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ON A SUBCLASS OF UNIVALENT HARMONIC MAPPINGS CONVEX IN
THE IMAGINARY DIRECTION

DEEPALI KHURANA1, SUSHMA GUPTA, AND SUKHJIT SINGH

ABSTRACT. In the present article, we consider a class of univalent harmonic
mappings, CT =

{
Tc[f ] =

f+czf ′

1+c + f−czf ′

1+c ; c > 0
}

and f is convex univalent
in D, whose functions map the open unit disk D onto a domain convex in the
direction of the imaginary axis. We estimate coefficient, growth and distortion
bounds for the functions of the same class.

1. INTRODUCTION

A domain Ω ⊂ C is said to be convex if for any two points w1 and w2 in Ω, the
line segment tw1 + (1− t)w2 (0 ≤ t ≤ 1) lies entirely in Ω. A domain Ω ⊂ C is
said to be convex in a direction γ ∈ [0, π), if for all a ∈ C, the set {a+ teiγ : t ∈
R} has either empty or connected intersection with Ω. In particular, a domain
is convex in the direction of the real (imaginary) axis if every line parallel to
the real (imaginary) axis has either an empty or connected intersection with
that domain. A function which maps the unit disk D = {z ∈ C : |z| < 1}
onto a convex domain or onto a domain convex in a direction γ, is said to
be convex function or function convex in direction γ, respectively. In 2008,
Muir [3] defined a transformation Tc[f ], c > 0 as follows.
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For a univalent analytic function f : D→ C, with f(0) = f ′(0)− 1 = 0,

(1.1) Tc[f ](z) =
f(z) + czf ′(z)

1 + c
+
f(z)− czf ′(z)

1 + c
, z ∈ D, c > 0.

Writing I(z) = z/(1− z) we have,

T1[I](z) =
I(z) + zI ′(z)

2
+
I(z)− zI ′(z)

2

=
z − z2

2

(1− z)2
−

z2

2

(1− z)2
, z ∈ D,

which is the ‘Standard right half-plane’ mapping which maps the open unit disk
D onto the right half-plane {w ∈ C : Re (w) > −1

2
} and was earlier constructed

by Clunie and Sheil-Small [1] using ‘Shear Construction’ technique stated in
the following lemma.

Lemma 1.1. [1] A locally univalent and sense-preserving harmonic function f =

h+ g on D is univalent and maps D onto a domain convex in the direction of φ if
and only if the analytic mapping h−e2iφg is univalent and maps D onto a domain
convex in the direction of φ.

In [4], Muir proved that Tc[f ] defined by (1.1) is convex in the direction of
the imaginary axis if and only if f is convex. In the present article, we consider
the class

CT =

{
Tc[f ] =

f + czf ′

1 + c
+
f − czf ′

1 + c
: c > 0

}
where c is any real number and f is convex univalent in D . We shall study this
class and estimate coefficient, growth and distortion bounds for the functions
of the same class.

2. BACKGROUND

Let A be the set of analytic functions defined on D that fix zero, and let
S ⊂ A be the set of univalent functions with added normalization f ′(0) = 1.
Denote by H the class of all complex valued harmonic functions f in the open
unit disk D normalized by f(0) = 0 = fz(0) − 1. A function f ∈ H can be
uniquely decomposed as f = h + g, where h and g are analytic in D. The
functions h and g, respectively, are called analytic and co-analytic parts of f .
By a result of Lewy [5], a necessary and sufficient condition for f to be locally
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univalent and sense preserving in D is that the jacobian Jf of f , defined by
Jf (z) = |h′(z)|2−|g′(z)|2, satisfies the condition Jf (z) > 0 in D, or equivalently,
if h′(z) 6= 0 in D, the function w = g′(z)/h′(z) (called dilatation of f) has the
property |w(z)| < 1 for all z ∈ D. Let SH be the subclass of H consisting of
all those functions that are univalent and sense-preserving in D. By S0

H , we
denote the class of mappings f ∈ SH with an added normalization fz(0) = 0.
Clearly, we have the inclusion S ⊂ S0

