described by the following relation:

{z ∈ C/ |z| large enough, θi−1 + ε ≤ Arg (z) ≤ θi + ε} .

Such a sector is thus associated with each side of the polygon and the set of
these sectors completely fills out the complex plane, so that we have:

4
∪
i=1
Si = C.

A straightforward calculation shows that the following holds for any τ ∈ C

P (−τ) = −P (τ) , P (τ) = P (τ).

It follows that the set of zeros of P (τ) is symmetric with respect to the origin
of the complex plane and also symmetric with respect to the real axis. This
allows us to study P (τ) , for instance, in the following typical sector:

S1 =
{
z ∈ C/ |z| large enough, − π

4
+ ε ≤ Arg (z) ≤ π

4
+ ε
}
.

When z lies on the line D1, it is readily computed that∣∣zαjeCjz
∣∣ = e|z|(xj cos(θ)+yj sin(θ)+αj

log|z|
|z| ),

where Cj = xj+iyj. It follows that the relative magnitude of the terms
∣∣zαjeCjz

∣∣
are ultimately determined by the relative magnitude of the associated quanti-
ties xj cos (θ) + yj sin (θ); these, however, are represented geometrically by the
orthogonal projection vectors Cj = xj + iyj upon the line D1. These projections
are as follows:

ρ1 =
√

2 cos (θ) , ρ2 =
√

2 sin (θ) , ρ3 = −
√

2 cos (θ) , ρ4 = −
√

2 sin (θ) ,

and from this interpretation, it is easily seen that by virtue of the restriction
upon the range of θ, Cj /∈ l1 here (j 6= 1, 2) and

xj cos (θ) + yj sin (θ) < x1 cos (θ) + y1 sin (θ) .

Thus, for z ∈ S1, j 6= 1, 2, we get:

zαjeCjz = zαjeCjzεj (z) ,

where

εj (z) = |z|αj−αi e(xj cos(θ)+yj sin(θ))−(x1 cos(θ)+y1 sin(θ))
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and where εj (z) → 0 when |z| → +∞. We recall here the fundamental result
of Langer [6] , which allows us to study the asymptotical behavior of the zeros
of the exponential sums.

2.3. Asymptotic behavior of the eigenvalues.

Theorem 2.1. Let Q be a function defined in C as

Q (z) =
n∑
j=0

zvj (aj + εj (z)) eCjz,

where aj ∈ C, a0, an 6= 0, vj ∈ R, Cj ∈ C and the functions εj are analytic in all
sector Si (for a fixed i) and which approach zero uniformly when |z| goes to +∞,
such a function will be called an ε−function. Then in this sector Si, the zeros of Q
are asymptotically represented by those of the relative sum

∑
j∈Ki

ajz
vjeCjz, where

Ki is the subset of {1, ..., n} which does not contain indexes j such that Cj ∈ li.

According to this theorem, the zeros of P in S1 are asymptotically those of Q
which are themselves asymptotically represented by those of

eτ
√
2 + ie−iτ

√
2 = 0.

Now, the zeros of the above equation take the form ωπ
(
n− 1

4

)
, where n ∈ N

and ω = 1+i√
2

is a zero of the Shkalikov’s characteristic polynomial (2.1) . This
allows us to search for an asymptotic expansion of zeros of P in the form

τn = ωπ

(
n− 1

4

)
+
x

n
+

y

n2
+O

(
1

n3

)
,

where x and y are complex constants to be determined later. We insert the
above expression of τn in the one of Q (τ) . After a direct computation we get:

Q (τn) = (−1)nK (1− i)
{
n
[
ωπ (1 + i) +

√
2αω2π2X (1 + i)

]
− 1

4
(1 + i)ωπX

+ 2ωπ −
√

2

2
αω2π2X (1 + i) +

√
2αω2π2Y (1 + i)

+
√

2αω2π2X2 +
A

n
+O

(
1

n2

)}
where A is a complex which depends on x and y. By choosing the complex
number in such a way that the coefficients of n2−i, i = 1, 2 in Q (τn) vanish, we



NUMERICAL APPROXIMATION. . . 313

get

x =
−1 + i

4απ

√
2, y =

3
√

2 (1 + π) + i
√

2 (2 + 3π)

16π2
,

upon substitution of these values in the expression of τn, we get:

τn =

(
n− 1

4

)
ωπ +

1

4απn

√
2 (−1 + i) +O

(
1

n2

)
, n ∈ N.

