

Advances in Mathematics: Scientific Journal 9 (2020), no.1, 83-92

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.1.8

# EXISTENCE RESULTS FOR NEUTRAL IMPULSIVE QUASILINEAR MIXED VOLTERRA-FREDHOLM TYPE INTEGRODIFFERENTIAL SYSTEMS

NARESH KUMAR JOTHI, K. A. VENKATESAN, T. GUNASEKAR<sup>1</sup>, AND F. PAUL SAMUEL

ABSTRACT. The paper deals with the study of existence of solutions for quasilinear neutral mixed volterra-Fredholm-type integrodifferential equations with nonlocal and impulsive conditions in Banach spaces. The results are obtained by using a fixed point technique and semigroup theory.

# 1. Introduction

Many evolution process are characterized by the fact that at certain moments of time they experience a change of state abruptly. These processes are subject to short-term perturbations whose duration is negligible in comparison with the duration of the process. Consequently, it is natural to assume that these perturbations act instantaneously, that is, in the form of impulses. It is known, for example, that many biological phenomena involving thresholds, bursting rhythm models in medicine and biology, optimal control model in economics, pharmacokinetics and frequency modulated systems, do exhibit impulsive effects. Thus differential equations involving impulsive effects appear as a natural description of observed evolution phenomena of several real world problems.

<sup>&</sup>lt;sup>1</sup>corresponding author

<sup>2010</sup> Mathematics Subject Classification. 34A37, 34G60, 34G20.

*Key words and phrases.* Semigroup; mild solution; impulsive conditions, evolution equation, fixed point.

The impulsive condition is the combination of traditional initial value problem and short-term perturbations whose duration can be negligible in comparison with the duration of process. They have advantages over traditional initial value problem because they can be used to model phenomena that cannot be modeled by traditional initial value problem. Recently, the study of the impulsive differential equations has attracted a great deal of attention. The theory of impulsive differential equations is an important branch of differential equations [6, 7, 9, 12, 14].

Several authors have studied the existence of solutions of abstract quasilinear evolution equations in Banach space [1, 2, 3, 4, 5, 15]. Bahuguna [1], Oka [10] and Oka and Tanaka [11] discussed the existence of solutions of quasilinear integrodifferential equations in Banach spaces. Kato [8] studied the nonhomogeneous evolution equations where as Chandra sekaran [4] proved the existence of mild solutions of the nonlocal Cauchy problem for a nonlinear integrodifferential equation. The aim of this is to prove the existence and uniqueness of mild solutions of neutral impulsive quasilinear mixed volterra-Fredholm-type integrodifferential equation of the form:

$$\frac{d}{dt} \left[ u(t) + f_1 \left( t, u(t), \int_0^t g_1(t, s, u(s)) ds, \int_0^b k_1(t, s, u(s)) ds \right) \right] + A(t, u) u(t)$$
(1.1) 
$$= f_2 \left( t, u(t), \int_0^t g_2(t, s, u(s)) ds, \int_0^b k_2(t, s, u(s)) ds \right),$$
(1.2) 
$$u(0) + h(u) = u_0,$$

(1.3) 
$$\Delta u(t_i) = I_i(u(t_i)), \quad i = 1, 2, 3, \dots, m, \ 0 < t_1 < t_2 < \dots t_m < T,$$

where A(t,u) be the infinitesimal generator of a  $C_0$ -semigroup in a Banach space X. Let  $\mathcal{PC}([0,T];X)$  consist of functions u from [0,T] into X, such that u(t) is continuous at  $t \neq t_i$  and left continuous at  $t = t_i$ , and the right limit  $u(t_i^+)$  exists for  $i = 1,2,3,\ldots m$ . Evidently  $\mathcal{PC}([0,T],X)$  is a Banach space with the norm  $\|u\|_{\mathcal{PC}} = \sup_{t \in [0,T]} \|u(t)\|$ . Let  $u_0 \in X$ ,  $f_j: [0,T] \times X \times X \times X \to X$ ,  $g_j: \Omega \times X \to X$ ,  $k_j: \Omega \times X \to X$ , j = 1,2,  $h: \mathcal{PC}([0,T]:X) \to X$  and  $\Delta u(t_i) = u(t_i^+) - u(t_i^-)$  constitutes an impulsive condition. Here [0,T]=J and  $\Omega=\{(t,s): 0 \leq s \leq t \leq T\}$ . The results obtained in this paper are generalizations of the results given by Balachandran and Uchiyama [3] and Pazy [13].

## 2. Preliminaries

Let X and Y be two Banach spaces such that Y is densely and continuously embedded in X. For any Banach spaces Z the norm of Z is denoted by  $\|\cdot\|$  or  $\|\cdot\|_Z$ . The space of all bounded linear operators from X to Y is denoted by B(X,Y) and B(X,X) is written as B(X). We recall some definitions and known facts from Pazy [13].

