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PRIME IDEALS OF MΓ-GROUPS
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SYAM PRASAD KUNCHAM1, AND MALLIKARJUNA BHAVANARI

ABSTRACT. In this paper we consider the algebraic system MΓ-group, a gen-
eralization of the concept module over a nearring. We define prime ideal of
MΓ-group and obtain some equivalent conditions for a prime ideal of an MΓ-
group. Some related fundamental results and examples are also presented.

1. INTRODUCTION

In this section we provide elementary definition and examples from Satya-
narayana [11,13] for the sake of completeness.

Let (M, +) be a group (not necessarily Abelian) and Γ a non-empty set. Then
M is said to be a Γ-nearring if there exists a mapping M× Γ×M→ M (denote
the image of (m1, α1,m2) by m1α1m2 for m1, m2 ∈M and α1 ∈ Γ) satisfying the
following conditions:

(1) (m1 +m2)α1m3 = m1α1m3 +m2α1m3 and
(2) (m1α1m2)α2m3 = m1α1(m2α2m3)

for all m1,m2,m3 ∈ M and for all α1, α2 ∈ Γ.
Furthermore, M is said to be a zero-symmetric Γ-nearring if mα0 = 0 for

all m ∈ M, α ∈ Γ (where ‘0’ is the additive identity in M).
Consider an example, take Z8 = {0, 1, 2, 3, . . . , 7}, the group of integers mod-

ulo 8 and a set X = {a, b}. Write M = {f |f : X → Z8 and f(a) = 0}.
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Then M = {f0, f1, f2, . . . , f7} where fi is defined by fi(a) = 0 and fi(b) = i for
0 ≤ i ≤ 7. Now define two mappings g0, g1 : Z8 → X by setting g0(i) = a for
all i ∈ Z8 and g1(i) = a if i /∈ {3, 7}, g1(i) = b if i ∈ {3, 7}. Write Γ = {g0, g1},
Γ∗ = {g0}. Then M is a Γ-nearring and a Γ∗-nearring.

Let M be a Γ-nearring. An additive group G is said to be an MΓ-group if
there exists a mapping G × Γ × G → G (denote the image of (m,α, g) by mαg
for m ∈ M, α ∈ Γ, g ∈ G) satisfying the conditions:

(1) (m1 +m2)α1g = m1α1g +m2α1g and
(2) (m1α1m2)α2g = m1α1(m2α2g)

for all m1,m2 ∈ M, α1, α2 ∈ Γ and g ∈ G.
Satyanarayana [6, 7, 12] introduced and studied the concepts like f-prime

ideals and corresponding f-prime radical in Γ-near-rings. Further Satyanarayana
[13] generalized the notion of module over nearring to module over gamma
nearrings and established fundamental structure theorems. Radical of gamma
nearrings also studied by Booth [1–3]. The concept of equiprime ideal of a
gamma nearring is a generalization of equiprime ideal of a nearring which was
studied in Booth and Groenewald [4]. Satyanarayana and Syam Prasad [8,15]
studied fuzzy aspects of gamma nearrings.

For standard notations, elementary definitions and results on nearrings, we
refer Pilz [5], Satyanarayana and Syam Prasad [9]. Throughout, we denote M
for a Γ-nearring and G for an MΓ-group.

2. SUBGROUPS AND IDEALS OF MΓ-GROUP:

Definition 1 (Satyanarayana [11, 13]). An additive subgroup H of G is said to
be MΓ-subgroup if mαh ∈ H for all m ∈ M, α ∈ Γ and h ∈ H. Note that (0) and
G are the trivial MΓ-subgroups. A normal subgroup H of G is said to be an ideal
of G if mα(g + h)−mαg ∈ H for m ∈M , α ∈ Γ, g ∈ G and h ∈ H. Moreover, a
subgroup A of M is said to be an MΓ-subgroup of M if MΓA ⊆A.

Note 1. If M is zero-symmetric then every ideal is a MΓ-subgroup. However, the
converse need not be true. Consider the following example.