H ⊂ SH . A domain D is close-to-convex
if its compliment can be written as union of non-intersecting half lines. Let C
and CH denote the respective subclasses of S and SH for which f(D) is close-to-
convex. LetK(φ) andKH(φ) be the respective subclasses of S and SH for which
f(D) is convex in the direction of φ. Note that K(φ) ⊂ C and KH(φ) ⊂ CH .
A domain D is said to be starlike with respect to a point w0 ∈ D, provided for
every w ∈ D, the line segment tw + (1 − t)w0, 0 ≤ t ≤ 1, lies in D. Let S∗ and
S∗H denote the respective subclasses of S and SH for which f(D) is starlike with
respect to the origin. Similarly, let K and KH denote the respective subclasses
of S and SH for which f(D) is a convex domain.

3. MAIN RESULTS

In this section of the present article, we establish estimates for coefficients,
growth and distortion for the functions of the class CT . We shall need following
results on analytic functions [2], in order to prove our main results in this
section.

Lemma 3.1. Let f be analytic in D, with f(0) = 0 and f ′(0) = 1. Then f ∈ C if
and only if zf ′(z) ∈ S∗.

Lemma 3.2. (i) The coefficient of each function f ∈ S∗ satisfy |an| ≤ n for
n = 2, 3 · ·· strict inequality holds for all n, unless f is a rotation of the
Koebe function k(z) defined by k(z) =

z

(1− z)2
.

(ii) If f ∈ C, then |an| ≤ 1 for n = 2, 3 · ·· strict inequality holds for all n
unless f is a rotation of function l(z) defined by l(z) =

z

1− z
.

Lemma 3.3. (i) For each f ∈ S∗,
1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3
, |z| = r < 1
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for each z ∈ D, z 6= 0, equality occurs if and only if ′f ′ is a suitable
rotation of the Koebe function k(z) defined by k(z) =

z

(1− z)2
.

(ii) If f ∈ C, then

1

(1 + r)2
≤ |f ′(z)| ≤ 1

(1− r)2
, |z| = r < 1

for each z ∈ D, z 6= 0, equality occurs if and only if f is a rotation of the
function l(z) defined by l(z) =

z

1− z
.

Lemma 3.4. (i) For each f ∈ S∗,
r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
, |z| = r < 1.

For each z ∈ D, z 6= 0, equality occurs if and only if ′f ′ is a suitable
rotation of the Koebe function k(z) defined by k(z) =

z

(1− z)2
.

(ii) For each f ∈ C,
r

1 + r
≤ |f(z)| ≤ r

1− r
, |z| = r < 1.

For each z ∈ D, z 6= 0, equality occurs if and only if f is a suitable rotation
of the function l(z) defined by l(z) =

z

1− z
.

Theorem 3.1. If the mapping Tc[f ] = H(z)+G(z) ∈ CT , then for every n = 2, 3···

|An|2 + |Bn|2 ≤
2

(1 + c)2
(n2 + 1).

Here, An and Bn are the coefficients of H(z) and G(z) in their power series rep-

resentation defined by (1.1). Equality holds for the function Tc

[
z

(1− z)

]
and its

suitable rotations.

Proof. We have

Tc[f ](z) = H(z) +G(z) =
f(z) + czf ′(z)

1 + c
+
f(z)− czf ′(z)

1 + c
, z ∈ D, c > 0 ,

be locally-univalent and convex in the direction of the imaginary axis i.e. f is
convex univalent. We have

H(0) = 0 = H ′(0)− 1, G(0) = 0, G′(0) =
1− c
1 + c

.
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So, H(z) and G(z) have the series representation of the following form:

H(z) = z +
∞∑
n=2

Anz
n and G(z) =

∞∑
n=1

Bnz
n, where B1 =

1− c
1 + c

.

Thus,

H(z) +G(z) =
2

1 + c
f(z)

since f(z) is convex so by using (i) of Lemma 3.2 for f(z) we have∣∣∣∣1 + c

2
(An +Bn)

∣∣∣∣ ≤ 1,

(3.1) |An +Bn|2 ≤
4

(1 + c)2
.

