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NUMERICAL BLOW-UP ON WHOLE DOMAIN FOR A QUASILINEAR
PARABOLIC EQUATION WITH NONLINEAR BOUNDARY CONDITION

ARDJOUMA GANON1, MATHURIN M. TAHA, AND AUGUSTIN K. TOURÉ

ABSTRACT. This paper deals with numerical approximation of the fol-
lowing quasilinear parabolic equation ut = u1+γuxx, 0 < x < 1, t > 0,
with a nonlinear boundary condition ux(0, t) = −uq(0, t), ux(1, t) =

0, t > 0. We show that the solution of the semidiscrete scheme, ob-
tained by the finite differences method blows up in a finite time when
0 < q < 1. Convergence of the numerical blow-up time to the theoretical
one when the mesh size goes to zero is also established. Finally, we give
some numerical results to illustrate certain point of our work.

1. INTRODUCTION

Consider the following parabolic quasilinear problem:

(1.1)


ut = u1+γuxx, (x, t) ∈ (0, 1)× (0, T ),

ux(0, t) = −uq(0, t), ux(1, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, 1],

where γ > 0 and q > 0 are given constants, and u0 is a positive bounded
smooth function defined on [0, 1] such that u′0(0) = −uq0(0) and u′0(1) = 0.

The problem (1.1) arises in fluid dynamics, which is essentially the study of
gases and liquids in motion, see [11] for more details. From the standard
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theory of parabolic equation, local existence and uniqueness of positive
solution of the above problem follow. A solution of a evolution equation
is said to blow-up in finite time if this solution become unbounded in that
finite time. We call blow-up point, the point of the space where solution
become unbounded. The set of all blow-up points is called the blow-up
set.

We know from Jong-Shenq Guo [8] and from Kavitha S., Bhakya K. [11]
that, if q > 0 and for every positive bounded smooth initial data u0, the
solution u of (1.1) blows up in finite time T .Moreover, if q > 1, u′0 ≤ 0 and
u′′0 ≥ 0 in [0, 1], x = 0 is the only blow-up point. But if 0 < q < 1, u′0 ≤ 0

and u′′0 ≥ 0 in [0, 1], blow-up occurs on the whole space [0, 1], see [8].
The blow-up phenomenon has been the focus of many authors in recent

years. Some were interested in the theoretical analysis [5, 8, 11], and
others in the numerical one [1, 2, 4, 10, 6, 7, 12].

This work is concerned with the numerical approximations of (1.1) for
the case 0 < q < 1. The case q > 1 has been studied in [6] by Ganon,
Taha, Touré. Our aim is to prove the blow-up of the numerical solution
and the convergence of the numerical blow-up time without put strong
assumption on initial data (we only use assumptions that guarantee the
blow-up of solution of the continuous problem), which is not the case of
some numerical methods (see Theorems 5-8 in [1] and relation (35) and
Remark 3.1 in [3]).

This paper is organized as follows : in the next section, we present a
semidiscrete scheme of the problem (1.1). In Section 3, we give some
properties of this semidiscrete scheme. In Section 4, under suitable con-
ditions, we prove that the solution of the semidiscrete scheme of (1.1)
blows up in finite time and the numerical blow-up time converges to the
theoretical one when the mesh size goes to zero. Finally, in the last section,
we illustrate our analysis by giving some numerical results.

2. SEMIDISCRETE PROBLEM

Let I be a positive integer and define the grid xi = ih, i = 0, . . . , I,

where h =
1

I
is the mesh parameter. We approximate the solution u of the
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problem (1.1) by the solution Uh(t) = (U0(t), ..., UI(t))
T of the following

semidiscrete scheme
dUi(t)

dt
= U1+γ

i (t)δ2Ui(t), i = 1, . . . , I − 1, t ∈ (0, Th),(2.1)

dU0(t)

dt
= U1+γ

0 (t)

(
δ2U0(t) +

2

h
U q
0 (t)

)
, t ∈ (0, Th),(2.2)

dUI(t)

dt
= U1+γ

I (t)δ2UI(t), t ∈ (0, Th),(2.3)

Ui(0) = ϕi > 0, i = 0, . . . , I,(2.4)

where for t ∈ (0, Th),

δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, i = 1, . . . , I − 1,

δ2U0(t) =
2U1(t)− 2U0(t)

h2
,

δ2UI(t) =
2UI−1(t)− 2UI(t)

h2
,

and [0, Th), the maximal time interval on which ‖Uh(t)‖∞ is finite, with
‖Uh(t)‖∞ = max0≤i≤I |Ui(t)|. When Th is finite, we say that the solution
Uh(t) blows up in finite time and the time Th is called the blow-up time of
the solution Uh(t).
Denote

δ2∗Ui(t) =

δ
2Ui(t) if i = 1, . . . , I,

δ2U0(t) +
2

h
U q
0 (t) if i = 0.