Example 1. Let G = Z4 = {0, 1, 2, 3}, the ring of integers modulo 4 and X =

{a, b}. Write M = {g|g : X → G, g(a) = 0} = {g0, g1, g2, g3}, where gi(a) = 0,
gi(b) = i for 0 ≤ i ≤ 3. Let Γ = {f1, f2, f3, f4} where each fi : G→ X defined by
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f1(i) = a(0 ≤ i ≤ 3), f2(i) = a(0 ≤ i ≤ 2), f2(3) = b, f3(i) = a for i ∈ {0, 2, 3},
f3(1) = b, f4(i) = a if i ∈ {0, 2} and f4(i) = b if i /∈ {0, 2}.
For g ∈M , f ∈ Γ, x ∈ G , write gfx = g(f(x)). Now G becomes an MΓ-group.
Further, Y = {0, 2} is only the nontrivial subgroup and also MΓ-subgroup, but
not an ideal of G (since 3 /∈ Y and g3f2(1 + 2)− g3f2(1) = 3).

Notation 1. Let P be an ideal of G. We define (P : ΓG) = {x ∈M |xΓG ⊆ P}.

Lemma 1. Let M be zero-symmetric and let P be an ideal of MΓ- group G and B
be an MΓ- subgroup of G. If B ( P then (P : ΓB) = (P : Γ(P +B)).

Proof. Clearly B ⊆ P + B. Take a ∈ (P : Γ(P + B)). Then aγ(p + b) ∈ P for
all b ∈ B, p ∈ P . Now aγb = aγ(0 + b)− aγ0 ∈ P (since P E G and M is zero-
symmetric). This implies a ∈ (P : ΓB). Therefore (P : Γ(P + B) ⊆ (P : ΓB).
Conversely, take a ∈ (P : ΓB). To show aγ(p + b) ∈ P for all p ∈ P , b ∈ B and
γ ∈ Γ.
Now aγ(p + b) = (aγ(p + b)aγb) + (aγb) ∈ P (since P E G and aγb ∈ P (by
converse hypo.)). This implies a ∈ (P : Γ(P + B)). Hence (P : ΓB) = (P :

Γ(P +B)). �

Notation 2. As the notation given in Reddy and Satyanarrayana [10], for any
non-empty subset A of G we write

(1) A0 = {x− y|x, y ∈ A}; and
(2) A# = {nγg|n ∈ M, g ∈ A, γ ∈ Γ}.

Let X be a non-empty subset of G and write X0 = X, and Xi+1 = X0
i

⋃
X#

i for all
integers i ≥ 0. Then X0 ⊆ X1 ⊆ X2 ⊆ . . . and clearly

⋃∞
i=0Xi is the MΓ-subgroup

generated by X.

Notation 3. For any b ∈ M , we denote [b]M as the MΓ-subgroup of M generated
by b.

Proposition 1. Let P be an ideal of G. Suppose that for any MΓ-subgroup H of G
such that P ⊂ H, we have (P : ΓG) = (P : ΓH). Then for all a ∈ M and b ∈ G,
aΓ[b]M ⊆ P implies aΓG ⊆ P or b ∈ P .

Proof. Take a ∈M , b ∈ G such that aΓ[b]M ⊆ P . Suppose b /∈ P . Then we have
the following cases.
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Case 1: P ( [b]M . Now aΓ[b]M ⊆ P . This implies a ∈ (P : Γ[b]M) = (P : ΓM)

(by hypothesis) = (P : ΓG) (we considered with respect to M). This
implies aΓG ⊆ P .

Case 2: [b]M ( P . Then there exists x ∈ P such that x /∈ [b]M . This implies
P ( (P + [b]M). By hypothesis (P : ΓM) = (P : Γ(P + [b]M)). Now
aΓ[b]M ⊆ P =⇒ a ∈ (P : Γ[b]M) = (P : ΓG). This implies aΓG ⊆ P .

�

Note 2. Let G be an MΓ-group. Then a subgroup of G need not be an MΓ-group,
in general.

Consider the following example:

Example 2. Take M = {0, a, b, c}, Γ = {γ1, γ2} and G = M with the following
binary operations.

