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ON A SUBCLASS OF UNIVALENT HARMONIC MAPPINGS CONVEX IN
THE IMAGINARY DIRECTION

DEEPALI KHURANA!, SUSHMA GUPTA, AND SUKHJIT SINGH

ABSTRACT. In the present article, we consider a class of univalent harmonic

mappings, Cr = {TC[ fl= f%zpf/ + L=l ¢~ 0 | and f is convex univalent

14+c ?
in D, whose functions map the open unit disk D onto a domain convex in the

direction of the imaginary axis. We estimate coefficient, growth and distortion
bounds for the functions of the same class.

1. INTRODUCTION

A domain 2 C C is said to be convex if for any two points w; and ws in €2, the
line segment tw; + (1 — t)w, (0 < t < 1) lies entirely in 2. A domain Q2 C Cis
said to be convex in a direction v € [0, 7), if for all a € C, the set {a + te" : t €
R} has either empty or connected intersection with (2. In particular, a domain
is convex in the direction of the real (imaginary) axis if every line parallel to
the real (imaginary) axis has either an empty or connected intersection with
that domain. A function which maps the unit disk D = {z € C : |z| < 1}
onto a convex domain or onto a domain convex in a direction +, is said to
be convex function or function convex in direction v, respectively. In 2008,
Muir [3] defined a transformation T.[f], ¢ > 0 as follows.
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For a univalent analytic function f : D — C, with f(0) = f'(0) — 1 =0,

an  zife) = 1EElE JE S el

Writing /(z) = z/(1 — z) we have,

I(z)+z2I'(z)  I(z) —zI'(2)
2 + 2
Qe o PED

which is the ‘Standard right half-plane’ mapping which maps the open unit disk

, z€D, ¢c>0.

Ti[I](z) =

D onto the right half-plane {w € C: Re (w) > 3!} and was earlier constructed
by Clunie and Sheil-Small [1] using ‘Shear Construction’ technique stated in
the following lemma.

Lemma 1.1. [1] A locally univalent and sense-preserving harmonic function [ =
h + g on D is univalent and maps D onto a domain convex in the direction of ¢ if
and only if the analytic mapping h — e*?g is univalent and maps D onto a domain
convex in the direction of ¢.

In [4], Muir proved that 7,[f] defined by (1.1) is convex in the direction of
the imaginary axis if and only if f is convex. In the present article, we consider
the class

Cr = {Tc[f] = f;—-fch/ + fl_fch/ : C>O}

where c is any real number and f is convex univalent in D . We shall study this

class and estimate coefficient, growth and distortion bounds for the functions
of the same class.

2. BACKGROUND

Let A be the set of analytic functions defined on D that fix zero, and let
S C A be the set of univalent functions with added normalization f'(0) = 1.
Denote by H the class of all complex valued harmonic functions f in the open
unit disk D normalized by f(0) = 0 = f.(0) — 1. A function f € H can be
uniquely decomposed as f = h + g, where h and ¢ are analytic in . The
functions h and g, respectively, are called analytic and co-analytic parts of f.
By a result of Lewy [5], a necessary and sufficient condition for f to be locally
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univalent and sense preserving in D is that the jacobian J; of f, defined by
Ji(z) = | (2)|* —|g'(2)]?, satisfies the condition J;(z) > 0 in D, or equivalently,
if h'(z) # 0 in D, the function w = ¢'(z)/h'(z) (called dilatation of f) has the
property |w(z)| < 1 for all z € D. Let Sy be the subclass of H consisting of
all those functions that are univalent and sense-preserving in D. By S%, we
denote the class of mappings f € Sy with an added normalization f;(0) = 0.
Clearly, we have the inclusion S C S% C Sy. A domain D is close-to-convex
if its compliment can be written as union of non-intersecting half lines. Let C'
and C'y denote the respective subclasses of S and Sy for which f(ID) is close-to-
convex. Let K (¢) and K (¢) be the respective subclasses of S and Sy for which
f(D) is convex in the direction of ¢. Note that K(¢) C C and Ky(¢) C Chg.
A domain D is said to be starlike with respect to a point w, € D, provided for
every w € D, the line segment tw + (1 — t)wy, 0 < t < 1, lies in D. Let S* and
Sj; denote the respective subclasses of S and Sy for which f(ID) is starlike with
respect to the origin. Similarly, let K and Ky denote the respective subclasses
of S and Sy for which f(D) is a convex domain.