Similarly, we have

H(z)−G(z) =
2c

1 + c
zf ′(z),

thus by using Lemma 3.1 for the function f(z) and (ii) of Lemma 3.2 for the
function zf ′(z), we get

(3.2) |An −Bn|2 ≤
4n2c2

(1 + c)2
.

and so, using (3.1) and (3.2)

|An|2 + |Bn|2 =
1

2

(
|An −Bn|2 + |An +Bn|2

)
≤ 2

(1 + c)2
(c2n2 + 1) .

�

Corollary 3.1. If Tc [f ] (z) = H(z) +G(z) ∈ CT , then for every n = 2, 3 · ··

|An| <
√

2(n2c2 + 1) and |Bn| <
√

2(n2c2 + 1) .

Here, An and Bn are coefficients of H(z) and G(z) in their power series repre-

sentation defined by (1.1). Equality holds for the function Tc

[
z

(1− z)

]
and its

suitable rotations.
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Proof. From Theorem 3.1,

|An| ≤
√
|An|2 + |Bn|2 − |Bn|2

≤
√

2

1 + c

√
c2n2 + 1

as c > 0, we have
|An| <

√
2(n2c2 + 1)

and similarly,
|Bn| <

√
2(n2c2 + 1)

for n = 2, 3, · · ·. �

Theorem 3.2. If Tc[f ](z) = H(z) +G(z) ∈ CT , then for every z ∈ D,

2

(1 + c)2(1 + r)4

(
1 + c2

(
1− r
1 + r

)2
)
≤ |H ′(z)|2 + |G′(z)|2

≤ 2

(1 + c)2(1− r)4

(
1 + c2

(
1 + r

1− r

)2
)
,

where r = |z| < 1. Equality holds for the function Tc

[
z

(1− z)

]
and its suitable

rotations.

Proof. Using (ii) of Lemma 3.3 for the function f(z), we get

(3.3)
4

(1 + c)2(1 + r)4
≤ |H ′(z) +G′(z)|2 ≤ 4

(1 + c)2(1− r)4
.

Similarly, with the use of Lemma 3.1 for the function f(z) and then (i) of
Lemma 3.3 for the function zf ′(z), we have

(3.4)
4c2(1− r)2

(1 + c)2(1 + r)6
≤ |H ′(z)−G′(z)|2 ≤ 4c2(1 + r)2

(1 + c)2(1− r)6
.

Now, from equation (3.3) and (3.4), we have

2

(1 + c)2(1 + r)4

(
1 + c2

(
1− r
1 + r

)2
)
≤ |H ′(z)|2 + |G′(z)|2

≤ 2

(1 + c)2(1− r)4

(
1 + c2

(
1 + r

1− r

)2
)
,

where r = |z|, c > 0. �
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Corollary 3.2. Let Tc[f ](z) = H(z) +G(z) ∈ CT , then for every z ∈ D,

(3.5)

√
2

2(1 + r)2

√
1 + c2

(
1− r
1 + r

)2

< |H ′(z)| <
√

2

(1 + c)(1− r)2
,

and

(3.6) 0 ≤ |G′(z)| <
√

2

(1 + c)(1− r)2
,

where r = |z|, c > 0. Equality holds for the function Tc

[
z

(1− z)

]
and its suitable

rotations.

Proof. Since c > 0, then from Theorem 3.2, we have

(3.7)
2

(1 + r)4

(
1 + c2

(
1− r
1 + r

)2
)
< |H ′(z)|2 + |G′(z)|2 < 2

(1 + c)2(1− r)4
.

The local univalence of Tc[f ](z) gives that |G′(z)| < |H ′(z)|, z ∈ D. Combining
the above inequality with (3.7) we obtain inequalities (3.5) and (3.6). �

Corollary 3.3. Let T1[f ](z) = H(z) +G(z) ∈ CT , then
(3.8)

1√
2(1 + r2)(1 + r)2

√
1 +

(
1− r
1 + r

)2

≤ |H ′(z)| ≤ 1√
2(1− r)2

√
1 +

(
1 + r

1− r

)2

and

(3.9) 0 ≤ |G′(z)| ≤ 1√
2(1 + r2)(1− r)2

√
1 +

(
1 + r

1− r

)2

,

where r = |z|. Equality holds for the function Tc[ z
(1−z) ] and its suitable rotations.

