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EVALUATION FOR ESTIMATING OF THE PDF AND THE CDF OF
GENERALIZED INVERTED EXPONENTIAL DISTRIBUTION WITH
APPLICATION IN INDUSTRY

PARISA TORKAMAN

ABSTRACT. The generalized inverted exponential distribution is introduced as
a lifetime model with good statistical properties. This paper, the estimation
of the probability density function and the cumulative distribution function
of with five different estimation methods: uniformly minimum variance un-
biased(UMVU), maximum likelihood(ML), least squares(LS), weighted least
squares (WLS) and percentile(PC) estimators are considered. The perfor-
mance of these estimation procedures, based on the mean squared error (MSE)
by numerical simulations are compared. Simulation studies express that the
UMVU estimator performs better than others and when the sample size is large
enough the ML and UMVU estimators are almost equivalent and efficient than
LS, WLS and PC. Finally, the result using a real data set are analyzed.

1. INTRODUCTION

Most of the generalizations of the exponential distribution have the constant,
non-increasing, non-decreasing and bathtub hazard rates, but in the applica-
tions, there may be data that have the inverted bathtub hazard rate. For ex-
ample, in the investigate of breast and bladder cancer data, we found that
the mortality increases initially after some time reaches a peak then slowly
decreases. The generalized inverted exponential distribution (GIED), for such
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types of data, can be a good model. The generalized inverted exponential dis-
tribution was introduced by Abouammoh and Alshinigiti [1] as a generaliza-
tion of inverted exponential distribution (IED). The GIED has a uni-modal and
right-skewed density function. Abouammoh and Alshinigiti [1] have shown
that the hazard rate of GIED can be increasing or decreasing but not constant
and depending on the value of the shape parameters. They have obtained the
statistical and reliability properties of the GIED. For estimation of the unknown
parameters have proposed the maximum likelihood and least square proce-
dures. They also showed that the GIED in many situations can perform better
than the IED, gamma, weibull, generalized exponential distribution.

Because of the convenient mathematical form of this model, GIED has been
considered in many application fields, such as in queue theory, accelerated
life testing, horse racing, modeling wind speeds and supermarkets queues and
many more (Nadarajah and Kotz [17]). CDF and PDF of GIED are

Fxy(z)=1—(1—e™"* 2>0,a>0\>0,

and

A
fx(z) = a—Qe”\/x(l —eME)eTl 2 >0,a >0, >0,
x

where « is the shape parameter and )\ is the scale parameter.

Nadarajah and Kotz [17] have studied some properties of the GIED. Krishna
and Kumar [12] discussed the estimation of the two parameters and reliability
properties based on progressively type-// censored sample. Singh et al [19]
obtained the maximum and Bayesian estimations for parameters of the GIED
in case of the progressive type /I censoring scheme with binomial removals.
Dey and Pradhan [7] studied the estimation problem of GIED under the hybrid
censoring scheme. Many authors have analyzed this distribution for example,
see Dey and Dey [4], Dey et al [5], Dey et al [6], Panahi [18].

Because of the many applications of this distribution, it is important to an-
alyze the efficient estimation of its PDF and CDF. For the other distribution
similar estimation methods in various situations have been done. For example:
Jabbari Nooghabi and Jabbari Nooghabi [17], Bagheri et al [3], Alizadeh et
al [2] and Maleki et al [15]. Several estimation procedures in this paper are
considered: maximum likelihood estimation (MLE), uniformly minimum vari-
ance unbiased estimation (UMVUE), least squares estimation (LS), weighted
least squares estimation (WLS) and percentile estimation (PCE).
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In this paper, it is assumed that the shape parameter is unknown but the
scale parameter is not. The rest of this article is organized as follows. The
MLE and the UMVUE of the PDF and the CDF and their MSEs are obtained in
Section 2 and 3, other estimation methods, such as LS, WLS and PC are given
in Section 4 and 5, respectively. Simulation studies and a real life data set is
performed in Section 6 and 7. Finally, some discussion and conclusion are in
Section 8.

