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EXISTENCE RESULTS FOR NEUTRAL IMPULSIVE QUASILINEAR
MIXED VOLTERRA-FREDHOLM TYPE INTEGRODIFFERENTIAL

SYSTEMS

NARESH KUMAR JOTHI, K. A. VENKATESAN, T. GUNASEKAR1, AND F. PAUL SAMUEL

ABSTRACT. The paper deals with the study of existence of solutions for
quasilinear neutral mixed volterra-Fredholm-type integrodifferential equa-
tions with nonlocal and impulsive conditions in Banach spaces. The re-
sults are obtained by using a fixed point technique and semigroup theory.

1. INTRODUCTION

Many evolution process are characterized by the fact that at certain mo-
ments of time they experience a change of state abruptly. These processes
are subject to short-term perturbations whose duration is negligible in
comparison with the duration of the process. Consequently, it is natu-
ral to assume that these perturbations act instantaneously, that is, in the
form of impulses. It is known, for example, that many biological phe-
nomena involving thresholds, bursting rhythm models in medicine and
biology, optimal control model in economics, pharmacokinetics and fre-
quency modulated systems, do exhibit impulsive effects. Thus differential
equations involving impulsive effects appear as a natural description of
observed evolution phenomena of several real world problems.
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The impulsive condition is the combination of traditional initial value
problem and short-term perturbations whose duration can be negligible in
comparison with the duration of process. They have advantages over tradi-
tional initial value problem because they can be used to model phenomena
that cannot be modeled by traditional initial value problem. Recently, the
study of the impulsive differential equations has attracted a great deal of
attention. The theory of impulsive differential equations is an important
branch of differential equations [6, 7, 9, 12, 14].

Several authors have studied the existence of solutions of abstract quasi-
linear evolution equations in Banach space [1, 2, 3, 4, 5, 15]. Bahuguna
[1], Oka [10] and Oka and Tanaka [11] discussed the existence of solu-
tions of quasilinear integrodifferential equations in Banach spaces. Kato
[8] studied the nonhomogeneous evolution equations where as Chandra
sekaran [4] proved the existence of mild solutions of the nonlocal Cauchy
problem for a nonlinear integrodifferential equation. The aim of this is to
prove the existence and uniqueness of mild solutions of neutral impulsive
quasilinear mixed volterra-Fredholm-type integrodifferential equation of
the form:

d

dt

[
u(t) + f1

(
t, u(t),

∫ t

0

g1(t, s, u(s))ds,

∫ b

0

k1(t, s, u(s))ds
)]

+ A(t, u)u(t)

= f2

(
t, u(t),

∫ t

0

g2(t, s, u(s))ds,

∫ b

0

k2(t, s, u(s))ds
)
,(1.1)

u(0) + h(u) = u0,(1.2)

∆u(ti) = Ii(u(ti)), i = 1, 2, 3, . . . ,m, 0 < t1 < t2 <, . . . tm < T,(1.3)

where A(t, u) be the infinitesimal generator of a C0-semigroup in a Banach
space X. Let PC([0, T ];X) consist of functions u from [0, T ] into X, such
that u(t) is continuous at t 6= ti and left continuous at t = ti, and the
right limit u(t+i ) exists for i = 1, 2, 3, . . .m. Evidently PC([0, T ], X) is a
Banach space with the norm ‖u‖PC = supt∈[0,T ] ‖u(t)‖. Let u0 ∈ X, fj :

[0, T ] × X × X × X → X, gj : Ω × X → X, kj : Ω × X → X, j = 1, 2,
h : PC([0, T ] : X)→ X and ∆u(ti) = u(t+i )−u(t−i ) constitutes an impulsive
condition. Here [0, T ] = J and Ω = {(t, s) : 0 ≤ s ≤ t ≤ T}. The
results obtained in this paper are generalizations of the results given by
Balachandran and Uchiyama [3] and Pazy [13].
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2. PRELIMINARIES

Let X and Y be two Banach spaces such that Y is densely and continu-
ously embedded in X. For any Banach spaces Z the norm of Z is denoted
by ‖ · ‖ or ‖ · ‖Z . The space of all bounded linear operators from X to Y

is denoted by B(X, Y ) and B(X,X) is written as B(X). We recall some
definitions and known facts from Pazy [13].

Definition 2.1. Let S be a linear operator in X and let Y be a subspace of X.
The operator S̃ defined by D(S̃) = {x ∈ D(S) ∩ Y : Sx ∈ Y } and S̃x = Sx

for x ∈ D(S̃) is called the part of S in Y .