Taking into account that λn = τ 2n, we finally get

λn = − 1

α
+O

(
1

n

)
+ i

[(
n− 1

4

)2

π2 +O

(
1

n2

)]
, n ∈ N.

We have then proven the following assertion:

Re (λn) −→ − 1

α
as n −→ +∞.

3. FINITE DIFFERENCES METHOD

In this section we develop a numerical scheme based on the finite differ-
ences method for the eigenvalue problem associated with the evolutive system
defined by (1.1)−(1.4). In practice the spectral problem for such system is not
simple and cannot be solved by formula. Even when there is a formula, it might
be so complicated that we would prefer to visualize the eigenvalues by looking
at a graph. The finite differences method is an important technique of compu-
tation using quite simple equations and consists of replacing each derivative by
a difference quotient. Consider for instance, a function u (x) of one variable.
Choose a mesh size h = ∆x. We approximate the value u (jh) for x = jh by a
number uj indexed by an integer j : uj ∼ u (jh) . Using Taylor expansions

y (xi − 4h) = y (xi)− 4hy′ (xi) +
16

2
h2y′′ (xi)−

64

3!
h3y3 (xi) +

256

4!
h4y4 (xi)

−1024

5!
h5y5(xi) +O

(
h6
)

y (xi − 3h) = y (xi)− 3hy′ (xi) +
9

2
h2y′′ (xi)−

27

3!
h3y3 (xi) +

81

4!
h4y4 (xi)

−243

5!
h5y5(xi) +O

(
h6
)
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y (xi − 2h) = y (xi)− 2hy′ (xi) + 2h2y′′ (xi)−
8

6
h3y3 (xi) +

16

24
h4y4

−32

5!
h5y5(xi) +O

(
h6
)

y (xi − h) = y (xi)− hy′ (xi) +
1

2
h2y′′ (xi)−

1

6
h3y3 (xi) +

1

24
h4y4

− 1

5!
h5y5(xi) +O

(
h6
)

y (xi + h) = y (xi) + hy′ (xi) +
1

2
h2y′′ (xi) +

1

6
h3y3 (xi) +

1

24
h4y4 (xi)

+
1

5!
h5y5(xi) +O

(
h6
)

y (xi + 2h) = y (xi) + 2hy′ (xi) + 2h2y′′ (xi) +
8

6
h3y3 (xi) +

16

24
h4y4 (xi)

+
32

5!
h5y5(xi) +O

(
h6
)

y (xi + 3h) = y (xi) + 3hy′ (xi) +
9

2
h2y′′ (xi) +

27

3!
h3y3 (xi) +

81

4!
h4y4 (xi)

+
243

5!
h5y5(xi) +O

(
h6
)

y (xi + 4h) = y (xi) + 4hy′ (xi) +
16

2
h2y′′ (xi) +

64

3!
h3y3 (xi) +

256

4!
h4y4 (xi)

+
1024

5!
h5y5(xi) +O

(
h6
)

Also, using Taylor expansions we get

y(4) (xi) =
y (xi − 2h)− 4y (xi − h) + 6y (xi)− 4y (xi + h) + y (xi + 2h)

h4
+O

(
h2
)
,

y(3) (xi) =
5y (xi)− 18y (xi − h) + 24y (xi − 2h)− 14y (xi − 3h) + 3y (xi − 4h)

2h3

+O
(
h2
)
,

y(3) (xi) =
−5y (xi) + 18y (xi + h)− 24y (xi + 2h) + 14y (xi + 3h)− 3y (xi + 4h)

2h3

+O
(
h2
)
,

y(2) (xi) =
2y (xi)− 5y (xi − h) + 4y (xi − 2h)− y (xi − 3h)

h2
+O

(
h2
)
.
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We recall that the spectral problem to be solved is the following one

yxxxx + λ2y = 0

yxxx (1) = 0

yxx (1) = − (αλ+ β) yx (1)

yx (0) = 0

y (0) = 0.