2. MAXIMIM LIKELIHOOD ESTIMATORS OF THE PDF AND THE CDF

Suppose X1, X, ..., X,, be arandom sample of size n from the GIED. The MLE
of a, say & (when \ is known) is
—n
> iy log(l —e~mi)
By using the invariance property of MLEs, we have:

=

)\ )
fx(z) = Q—Qe_k/m(l —eVTETl 2 > 0,0 >0,

x
and
Fx(z)=1—(1—e M4 2>0,1>0,
respectively. We consider 7' = — > log(1 — e~*/*!) and it can easily be shown

that 7' ~ Gamma(a, \)

n

1 n e 1 n
T:FE log(l—ek/l):UE log(1— F(x)) =z,
=1 =1

i=1
where denote equality in distribution, 1 — F'(x;) are independent uniform [0,1]
random variables and Z; are independent exponential random variables with
scale parameter .
Therefore,

o

H=—t""1e ™ >0 a>0.

By using the transformance & = U = % and the PDF of &, we obtain

n".am efna/u

fo(u) =

u>0,a>0.

The next theorem calculate E(f(z))" and E(F(z))".
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Theorem 2.1. : The r'th moments of f(x) and F(x) are

B(f(@)" = g (1) ¥ () F 2/ rlog (1= ),
and
B(F(z) =1+ z(ggz) >y (Z) (ﬂog(‘l—l_k))?fc_n(w—mazoga E),
Az

221 - Nz k= e N, & =wuand k,(.) is the modified
221 —e M=

Bessel function of the second kind of order v.

respectively, where ¢ =

Proof We have f(z) = ¢(1 — k)", F(z) = 1 — (1 — k)* for w > 0. therefore,
we can write:

_na
n"a™ e u

A +o0
By = [ =y s

+o0

cn"a" o .\ —na

_ F( ) uw" lerulog(l k)e = du
n 0

2CT r4+n —1 r—n
- - 2 _ 2 K _ 2 — 1 - .

F(?’L) (TLO[) (7“[09(1 —k)) r n( \/ Tnlog( k))
So that the last relationship follow via Eq.(3.479.1) in Gradshteyn and Ryzhik
[8]. Also,

na)z e v

E(F(z)) = E(F(z)—1+1)’“:/0 m(—(1—k)“+1)r(r(n) e

_na

_ /0+°° g(_ni(?;) (1— k)“%inH du

1+ /0 +m§n:(—1)i(7f>(1 e (g?‘n)) e " du

- 7
=1

_ (”0‘)% - (T +Ooemzog(1—k)€—%u—n—1 w
- g () ‘
B (na)? < T —1 - .
= 1+2 o) Z(—l) <l>(m) K_,(2v/—inalog(1 — k)) .
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Note that, f(x) and F(x) are biased estimators for f(z) and F(z), respec-
tively. The MSEs of f(z) and F/(z) are obtained based on Theorem 2.1 in the
next Theorem.

Theorem 2.2. The MSEs of f(x) and F(z) are

24n

MSE(f(z)) = 2(7;(2‘7)1) (% 1 i; 2 leg(l_i e?))TKzn(Q\/—Qnalog(l — e
—4ﬂx%?€;fg%lfj;fxhwﬂfféryﬁka%@vﬂmawal—elw+f%m,
and
MSE(E(z)) = 1+2<;(ng im)i(?) (m)z’v{n(z\/ —nialog(l — e=)
—2F(z)[1 — 2 (;(O‘n)) (1og(1_—162) )‘T"K_n(z\/ —nalog(1 — e5)] + F2(x),
respectively.

N ~

Proof. We obtained E(f(X))? and E(f(z)) by putting r = 2 and r = 1 in the
previous Theorem (2.1), we will have

MSE(f(x)) = E(f(X))* = 2f(2) E(f(x)) + f*(2).
The proof for M SE(F(z)) is similar. O

3. UMVUESs OF THE PDF AND THE CDF

We derive the UMVU estimators of the PDF and the CDF of the GIED and
their MSEs. Suppose X1, X, ..., X,, be a random variable from the GIED. So on,
T =" log(1—e~**) is a complete sufficient statistics for that is an unknown
parameter ( is known). By considering the distribution of T, in the previous
section and using the Lehmann Scheffe Theorem, the conditional probability
function of given T T" (fx,r(21|T = t) = f*(t)) is the UMVUE of f(x) because