3. MAIN RESULTS

In this section of the present article, we establish estimates for coefficients,
growth and distortion for the functions of the class Cr. We shall need following
results on analytic functions [2], in order to prove our main results in this
section.

Lemma 3.1. Let f be analytic in D, with f(0) = 0 and f'(0) = 1. Then f € C'if
and only if zf'(z) € S*.

Lemma 3.2. (i) The coefficient of each function f € S* satisfy |a,| < n for
n = 2,3 - - strict inequality holds for all n, unless f is a rotation of the
Koebe function k(z) defined by k(z) = =
—Z
(i) If f € C, then |a,| < 1 for n = 2,3 - - strict inequality holds for all n

unless f is a rotation of function I(z) defined by l(z) = %
— Z

Lemma 3.3. (i) Foreach f € S*,
1—7r 147

|z =7 <1
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for each z € D, z # 0, equality occurs if and only if ' f' is a suitable
rotation of the Koebe function k(z) defined by k(z) =

(i) If f € C, then

(1-2)*

lz|=r<1

(1—r)?
for each z € D, z # 0, equality occurs if and only if f is a rotation of the
function I(z) defined by I(z) = ——.

—z

1
Lemma 3.4. (i) Foreach f € S*,
T T
< < — = 1.
T SVEIS o Fl=r<

For each z € D, z # 0, equality occurs if and only if 'f' is a suitable
rotation of the Koebe function k(z) defined by k(z) = A=
(ii) Foreach f € C,
r r
< <
S <) <

For each z € D, z # 0, equality occurs if and only if f is a suitable rotation

of the function [(z) defined by I(z) = %
—Z

|z| =r < L

Theorem 3.1. If the mapping T.[f] = H(2)+G(z) € Cr, then for everyn = 2, 3---

|An|? + | Ba)? < (n* +1).

2
(14¢)?
Here, A, and B, are the coefficients of H(z) and G(z) in their power series rep-
resentation defined by (1.1). Equality holds for the function T. {O—iz)} and its

suitable rotations.

Proof. We have

_f@) +eaf(z) | f2) = eaf'(2)
1+c 1+c

be locally-univalent and convex in the direction of the imaginary axis i.e. f is

,2€D, c>0,

convex univalent. We have
B 1—c
C1l+4c¢

H(0)=0=H'(0)—1, G(0)=0, G'(0)
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So, H(z) and G(z) have the series representation of the following form:

H(zx)=2+Y A" and G(z)=Y B,z", where B, = .
(2) =2 2 2" an (2) 2 2", where By = T——
Thus,
2
H —
() + G(2) = 1o (2

since f(z) is convex so by using (i) of Lemma 3.2 for f(z) we have

‘1;C(An+Bn) <1,
1 A, + B, < :
Similarly, we have
2c
H() = G(2) = 1 =/'(2),

thus by using Lemma 3.1 for the function f(z) and (ii) of Lemma 3.2 for the
function z f’(z), we get

4n?c?

3.2 A, — B,]* < )
(32) | | ~ (14 ¢)?

and so, using (3.1) and (3.2)

1
|An|2 + |Bn|2 = 5 (|An - Bn|2 + |An + Bn|2>

< (®n*+1).

2
(1+c)?

Corollary 3.1. If T.. [f] () = H(z) + G(z) € Cr, then for every n = 2,3 - --

|A,| < v/2(n?c2+1) and |B,| < v/2(n?c2+1) .

Here, A, and B,, are coefficients of H(z) and G(z) in their power series repre-
sentation defined by (1.1). Equality holds for the function T, {ﬁ} and its
—Z

suitable rotations.
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Proof. From Theorem 3.1,

[An] < VIAW + |Bal? — | BuJ?

< n?2 +1
1+c

|A,| < v/2(n?c2+1)
|Bn| < \/2(n?c2+1)

forn=2,3,---. O

as ¢ > 0, we have

and similarly,

Theorem 3.2. If T,[f](z) = H(z) + G(z) € Cr, then for every z € D,
2 1—r\° , ,
1+ 21+ ) <1+C2 (1+r) < |H'(R)P +1G'(2)f

(1-|—c)22(1 ) (HCQ (1fi)2> ’

where r = |z| < 1. Equality holds for the function T, [

;} and its suitable
' (1—2)
rotations.
Proof. Using (ii) of Lemma 3.3 for the function f(z), we get
4 4

(3.3) ATt <@+ ')l < (P En
Similarly, with the use of Lemma 3.1 for the function f(z) and then (i) of
Lemma 3.3 for the function z f’(z), we have

4¢3 (1 —r)?
(1+c)*(1+r)
Now, from equation (3.3) and (3.4), we have

(1—1—0)22(1—0—7-)4 <1+CQ (1;:) ) < |H'(2)]? +1G"(2)

(1—1—0)22(1 ) (HCQ (T—ri)Q) ’

where r = |z, ¢ > 0. O

4¢3 (1 +1)?