Proof. Take c = 1 in Theorem 3.2, we derive
(3.10)

1

2(1 + r)4

(
1 +

(
1− r
1 + r

)2
)
≤ |H ′(z)|2 + |G′(z)|2 ≤ 1

2(1− r)4

(
1 +

(
1 + r

1− r

)2
)
.

Now, if c = 1 thus b1 = G′(0) = 0 which gives that the dilatation function

w(z) =
G′(z)

H ′(z)
, satisfies Schwarz’s lemma and we have following inequality

0 ≤ |G′(z)| ≤ |z||H ′(z)|.
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Combining above inequality with (3.10), we get desired inequalities (3.8) and
(3.9). �

Theorem 3.3. If Tc[f ] = H(z) +G(z) ∈ CT , then for every z ∈ D,

2r2

(1 + c)2(1 + r)2

(
1 +

c2

(1 + r)2

)
≤ |H(z)|2 + |G(z)|2

≤ 2r2

(1 + c)2(1− r)2

(
1 +

c2

(1− r)2

)
,

where r = |z|, c > 0. Equality holds for the function Tc

[
z

(1− z)

]
and its suitable

rotations.

Proof. By applying (ii) of Lemma 3.4 for the function f(z), we have

(3.11)
4r2

(1 + r)2(1 + c)2
≤ |H(z) +G(z)|2 ≤ 4r2

(1 + c)2(1− r)2

Similarly, using Lemma 3.1 for the function f(z) and the (i) of Lemma 3.4 for
the function zf ′(z) gives

(3.12)
4r2c2

(1 + c)2(1 + r)4
≤ |H(z)−G(z)|2 ≤ 4r2c2

(1 + c)2(1− r)4

From (3.11) and (3.12), we have

2r2

(1 + c)2(1 + r)2

(
1 +

c2

(1 + r)2

)
≤ |H(z)|2 + |G(z)|2

≤ 2r2

(1 + c)2(1− r)2

(
1 +

c2

(1− r)2

)
,

where r = |z|, c > 0. �

Corollary 3.4. If Tc[f ](z) = H(z) +G(z) ∈ CT , then we have for every z ∈ D,

0 ≤ |H(z)| <
√

2
r

(1− r)

√
1 +

c2

(1− r)2
,

0 ≤ |G(z)| <
√

2
r

(1− r)

√
1 +

c2

(1− r)2
,

0 ≤ |Tc[f ](z)| < 2r

(1− r)

√
1 +

c2

(1− r)2
,
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where r = |z|, c > 0. Equality holds for the function Tc

[
z

(1− z)

]
and its suitable

rotations.

Proof. From Theorem 3.3, we have

2r2

(1 + c)2(1 + r)2

(
1 +

c2

(1 + r)2

)
≤ |H(z)|2 + |G(z)|2

≤ 2r2

(1 + c)2(1− r)2

(
1 +

c2

(1− r)2

)
.

|H(z)| ≥ 0 and |G(z)| ≥ 0 are trivial inequalities, since we have for c > 0 :

|H(z)|2 + |G(z)|2 ≤ 2r2

(1 + c)2(1− r)2

(
1 +

c2

(1− r)2

)
<

2r2

(1− r)2

(
1 +

c2

(1− r)2

)
So,

0 ≤ |H(z)| <
√

2
r

(1− r)

√
1 +

c2

(1− r)2
.

Similarly,

0 ≤ |G(z)| <
√

2
r

(1− r)

√
1 +

c2

(1− r)2
, .

Also, |Tc[f ](z)| ≥ 0 and

|Tc[f ](z)| = |H(z) +G(z)|

≤ |H(z)|+ |G(z)|

≤
√

2 (|H(z)|2 + |G(z)|2)

≤ 2r

(1− r)(1 + c)2

√
1 +

c2

(1− r)2

<
2r

(1− r)

√
1 +

c2

(1− r)2
.

�
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