ﬂmm=/ﬂwww:/mmmw:wmwz/mﬂmwﬂzm@m

where fx, r(x1,t) denote the joint PDF of X and 7.
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Theorem 3.1. The joint PDF of X, and T is given by

ai ek/m z\\n—2 « og(l—er =
frir(onst) = o T gy (U leg(1 — )Rttt ),

Proof. We can write:

le,T(.I‘l,t) = P(l’l S X1 S T +d$17t S T S t"‘dt)

Pz < Xj <z +drg,t < —Zlog(l —e M) <t dt) =
i=1

P(zy < Xy <y +dxy, t +log(l — e V%) < — Zlog(l —e M) <
i=2

< t4log(l — e M) 4+ dt)
P(z; < Xy < x1+dxq)P(t + log(1 — e_A/m) < — Zlog(l — e_)‘/‘“) <
i=2

< t4log(l —e M%) 4 dt)L

A -z —A/z\ya—1 el A z\\n—2 o(t+log(l—e /%))
3¢ (1—eV7) .m(t+log(1—e )" e & :
The proof is complete. O

Theorem 3.2. By considering T' =t then

(n—1A eM*  (t+log(l —eM7))n—2

T (=) << oo,

~ og(l — e
Py =1 (R0

7l —log(l — €M) <t < o0,

are the UMVU estimstors for fx(z) and Fx(x), respectively.

Proof. By using distribution of 7" = ¢ and based onTheorem 2.1, f(x) is the
UMVUE of f(z). By the derivative of F'(z)with respect to x, f(x) is calculated
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and show that F'(z) is the UMVU estimator of F'(z).

%F(g;) = —%[HM]H
_ Nz _ Az
— -1+ log(1 t e )]n_Z%log(l t M)
— (- =) . ew)]”—%; f_ii/
Nz Azyyn—
Il )

O

Note that it can easily be shown that f(z) is the unbiased estimator of f(z).

x +oo (n—1A eM®  (t+log(l —eMT))n=2 on
E(f(X)) = / t" et
(f( )) log(1—eM2) 22 1 — eMNz n—1 F(TL)
(n — 1))\ eA/x a” (log(1— )\/z)) /-i—OO A _9 _ _eM T
_ a(lo e t+1 1— /x\\n a(t+(log(1—e )))dt
21— N F(n)e —log(l—e’\/x)( +log(1—eV/*))" e

a_/\ef)\/a:(l i efA/x)afl — f(.ﬁlf)

12

MSE(f(z)) = 10“ (i) Z (log(l—e_’\/x))i(Q(nz,_ 2>>F(n—2—i,—log(1—k}a)— #2(2).
and
n 2 (n—1)i o 1) ‘
ws(F() = 131 (2) 3 () tost-e ) rn, - og1-Rja)- ()

i=1 j=0

so that, k = e M?, ¢ = (";—Qm 1f;i/:/z and I'(u, z) = f:oo tv=tetdt is the incopm-

lete gamma.
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Proof. We can write

~ 400 (t + lOg(l _ ef)\/x))an a”
E o)) = / ol r tnflefatdt
day = [ ey
n +o0 1 — -z
= o / (1 + lOg( € ))(n—?)rtn—r—le—atdt
F(n) —log(1—k) 13
n +o00 (n—2)r e
-9 1— .
— o / Z ((n . )T) (ZOQ( € ))ztn—r—le—atdt
F(TL) —log(1-k) ;- t t
(n—2)r
a” i [(n—=2)r Feo i
— logl—e Nz z( - )/ i 16 at gy
F(n) ; ( ) t —log(1—k)
(n—2)r
a” (n—2)r :
= I'n—r—1i,—log(l —Fk)a).
c () ; ( ; > (n—r —1i,—log( Ja)
also
- oo t+log(1 — e~ M=) roa”
E(F(z)) = / 1— ) et
(F(x)) —log(l—k)< ( ; ") o)
on +00 2 (n—1)¢ _
- i/ 2 (2) 2 (“‘ a )<1og<1 ety
F(”) log(1—k) ;= =0 j
2 (n—1)¢ +00
o (2 n—2)r A ,
_ (_1)2( ) ( ) log( )x/x))] / tn—j—le—atdt
F(n) 22:; Z; —log(1—k)

J
n—1)

- 1(—1)2‘(3)(}OZ((”;”)aog( NPT~ log(1 ~ F)a).

By setting » = 2 in previous equations and based on following two equations,
the proof is complete.