Definition 2.2. Let B be a subset of X and for every 0 ≤ t ≤ T and b ∈ B,
let A(t, b) be the infinitesimal generator of a C0 semigroup St,b (s), s ≥ 0, on
X. The family of operators {A(t, b)}, (t, b) ∈ [0, T ] × B, is stable if there are
constants M ≥ 1 and ω such that

ρ(A(t, b)) ⊃ (ω,∞) for (t, b) ∈ [0, T ]×B,

‖
k∏

j=1

R(λ : A(tj, bj))‖ ≤M(λ− ω)−k

for λ > ω every finite sequences 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T , bj ∈ B, 1 ≤ j ≤
k. The stability of {A(t, b)}, (t, b) ∈ [0, T ]×B implies (see [13]) that

‖
k∏

j=1

Stj ,bj(sj)‖ ≤M exp
{
ω

k∑
j=1

sj
}
, sj ≥ 0

and any finite sequences 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T , bj ∈ B, 1 ≤ j ≤ k.
k = 1, 2, . . .

Definition 2.3. Let St,b(s), s ≥ 0 be the C0-semigroup generatated by A(t, b),
(t, b) ∈ J ×B. A subspace Y of X is called A(t, b)-admissible if Y is invariant
subspace of St,b(s) and the restriction of St,b(s) to Y is a C0-semigroup in Y .

Let B ⊂ X be a subset of X such that for every (t, b) ∈ [0, T ]×B, A(t, b)

is the infinitesimal generator of a C0-semigroup St,b(s), s ≥ 0 on X. We
make the following assumptions:

(A1) The family {A(t, b)}, (t, b) ∈ [0, T ]×B is stable.
(A2) Y isA(t, b)-admissible for (t, b) ∈ [0, T ]×B and the family {Ã(t, b)}, (t, b) ∈

[0, T ]×B of parts Ã(t, b) of A(t, b) in Y , is stable in Y .
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(A3) For (t, b) ∈ [0, T ] × B, D(A(t, b)) ⊃ Y , A(t, b) is a bounded linear
operator from Y to X and t→ A(t, b) is continuous in the B(Y,X)

norm ‖.‖ for every b ∈ B.
(A4) There is a constant L > 0 such that

‖A(t, b1)− A(t, b2)‖Y→X ≤ L‖b1 − b2‖X

holds for every b1, b2 ∈ B and 0 ≤ t ≤ T .

Let B be a subset of X and {A(t, b)}, (t, b) ∈ [0, T ] × B be a family of
operators satisfying the conditions (A1)–(A4). If u ∈ PC([0, T ] : X) has
values in B then there is a unique evolution system Uu(t, s), 0 ≤ s ≤ t ≤ T ,
in X satisfying, (see [13, Theorem 5.3.1 and Lemma 6.4.2, pp. 135, 201-
202]

(i) ‖Uu(t, s)‖ ≤ Meω(t−s) for 0 ≤ s ≤ t ≤ T . where M and ω are
stability constants.

(ii) ∂+

∂t
Uu(t, s)y = A(s, u(s))Uu(t, s)y for y ∈ Y , for 0 ≤ s ≤ t ≤ T .

(iii) ∂
∂s
Uu(t, s)y = −Uu(t, s)A(s, u(s))y for y ∈ Y , for 0 ≤ s ≤ t ≤ T .

Further we assume that:

(A5) For every u ∈ PC([0, T ] : X) satisfying u(t) ∈ B for 0 ≤ t ≤ T , we
have

Uu(t, s)Y ⊂ Y, 0 ≤ s ≤ t ≤ T

and Uu(t, s) is strongly continuous in Y for 0 ≤ s ≤ t ≤ T .
(A6) Closed bounded convex subsets of Y are closed in X.
(A7) For every (t, b) ∈ J×B, f(t, b) ∈ Y and ((t, s), b) ∈ Ω×B, g(t, s, b) ∈

Y .
(A8) h : PC([0, T ] : B) → Y is Lipschitz continuous in X and bounded

in Y , that is, there exist constant H1 > 0 and H2 > 0 such that

‖h(u)− h(v)‖Y ≤ H1‖u− v‖PC, u, v ∈ PC([0, T ];X) and H2 = ‖h(0)‖.

For the conditions (A9) and (A10) let Z be taken as both X and Y .
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(A9) gj : Ω× Z → Z is continuous and there exist constants Gj > 0 and
G1

j > 0 such that

∫ t

0

‖gj(t, s, u)− gj(t, s, v)‖Zds ≤ Gj‖u− v‖Z), u, v ∈ X,

G1
j = max{

∫ t

0

‖gj(t, s, 0)‖Z ds : (t, s) ∈ Ω}, j = 1, 2.

(A10) kj : Ω×Z → Z is continuous and there exist constants Kj > 0 and
K1

j > 0 such that

∫ t

0

‖kj(t, s, u)− kj(t, s, v)‖Zds ≤ Kj‖u− v‖Z), u, v ∈ X,

K1
j = max{

∫ t

0

‖kj(t, s, 0)‖Z ds : (t, s) ∈ Ω}, j = 1, 2.