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

γ1 0 a b c

0 0 0 0 0

a 0 b 0 b

b 0 0 0 0

c 0 b 0 b

γ2 0 a b c

0 0 0 0 0

a 0 a 0 0

b 0 0 b 0

c 0 0 0 c

Clearly (M,+,Γ) is a Γ-nearring, and G is an MΓ-group. Now H = {0, c} is a
subgroup of G. But it is not an MΓ-subgroup. For this, cγ1c = b /∈ {0, c} = H.
Therefore MΓH * H. Hence H is not an MΓ-subgroup of G.

3. PRIME IDEALS OF MΓ-GROUPS.

Definition 2. Let P be a proper ideal of G such that MΓG 6⊂ P . Then P is called
prime if AΓB ⊆ P =⇒ AΓG ⊆ P or B ⊆ P , for all ideals A of M, B of G.

Definition 3. An MΓ- group G is said to be 0-prime MΓ- group if MΓG 6= (0) and
(0) is a prime ideal of G.

Example 3. Consider M = {0, a, b, c}, Γ = {γ1, γ2}, G = M and the following
binary operations.
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+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

γ1 0 a b c

0 0 0 0 0

a 0 a 0 0

b 0 0 0 0

c 0 b 0 0

γ2 0 a b c

0 0 0 0 0

a 0 a 0 0

b 0 0 0 a

c 0 0 0 a

Then M is a Γ-nearring, and G is an MΓ-group. Since there are no ideals A, B
of G such that AΓB = {0} we have that (0) is prime ideal of G.

Definition 4. (Satyanarayana, MBV Rao, Syam Prasad [14]): A left ideal P of a
nearring N is said to be a prime left ideal if A and B are left ideals of N such that
AB ⊆ P implies A ⊆ P or B ⊆ P .

Example 4. Let N be a nearring and P be a prime left ideal of N. Write M = N

and consider M as the gamma nearring with Γ = {·} (here ‘·′ deremarks the
multiplication in N). Write G = N . Clearly G is an MΓ-group. Then P becomes a
prime ideal of the MΓ-group G.

Verification: Let A be an ideal of M and B be an ideal of G such that AΓB ⊆
P . This implies AB ⊆ P (since Γ = {·}). Since A, B are left ideals in N, we have
that A ⊆ P or B ⊆ P . If B * P then A ⊆ P . Since A is two sided ideal in N, we
have AN ⊆ A. In the case A ⊆ P , we have that AΓG = AG = AN ⊆ A ⊆ P .

Proposition 2. Let G be an MΓ-group. Suppose MΓG 6= (0). If (0) is a prime
ideal of G then the following two conditions are equivalent.

(1) B 6= (0) (where B is an ideal of G), and
(2) AΓB = (0) ⇐⇒ A ⊆ (0 : ΓG).

Proof. (1) =⇒ (2) : Suppose (1) holds. That is B 6= (0). To show AΓB =

(0) ⇐⇒ A ⊆ (0 : ΓG), suppose AΓB = (0). Since (0) is prime and B 6= (0),
we have AΓG = (0). This implies A ⊆ (0 : ΓG). Conversely suppose that
A ⊆ (0 : ΓG). This means AΓG = {0}. Now AΓB ⊆ AΓG ⊆ {0}. This implies
AΓB = (0).
(2) =⇒ (1) : Suppose that AΓB = (0) ⇐⇒ A ⊆ (0 : ΓG) holds. In a contrary
way suppose that B = (0). Then MΓB = (0) =⇒ M ⊆ (0 : ΓG) (by converse
hypothesis) =⇒ MΓG = (0), a contradiction. �

Proposition 3. Let G be an MΓ-group such that (P : ΓG) 6= M . If P is a prime
ideal of G then the following two conditions are equivalent.
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(1) B is an ideal of G and B * P , and
(2) AΓB ⊆ P ⇐⇒ A ⊆ (P : ΓG).