With the above approximations in mind our spectral problem can be repre-
sented in the following discrete form:

(3.1) 4y1 − y2 = 0,

(3.2) yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2 + λ2h4yi = 0, i = 2, ..., n− 2

(3.3) −2yn−3 + 8yn−2 − 10yn−1 + 4yn + (αλh+ βh) (yn−2 − 4yn−1 + 3yn) = 0

(3.4) 3yn−4 − 14yn−3 + 24yn−2 − 18yn−1 + 5yn = 0,

where h =
1

n
denote the size, and yi = y (ih) , for i = 2, · · ·, n− 2.

The finite differences method look for the complex number λ, such as it
exists a non zero vector (y1, · · ·, yn) satisfies the above discrete problem. Now,
we consider the following matrix of order n.

A =



0 · · · · · · · · · · · · 0
... h4 0

...
... 0

. . . . . . ...
...

... . . . . . . . . . ...
...

... . . . . . . . . . ...
...

... . . . h4

...
... 0 0

0 · · · · · · · · · · · · 0 0


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B =



0 · · · · · · · · · · · · · · · · · · 0

0
. . . ...

... . . . ...

... . . . ...

... . . . ...

... . . . 0

... 0 αh −4αh 3αh

0 · · · · · · · · · 0



C =



4 −1 0 · · · · · · · · · · · · 0

−4 6 −4 1 0
...

1
. . . . . . . . . . . . . . . ...

0
. . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . 0

... 0 1 −4 6 −4 1

... · · · · · · 0 −2 8 + βh −10− 4βh 4 + 3βh

0 · · · 0 3 −14 24 −18 5


The set of equations (3.1)− (3.4) take the following matrix equation form:

(3.5) λ2AY + λBY + CY = 0, Y = (y1, ..., yn)T ,

where the matrix A, B and C are defined as above.

Now, we introduce the following auxiliary vector:

Z = λY,

then (3.5) is equivalent to the following system

AZ = λAY

−CY = λAZ + λBY.

This is a generalized eigenvalues problem. For such a problem we may use
the "QZ" method [6]

PU = λQU ; U = (Z, Y )T .
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The matrix P and Q are defined as follows

P =

(
A 0N
0N −C

)
Q =

(
0N A

A B

)
,

where 0N is the zero matrix of N order.

4. NUMERICAL EXPERIMENTS

To evaluate the effect of parameters α and β on the spectrum, we give here in
the same field, the graphs of the spectrum for different values of the parameters
α and β, we do the study for several cases:

First case: β = 0

a) α ∈ ]0; 1[ . We choose α = 0.3, α = 0.4 and α = 0.5 for n = 500

We observe that when the parameter α ∈ ]0; 1[ increases, without control in
rotation β the location of the spectrum moves rapidly on the left-hand side of
the half plane.

b) α ≥ 1. We choose α = 1, α = 2 and α = 4 for n = 500
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We observe that when the parameter α increases, without control in rotation
β, the locationof the spectrum moves rapidly on the left-hand side of the half
plane.

Second case: β > 0

a) α ∈ ]0; 1[ . We fixe β = 10 take α = 0.25, α = 0.5 and α = 0.75 for n = 500

we observe that when the parameter α ∈ ]0; 1[ without control in rotation β the
location of the spectrum moves rapidly on the left-hand side of the half plane.

b) α ≥ 1. We fixe β = 10 take α = 1, α = 2 and α = 4 for n = 500
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We observe that when the parameter α increases,without control in rotation
β, the location of the spectrum moves rapidly on the left-hand side of the half
plane.

Third case: We fixe α = 1 take β = 20 and β = 40 for n = 500

We observe that the parameter β has no effect on the spectrum for a fixed
value of α and the location of the spectrum stays on the left-hand side of the
left half plane.
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5. CONCLUSION

From all previous observations we claim that the control feedback β in rota-
tion has no influence on the optimal decay rate of the energy. But the control
feedback in velocity rotation improves the optimal decay of the energy.
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