(A11) fj : [0, T ]×Z ×Z ×Z → Z is continuous and there exist constants
Fj > 0 and F 1

j > 0 such that

‖fj(t, u1, u2, u3)− fj(t, v1, v2, v3)‖ ≤ Fj

[
‖u1 − v1‖+ ‖u2 − v2‖+ ‖u3 − v3‖

]
,

for ui, vi ∈ X, i = 1, 2, 3.F 1
j = max

t∈[0,T ]
‖f(t, 0, 0, 0)‖Z , j = 1, 2.

‖A(t, u)f1(t, u1, u2, u3)− f1(t, v1, v2, v3)‖ ≤ Ff

[
‖u1 − v1‖+ ‖u2 − v2‖+ ‖u3 − v3‖

]
,

for ui, vi ∈ X, i = 1, 2, 3.

F 1
f = max

t∈[0,T ]
‖A(t, 0)f(t, 0, 0, 0)‖Z .

Let us take M0 = max{‖Uu(t, s)‖B(Z), 0 ≤ s ≤ t ≤ T, u ∈ B}.

(A12) Ii : X → X is continuous and there exist constant li > 0,

i = 1, 2, 3, . . . ,m such that

‖Ii(u)− Ii(v)‖ ≤ li‖u− v‖, u, v ∈ X and lc = ‖Ii(0)‖.
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(A13) There exist a positive constant r > 0 such that{
M0

[
(1 + F1)[‖u0‖Y +H1r +H2] + F 1

1 + TFf [r(1 +G1 +K1) +G1
1 +K1

1 ] + F 1
f

+ TF2[r(1 +G2 +K2) +G1
2 +K1

2 ] + F 1
2 +

m∑
i=1

(lir + lc)
]

+ TF1[r(1 +G1 +K1) +G1
1 +K1

1 ] + F 1
1

}
≤ r

and

q =
{
K̃T

[
‖u0‖Y +H1r +H2 + T

[
F1

(
r[1 +G1 +K1] +G2 +K2 + F2

]
+

m∑
i=1

(lir + lc)
]

+M0

[
H1 + T (F1 +G1 +K1) +

m∑
i=1

li

]}
< 1.

Definition 2.4. A function u ∈ PC([0, T ] : X) is a mild solution of equations
(1.1)-(1.3) if it satisfies:

u(t) = Uu(t, 0)u0 − Uu(t, 0)h(u) + Uu(t, 0)f1(0, u(0), 0, 0)

− f1
(
s, u(s),

∫ s

0

g1(s, τ, u(τ))dτ,

∫ b

0

k1(s, τ, u(τ))dτ
)

+

∫ t

0

A(s, u(s))Uu(t, s)
[
f1

(
s, u(s),

∫ s

0

g1(s, τ, u(τ))dτ,

∫ b

0

k1(s, τ, u(τ))dτ
)]
ds

+

∫ t

0

Uu(t, s)
[
f2

(
s, u(s),

∫ s

0

g2(s, τ, u(τ))dτ,

∫ b

0

k2(s, τ, u(τ))dτ
)]
ds

+
∑

0<ti<t

Uu(t, ti)Ii(u(ti)), 0 ≤ t ≤ T .

Definition 2.5. A function u ∈ PC([0, T ] : X) such that u(t) ∈ D(A(t, u(t))

for t ∈ (0, T ], u ∈ C1((0, T ]\{t1, t2, . . . , tm} : X) and satisfies (1.1)-(1.3) in
X is called a classical solution of (1.1)-(1.3) on [0, T ] .

Further there exists a constant K̃ > 0 such that for every u, v ∈ PC([0, T ] :

X) and every y ∈ Y we have

‖Uu(t, s)y − Uv(t, s)y‖ ≤ K̃T‖y‖Y ‖u− v‖PC.
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3. EXISTENCE RESULT

Theorem 3.1. Let u0 ∈ Y and let B = {u ∈ X : ‖u‖X ≤ r}, r > 0. If
the assumptions (A1)–(A13) are satisfied, then (1.1)-(1.3) has a unique mild
solution u ∈ PC([0, T ] : Y ).

Proof. Let S be a nonempty closed subset of PC([0, T ] : X) defined by
S = {u : u ∈ PC([0, T ] : X), ‖u(t)‖PC ≤ r for 0 ≤ t ≤ T}. Consider a
mapping Φ on S defined by:

(Φu)(t) = Uu(t, 0)u0 − Uu(t, 0)h(u) + Uu(t, 0)f1(0, u(0), 0, 0)

− f1
(
s, u(s),

∫ s

0

g1(s, τ, u(τ))dτ,

∫ b

0

k1(s, τ, u(τ))dτ
)

+

∫ t

0

A(s, u(s))Uu(t, s)
[
f1

(
s, u(s),

∫ s

0

g1(s, τ, u(τ))dτ,

∫ b

0

k1(s, τ, u(τ))dτ
)]
ds

+

∫ t

0

Uu(t, s)
[
f2

(
s, u(s),

∫ s

0

g2(s, τ, u(τ))dτ,

∫ b

0

k2(s, τ, u(τ))dτ
)]
ds

+
∑

0<ti<t

Uu(t, ti)Ii(u(ti)).