Proof. (1) =⇒ (2) : Suppose B is an ideal of G and B * P . To show AΓB ⊆
P ⇐⇒ A ⊆ (P : ΓG), suppose AΓB ⊆ P . Since P is prime and B * P ,
we have AΓG ⊆ P . This implies A ⊆ (P : ΓG). Conversely suppose that
A ⊆ (P : ΓG). This means AΓG ⊆ P . Now AΓB ⊆ AΓG ⊆ P . This implies
AΓB ⊆ P .
(2) =⇒ (1) Suppose that AΓB ⊆ P ⇐⇒ A ⊆ (P : ΓG) holds. In a contrary
way suppose that B ⊆ P . Then MΓB ⊆ P =⇒ M ⊆ (P : ΓG) (by converse
hypothesis) =⇒ MΓG ⊆ P , a contradiction. �

Theorem 4. Let G be an MΓ- group, P be an ideal of G, A and B be ideals of M
then the following conditions (1) and (2) are equivalent.

(1) P is 0-prime.
(2) < a > Γ < b >⊆ P implies that < a > ΓG ⊆ P or b ∈ P .

Moreover, if M is a zero symmetric Γ-nearring then conditions (1) to (4)
are equivalent.

(3) If M is zero symmetric, aΓ < b >⊆ P implies that aΓG ⊆ P or b ∈ P .
(4) aΓB ⊆ P implies that aΓG ⊆ P or B ⊆ P .

Proof. (1) =⇒ (2) :

Suppose < a > Γ < b >⊆ P . Write A =< a > and B =< b >. Then
AΓB ⊆ P . This implies AΓG ⊆ P or B ⊆ P (by (1)) < a > ΓG ⊆ P or
< b >⊆ P =⇒ < a > Γ G ⊆ P or b ∈ P . Hence (2).
(2) =⇒ (1): Suppose (2).
In contrary way suppose that (1) is not true.
Then there exists an ideal A of M, an ideal B of G such that AΓB ⊆ P but
AΓG ( P and B ( P . This implies aγg /∈ P for some a ∈ A, γ ∈ Γ, g ∈ G and
b ∈ B\P .
Now < a > Γ < b >⊆ AΓB ⊆ P . By (2) we have that < a > ΓG ⊆ P or b ∈ P .
Since b /∈ P we have < a > ΓG ⊆ P .
Now aγg ∈< a > ΓG ⊆ P implies aγg ∈ P , a contradiction.
(2) =⇒ (3): Suppose aΓ < b >⊆ P . This implies a ∈ (P : Γ < b >) =⇒
< a >⊆ (P : Γ < b >) (since (P : Γ < b >) is an ideal and M is zero
symmetric) =⇒ < a > Γ < b >⊆ P =⇒ < a > ΓG ⊆ P or b ∈ P (by (2))
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=⇒ aΓG ⊆< a > ΓG ⊆ P or b ∈ P . This proves (3).
(3) =⇒ (2): Suppose < a > Γ < b >⊆ P . Then aΓ < b >⊆< a > Γ < b >⊆ P .
This implies aΓG ⊆ P or b ∈ P ( by (3)) =⇒ a ∈ (P : ΓG) or b ∈ P
=⇒ < a >⊆ (P : ΓG) or b ∈ P =⇒ < a > ΓG ⊆ P .
(3) =⇒ (4): Suppose (3). In contrary way, suppose (4) is not true. Then
aΓB ⊆ P , aΓG * P and B * P for some a ∈ A. So there exists γ ∈ Γ , and
g ∈ G such that aγg /∈ P and b ∈ B\P .
Now aΓ < b >⊆ aΓB ⊆ P =⇒ aΓG ⊆ P or b ∈ P (by (3)) =⇒ aΓG ⊆ P

(since b /∈ B�P ) =⇒ aγg ∈ aΓG ⊆ P .
(4) =⇒ (3): Suppose aΓ < b >⊆ P . Write B =< b >. Now aΓB ⊆ P =⇒
aΓG ⊆ P or B ⊆ P (by (4)) =⇒ aΓb ⊆ P or b ∈< b >= B ⊆ P . �
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