(34) (I +c2(1— )

5 < |H'(2) - C'(2)f <
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Corollary 3.2. Let T..[f](z) = H(z) + G(z) € Cr, then for every z € D,

(3.5) L\/l + ¢? (1—_%T> < |H'(2)| < V2

2(1+r)? r (14+c¢)(1—1r)2’

and

V2

(1+e)(1—1r)2’

(3.6) 0<|G'(2)| <

where r = |z|, ¢ > 0. Equality holds for the function T, [ 1 and its suitable

(1-2)

rotations.

Proof. Since ¢ > 0, then from Theorem 3.2, we have

2 1—r\? 2
3- = 1 2 - Hl 2 / 2 '
3.7) (1+7")4< te (1+r)><| () +16(2)] <(1+c)2(1—r)4

The local univalence of 7..[f](z) gives that |G'(2)| < |H'(2)|, z € D. Combining
the above inequality with (3.7) we obtain inequalities (3.5) and (3.6). O

Corollary 3.3. Let T\ [f )+ G( ) € Cr, then
(3.8)

1—7" <\H/ 1+7“
2(1+r2 )(1+7r)? 1—|—'r V2(1—r)2 1—r

and

1 1 i
(3.9 0<|G'(2)] < 2(1 1 r2)(1 — r)? L <1—i—:’> 7

where r = |z|. Equality holds for the function T.[+=

i )] and its suitable rotations.

Proof. Take ¢ = 1 in Theorem 3.2, we derive
(3.10)

e (“ G%)) < )P+ IC P € g <1+ (i:)?).

Now, if ¢ = 1 thus b; = G’(0) = 0 which gives that the dilatation function
w(z) = GLz)
- H(2)

satisfies Schwarz’s lemma and we have following inequality

0 < |G (2)] < [ H'(2)]
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Combining above inequality with (3.10), we get desired inequalities (3.8) and
(3.9). O

Theorem 3.3. If T,[f] = H(z) + G(z) € Cr, then for every z € D,

[H ()] +G2)[*

u+f$2—rﬂ<l+6{%¥)’

where r = |z|, ¢ > 0. Equality holds for the function T, {Ll and its suitable

(1-2)

i+ C)QQZ P (1 0 fr)2> =

rotations.

Proof. By applying (ii) of Lemma 3.4 for the function f(z), we have

4 ) 4o
(3.11) Ao S HE+GEN s g gy

Similarly, using Lemma 3.1 for the function f(z) and the (i) of Lemma 3.4 for
the function z f'(z) gives

4r2c? 2 dr2c?
(3.12) (T |H(z) — G(z)]* < T+ (—r)t

From (3.11) and (3.12), we have

2r2 c? ) )
1+ o2(1+7) (1 + a —{—7’)2> < [H(Z)]" +1G(2)]
2r? c?
o ()
where r = |z|, ¢ > 0. O

Corollary 3.4. If T.[f](z) = H(z) + G(z) € Cr, then we have for every =z € D,

2

0 S‘H(Z’)|<\/§m 1+(1_—r)2,
0 g\G(z)|<\/§(1_T) R s
0 <L) < 14 —C

(1—r) (1—r)%’
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where r = |z|, ¢ > 0. Equality holds for the function T. {ﬁ} and its suitable
— Z

rotations.

Proof. From Theorem 3.3, we have

[H(2)]* +|G(2)[*

u+w32—rv(1+ﬁ€%ﬁ)'

|H(z)| > 0 and |G(z)| > 0 are trivial inequalities, since we have for ¢ > 0 :

u+eg2+rv(“+ﬁf%?) :

9 AP 2r? c?
HEHGOI < T (1 )

a-n\' taooe

0§|G(z)|<\/§(1_r),/1+(1_T)2,.

Also, |T.[f](z)| > 0 and

e f1(2)]

So,

0< |H(2)| < V2

Similarly,

|H(z) + G(2)]
< [H(z)[+1G(2)|
V2(HZ)P +[G(2)P)

2r 1+
(I—=r)(1+c¢)? (1—r)?

IN
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