We claim that Φ maps S into S. For u ∈ S, we have

‖Φu(t)‖Y ≤

≤
{
M0

[
(1 + F1)[‖u0‖Y +H1r +H2] + F 1

1 + TFf [r(1 +G1 +K1) +G1
1 +K1

1 ] + F 1
f

+ TF2[r(1 +G2 +K2) +G1
2 +K1

2 ] + F 1
2 +

m∑
i=1

(lir + lc)
]

+ TF1[r(1 +G1 +K1) +G1
1 +K1

1 ] + F 1
1

}

From assumption (A13), one gets ‖Φu(t)‖Y ≤ r. Therefore Φ maps S into
itself.
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Moreover, if u, v ∈ S, then

‖Φu(t)− Φv(t)‖ ≤ ‖Uu(t, 0)u0 − Uv(t, 0)u0‖+ ‖Uu(t, 0)h(u)− Uv(t, 0)h(v)‖

+ ‖Uu(t, 0)f1(0, u(0), 0, 0)− Uv(t, 0)f1(0, v(0), 0, 0)‖

+ ‖
[
f1

(
s, u(s),

∫ s

0

g1(s, τ, u(τ))dτ,

∫ b

0

k1(s, τ, u(τ))dτ
)]

−
[
f1

(
s, v(s),

∫ s

0

g1(s, τ, v(τ))dτ,

∫ b

0

k1(s, τ, v(τ))dτ
)]
‖

+

∫ t

0

‖Uu(t, s)A(s, u(s))
[
f1

(
s, u(s),

∫ s

0

g1(s, τ, u(τ))dτ,

∫ b

0

k1(s, τ, u(τ))dτ
)]

− Uv(t, s)A(s, v(s))
[
f1

(
s, v(s),

∫ s

0

g1(s, τ, v(τ))dτ,

∫ b

0

k1(s, τ, v(τ))dτ
)]
‖ds

+

∫ t

0

‖Uu(t, s)
[
f2

(
s, u(s),

∫ s

0

g(s, τ, u(τ))dτ,

∫ b

0

k(s, τ, u(τ))dτ
)]

− Uv(t, s)
[
f2

(
s, v(s)),

∫ s

0

g(s, τ, v(τ))dτ,

∫ b

0

k(s, τ, v(τ))dτ
)]
‖ds

+
∑

0<ti<t

‖Uu(t, ti)Ii(u(ti))− Uv(t, ti)Ii(v(ti))‖.

Using assumptions (A8)-(A13), one can get

≤
{
K̃T

[
(1 + F1)

[
‖u0‖Y +H1r +H2

]
+ F

′

1 + T
[
Ff

[
r(1 +G1 +K1) +G

′

1 +K
′

1

]
+ F

′

f

]
+ T

[
F2

[
r(1 +G1 +K1) +G

′

1 +K
′

1

]
+ F

′

2

]
+

m∑
i=1

(lir + lc) +M0

(
1 + F1)H1

+ T (Ff + F2)(1 +G1 +K1) +
m∑
i=1

li + F1(r(1 +G1 +K1) +G
′

1 +K
′

1

]
+ F

′

1

}
where 0 < q < 1. From this inequality it follows that for any t ∈ [0, T ],

‖Φu(t)− Φv(t)‖ ≤ q‖u− v‖PC,

so that Φ is a contraction on S. From the contraction mapping theorem it
follows that Φ has a unique fixed point u ∈ S which is the mild solution
of (1.1)-(1.3) on [0, T ]. Note that u(t) is in PC([0, T ] : Y ) by (A6) see
[13, pp. 135, 201-202 lemma 7.4]. In fact, u(t) is weakly continuous
as a Y -valued function. This implies that u(t) is separably valued in Y ,
hence it is strongly measurable. Then ‖u(t)‖PC is bounded and measurable
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function in t. Using the relation u(t) = Φu(t), we conclude that u(t) is in
PC([0, T ] : Y ). �

4. CONCLUSIONS

In this paper, we have studied the existence of solutions of neutral quasi-
linear mixed volterra-type integrodifferential equations with nonlocal and
impulsive conditions in Banach spaces. Through semigroup theory and Ba-
nach fixed point principle, we have investigated the sufficient conditions
for the existence of the system considered.
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