Note that the UMVU estimator of « is
—(n—1)
>y log(l —eMai)”

o =
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4. LEAST SQUARES AND WEIGTHED LEAST SQUARES ESTIMATORS

In this part, we use the method of Swain to achieve estimators of the prob-
ability density function and the cumulative distribution function of the GIED.
Swain obtained a procedure for estimating Beta distribution parameters with
the name least estimators. Let X, Xy, ..., X,are iid with GIED and X; ,
i1 = 1,2,...,n be the order statistic. To use these methods, we need the ex-
pectation and the variance of , see Johnson et al [9]. So, we have:

1
n+1’

iln—i+1)

(n+12(n+2)

E(F(Xu)) =

Procedure 1:
We minimize the following relationship with respect to i$, thus Least squares
estimators obtain as follows:

n .
7

> (F(Xq) - 1)

=1

The LS estimation of «( A is known) for the GIED, say a5 , can be achieved by
minimizing

Nz {
Z(l—(l—e A/ @) _n—f—l)Q‘

i=1
Estimation of the PDF and the CDF are according to the method described as
follow:

_ Sr e ~
fusa) = SEReMr(L— Mo,

Frs(z) = 1—(1—eMo)drs,

Procedure 2:
We minimize the following equation with respect to the unknown parameters
«, thus weight least squares (WLS) estimation is given by

izle(F(X(i)) o 1) ;

where
1 _ (n+1)2*(n+2)

YT Var(F(Xy)) | in—i+1)
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Then, the WLS estimators of « () is known) for the GIED, say ay s is the value
minimizing

- =Nz \a i
;wj(l—u—e Mew) _n+1)2,

with respect to «. So, based on WLS method estimation of the PDF and the
CDF are as following equations:

S )

Oﬂ/I‘;‘[Q/S ef/\/x(l o e*)\/ﬁ)OéWLS*l ’

FWLs(JZ) = 1- (1 — S_A/x)&WLS .

fWLS(ﬂf) =

It is difficult to calculate the expectation and the MSE of LS and WLS estimators
by mathematical methods, therefore we obtain them using simulation methods.

5. PERECENTILE ESTIMATOR

Kao [10,11] introduced a new estimation method based on the percentile.
To study most, see and Johnson et al [9] and Mann et al [16]. Percentile esti-
mators are based on inverting the CDF. Because of the CDF has a closed form,
in this section, we can be estimated parameters of GIED with this method. Sup-
pose X1, Xy, ..., X, is a random sample with common F(.) and X;, i =1,..,n
be the order statistic. We will consider p; = ﬁ The percentile estimators of
parameters are calculated by minimizing: !

n

Z (1 —(1- pi)(é) — e—A/x<i))>2’

=1
with respect to « for the GIED. The estimation of the PDF and the CDF are
obtained with percentile procedure as follow:
. Ape\ _
fx(@) = OéP—ge*A/x(l — g Me)are-l
x
Fx(z) = 1—(1—eMz)are,

Y

It is difficult to calculate the expectation and the MSE of LS and WLS estimators
by mathematical methods, therefore we obtain them using simulation methods
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6. SIMULATION STUDY

We study the performance of the described procedures including MLE, UMVUE,
LSE, WLSE ,PCE of the PDF and the CDF. The performance of these estimators
is evaluated based on the Mean Square Errors (MSEs). Note that all computa-
tions are done using the R statistical program. MSEs are obtained by producing
a thousand repetitions of the sample of size n = 15, ..., 120 from the GIED with
different of the parameters(a, \) = (0.7,0.7), (1.5,2.7) and (1.8,1.2).

MSE of PDF estimation MSE of CDF estimation

0.0015
1

MSE
0.0010
1
MSE

0.0005
1

0.001 0.002 0.003 0.004 0.005 0.006

20 40 60 80 100 120 20 40 60 80 100 120

n n

MSE of PDF estimation MSE of CDF estimation

0.0035
1

0.0025
1

MSE

0.0015
1

0.0005
1

20 40 60 80 100 120 20 40 60 80 100 120

n n

FIGURE 1. MSEs of MLE, UMVUE, LSE, WLSE and PCE
for the PDF(right) and the CDF(left) for parameters of
(o, \)=(0.7,0.7),(1.5,2.7),(1.8,1.2)