3. PROPERTIES OF THE SEMIDISCRETE SCHEME

In this section, we give some important results on the semidiscrete scheme
that have been proved in [6], namely :

Let Uh be a solution of (2.1)-(2.4),

1) then Ui(t) ≥ 0, i = 0, . . . , I, t ∈ (0, Th) ;
2) if the initial data at (2.4) verifies δ2∗ϕi ≥ 0, i = 0, . . . , I, then

dUi(t)

dt
≥ 0 and Ui(t) > 0 for 0 ≤ i ≤ I, t ∈ [0, Th) ;

3) if the initial data at (2.4) verifies δ2∗ϕi ≥ 0, i = 0, . . . , I and
ϕi > ϕi+1, then Ui(t) > Ui+1(t), 0 ≤ i ≤ I − 1, t ∈ [0, Th).
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The following theorem, proved in [6] shows that under appropriate con-
ditions, problem (2.1)-(2.4) has a unique solution that converges to the
theoretical one when the mesh size goes to zero.

Theorem 3.1. Assume that the problem (1.1) has a solution u ∈ C4,1([0, 1]×
[0, Td]) and the initial condition at (2.4) verifies ‖ϕh − uh(0)‖∞ = o(1) as

h→ 0, where uh(t) =
(
u(x0, t), . . . , u(xI , t)

)T
. Then, for h small enough, the

semidiscrete problem (2.1)-(2.4) has a unique solution Uh ∈ C1([0, Td],RI+1)

such that

max
0≤t≤Td

‖Uh(t)− uh(t)‖∞ = O
(
‖ϕh − uh(0)‖∞ + h2

)
as h→ 0.

4. NUMERICAL BLOW-UP

In this section, we prove that the solution Uh of the semidiscrete prob-
lem (2.1)-(2.4) blows up in finite time and its semidiscrete blow-up time
converges to the real one when the mesh size goes to zero.
We set (H) : u0 > 0, u′0 ≤ 0 and u′′0 ≥ 0 in [0, 1].

Theorem 4.1. Let 0 < q < 1. Assume that the problem (1.1) has a solution
u which blows up in finite time T such that u ∈ C4,1([0, 1] × [0, T )) and the
initial condition at (2.4) verifies ‖ϕh − uh(0)‖∞ = o(1) as h→ 0. Under the
assumption (H), the unique solution Uh of (2.1)-(2.4) blows up in finite time
Th for sufficiently small h, and we have the following relation :

lim
h→0

Th = T.

Proof. We prove Theorem 4.1 by using the Theorem 1.1 given in [13] by
Ushijima. The proof consists in checking three conditions : conditions A0,
A1 and A2 (see [13]).
Step 1 (Condition A0) The solution u of (1.1) blows up in finite time T
(see [8, 11]).
Step 2 (Condition A1) From [8], we know that u > 0, ux < 0,

ut > 0 and uxx > 0. Let us define the functional J as follows :

J [u](t) =

∫ 1

0

u
1−q
ε(q) (x, t)dx, t ∈ [0, T ),
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where ε(q) >
1− q
q

.

It is not hard to see that

lim
t→T

J [u](t) =∞

since u blows up in the whole interval [0, 1].

Denote α = u(1, 0) = u0(1) > 0 and β =
1− q
ε(q)

> 0.

dJ(t)

dt
= β

∫ 1

0

uβ−1(x, t)ut(x, t)dx

≥ βαβ+γ
∫ 1

0

uxx(x, t)dx

= βαβ+γuq(0, t)

≥ βαβ+γ
∫ 1

0

uq(x, t)dx.

Using Jensen’s inequality to the inequality above, we obtain

dJ(t)

dt
≥ βαβ+γ

(
J
) q
β .

Note that
q

β
=
qε(q)

1− q
> 1 since ε(q) >

1− q
q

.

Now, we define Jh, the semidiscretization of J by

Jh(t) = h
I∑
i=0

Uβ
i (t), t ∈ [0, Th).