In Figures 1 and 2, the MSEs is plotted against the sample size (n). To
produce samples from the GIED is used the inversion method. We consider the
estimators of the PDF and the CDF for x = 1 (see, Bagheri et al [3]). Figures
illustrate that the UMVUE and MLE are equivalent and better than the other
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MSE of PDF estimation MSE of CDF estimation

MLE
UMVUE
LSE

| WLSE
I . PCE

—— MLE \
——  UMVUE 13
LSE \

4 1\ WLSE
(s PCE

MSE
0.0005 0.0010 0.0015 0.0020

20 40 60 80 100 120

FIGURE 2. MSEs of MLE, UMVUE, LSE, WLSE and PCE
for the PDF(right) and the CDF(left) for parameters of
(v, A\)=(0.7,0.7),(1.5,2.7),(1.8,1.2)

estimators for the PDF and the CDF of GIED and have the smallest MSEs. It is
worth to mention, that MSEs for each estimator are decreasing function of n .

7. DATA ANALYSIS

We examine a real dataset in the industry to compare the performance of
MLE, UMVUE, LSE, WLSE and PCE for the PDF and the CDF of the GIE distri-
bution. The data resulted from a test on the endurance of deep groove ball-
bearing that presented in Lawless [13]. Data were analyzed using Lieblein and
Zelen [14].

These data are as follows:

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56,
67.80,

68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04,
173.40.

In this study, the GIED was fitted to these data by considering that is un-
known and is known. We can place the parameters equal with because of is
a scale parameter, so that s is the standard deviation of data. (See, Bagheri
et al [4]). For five estimation methods, Figures 2 and 3 indicate the PDF vs.
experimental PDF and the CDF vs. experimental CDF.

Based on these Figures, indicate that the UMVU and ML estimators are better
fit than other procedures.
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FIGURE 3. Fitted PDFs on the histogram of ball bearing datset
for five estimation methods.

1.0

0.8

Fn(X)

0.4

FIGURE 4. Fitted CDFs on the empirical of ball bearing datset for
five estimation methods.

We also considered means of model selection criteria for comparing estima-
tion procedures.
These criteria are: maximum likelihood (ML), Akaike information criteria (AIC),
corrected AIC( AICc), Hannan-Quinn criterion(HQC) and Bayes information
criterion(BIC), and have by

ML = —2log L(«)

AIC = —2log L(«) + 2k
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AIC, = —2log L(a) + 2!{;(#)

BIC = —2log L(«) + klogn
HQC = —2log L(«) + 2k log(log n)

So that, log log L(«) denotes the logarithm likelihood and n and k are the
number of observations and parameters of the distribution, respectively. Table1
gives the values of these models selection criteria for the fore different estima-
tion methods. The smallest values of these criteria denote that it is fitted better
compared to other methods. Based on the mentioned model selection criteria,
the UMVU and ML estimators have better performance than others. Also the
PC, WLS and LS estimators have the smallest values of the MSEs, respectively.
(See the results of simulation study).

TABLE 1. Model selection criteria for the ball bearing data.

Methods of estimation ML AIC AICc BIC HQC
MLE 99.7010 101.7010 101.8914 102.8365 101.9866
UMVUE 99.4779 101.4779 101.6683 102.6134 101.7635
LSE 99.9456 101.9456 102.1360 103.0811 102.2312
WLSE 99.8539 101.8539 102.0443 102.9894 102.1395
PCE 99.7226 101.7336 101.9131 102.8581 102.0082

TABLE 2. Estimates of o parameter when ) is known.

Estimate of o

MLE 3.0894
UMVUE 2.9550
LS 2.6308
WLS 2.7227
PC 2.9477

Corollary 7.1. In this paper, we consider five different procedures of estimation
for the PDF and the CDF of the generalized inverted exponential distribution,
including Maximum likelihood estimator (ML), uniformly minimum variance un-
biased estimator (UMVU), least-square estimator (LS), weighted least square es-
timator (WLS) and percentile estimator (PC). Proposed procedures are compared
based on their MSEs with together. MSEs help us to evaluate proposed procedures
in comparison with each other. Simulations and real data set are used to compare
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the performance of the described estimation procedures. The results denote that in

the set of unbiased estimators the UMVU estimators are better and by increasing
the sample size in biased class the ML, and the UMVU are equivalent and they
outperform others.
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