By a straightforward computation, we get

dJh(t)

dt
≥ βαβ+γh

(
Jh
) q
β , t ∈ [0, Th),

where αh = ϕI > 0.

Putting G(s) = βαβ+γh (s)
q
β , it is clear that

dJh(t)

dt
≥ G(Jh),

and there exists s0 > 0 such that
G(s) > 0 for s > s0,∫ ∞
s0

ds

G(s)
<∞ since

q

β
> 1.
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Step 3 (Condition A2) Using Theorem 3.1, we show that for any ε > 0,

lim
h→0

sup
t∈[0,T−ε]

|J [u](t)− Jh[Uh](t)| = 0.

Finally, conditions A0, A1 and A2 are satisfied. According to Theorem 1.1
of [13], we obtain the desired results. �

5. NUMERICAL EXPERIMENTS

In this section, we estimate the numerical blow-up time of (2.1)-(2.4)
by using the algorithm proposed by C. Hirota and K. Ozawa [9]. We first
transform the semidiscrete scheme (2.1)-(2.4) into a tractable form by the
arc length transformation technique like this :

(5.1)


d

d`


t

U0

...

UI

 =
1√

1 +
∑I

i=0 f
2
i


1

f0
...

fI

 , 0 < ` <∞,

t(0) = 0, Ui(0) = ϕi > 0, 0 ≤ i ≤ I,

where

f0 =
2

h2
U1+γ
0

(
U1 − U0 + hU q

0

)
,

fi =
1

h2
U1+γ
i

(
Ui+1 − 2Ui + Ui−1

)
, 1 ≤ i ≤ I − 1,

fI =
2

h2
U1+γ
I

(
UI−1 − UI

)
.

"`" is such that d`2 = dt2 +
∑I

i=0 dU
2
i and is called the arc length.

The variables t and Ui are fonctions of `, and C. Hirota and K. Ozawa[9]
proved that

lim
`→∞

t(`) = Th and lim
`→∞
‖Uh(`)‖∞ =∞.

Secondly, we introduce {vj} which is a sequence of the arc length and we
apply an ODE solver (DOP54) to (5.1) for each value of {vj}. We generate
then a linearly convergent sequence to the blow-up time, which sequence
is finally accelerated by the Aitken ∆2 method. The three tolerances pa-
rameters, AbsTol, RelTol and InitialStep of the DOP54 (see [9, 7] for more
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details) are set as follows AbsTol = RelTol = 1.d–15, InitialStep = 0, the
sequence of the arc length vj = 210 · 2j (j = 0, . . . , 10) and the initial con-
dition

ϕi = 0.5 ∗ (i ∗ h)2 − i ∗ h+ 1, 0 ≤ i ≤ I.

In the following Tables, Th is the approximate blow-up time correspond-
ing to meshes of I = 16, 32, 64, 128 ; n is the numbers of iterations and the
order s of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)

Table 1 : For γ = 0.2, q = 0.7

I Th n s

16 1.3059245101 130827 –
32 1.3060855729 256853 –
64 1.3061258449 636465 2.00
128 1.3061359133 2042966 2.00

Table 2 : For γ = 0.2, q = 0.9

I Th n s

16 1.0205106012 60012 –
32 1.0206288011 113554 –
64 1.0206583598 220576 2.00
128 1.0206657500 500129 2.00

Table 3 : For γ = 0.5, q = 0.9

I Th n s

16 0.8992412182 62475 –
32 0.8994400927 118469 –
64 0.8994898198 230738 2.00
128 0.8995022521 528716 2.00

Remark 5.1. The above tables assure the convergence of the numerical blow-
up time to the continuous one, since the rate of convergence is 2, which is just
the accuracy of the difference approximation in space.
We also notice that the blow-up time diminishes when the parameter q or γ
increases.
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Others illustrations are given by some plots in the below figures.

Figure 1. Evolution of the numerical solution
for I = 32, γ = 0.5, q = 0.9

Figure 2. Evolution of Uh according to the space
for I = 32, γ = 0.5, q = 0.9
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Figure 3. Evolution of Uh according to the time
for I = 32, γ = 0.5, q = 0.9

Remark 5.2. Figures 1, 2 and 3 show that the numerical solution blows up
in finite time on the whole space for γ > 0 and 0 < q < 1, which is in line
with the theoretically established result (see [8]).
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