**Definition 2.1.** Let S be a linear operator in X and let Y be a subspace of X. The operator  $\tilde{S}$  defined by  $D(\tilde{S}) = \{x \in D(S) \cap Y : Sx \in Y\}$  and  $\tilde{S}x = Sx$  for  $x \in D(\tilde{S})$  is called the part of S in Y.

**Definition 2.2.** Let B be a subset of X and for every  $0 \le t \le T$  and  $b \in B$ , let A(t,b) be the infinitesimal generator of a  $C_0$  semigroup  $S_{t,b}(s), s \ge 0$ , on X. The family of operators  $\{A(t,b)\}, (t,b) \in [0,T] \times B$ , is stable if there are constants  $M \ge 1$  and  $\omega$  such that

$$\rho(A(t,b)) \supset (\omega, \infty) \quad \text{for } (t,b) \in [0,T] \times B,$$

$$\| \prod_{j=1}^k R(\lambda : A(t_j,b_j)) \| \le M(\lambda - \omega)^{-k}$$

for  $\lambda > \omega$  every finite sequences  $0 \le t_1 \le t_2 \le \cdots \le t_k \le T$ ,  $b_j \in B$ ,  $1 \le j \le k$ . The stability of  $\{A(t,b)\}, (t,b) \in [0,T] \times B$  implies (see [13]) that

$$\| \prod_{j=1}^{k} S_{t_j, b_j}(s_j) \| \le M \exp \{ \omega \sum_{j=1}^{k} s_j \}, \quad s_j \ge 0$$

and any finite sequences  $0 \le t_1 \le t_2 \le \cdots \le t_k \le T$ ,  $b_j \in B$ ,  $1 \le j \le k$ .  $k = 1, 2, \ldots$ 

**Definition 2.3.** Let  $S_{t,b}(s)$ ,  $s \ge 0$  be the  $C_0$ -semigroup generatated by A(t,b),  $(t,b) \in J \times B$ . A subspace Y of X is called A(t,b)-admissible if Y is invariant subspace of  $S_{t,b}(s)$  and the restriction of  $S_{t,b}(s)$  to Y is a  $C_0$ -semigroup in Y.

Let  $B \subset X$  be a subset of X such that for every  $(t,b) \in [0,T] \times B$ , A(t,b) is the infinitesimal generator of a  $C_0$ -semigroup  $S_{t,b}(s), s \geq 0$  on X. We make the following assumptions:

- $(A_1)$  The family  $\{A(t,b)\}, (t,b) \in [0,T] \times B$  is stable.
- $(A_2)$  Y is A(t,b)-admissible for  $(t,b) \in [0,T] \times B$  and the family  $\{\tilde{A}(t,b)\}, (t,b) \in [0,T] \times B$  of parts  $\tilde{A}(t,b)$  of A(t,b) in Y, is stable in Y.

- $(A_3)$  For  $(t,b) \in [0,T] \times B$ ,  $D(A(t,b)) \supset Y$ , A(t,b) is a bounded linear operator from Y to X and  $t \to A(t, b)$  is continuous in the B(Y, X)norm  $\|.\|$  for every  $b \in B$ .
- $(A_4)$  There is a constant L>0 such that

$$||A(t,b_1) - A(t,b_2)||_{Y \to X} \le L||b_1 - b_2||_X$$

holds for every  $b_1, b_2 \in B$  and  $0 \le t < T$ .

Let B be a subset of X and  $\{A(t,b)\}, (t,b) \in [0,T] \times B$  be a family of operators satisfying the conditions  $(A_1)$ – $(A_4)$ . If  $u \in \mathcal{PC}([0,T]:X)$  has values in B then there is a unique evolution system  $U_u(t,s), 0 \le s \le t \le T$ , in X satisfying, (see [13, Theorem 5.3.1 and Lemma 6.4.2, pp. 135, 201-202]

- (i)  $\|U_u(t,s)\| \leq Me^{\omega(t-s)}$  for  $0 \leq s \leq t \leq T$ . where M and  $\omega$  are stability constants.
- (ii)  $\frac{\partial^+}{\partial t}U_u(t,s)y=A(s,u(s))U_u(t,s)y \text{ for } y\in Y \text{, for } 0\leq s\leq t\leq T.$ (iii)  $\frac{\partial}{\partial s}U_u(t,s)y=-U_u(t,s)A(s,u(s))y \text{ for } y\in Y \text{, for } 0\leq s\leq t\leq T.$

# Further we assume that:

 $(A_5)$  For every  $u \in \mathcal{PC}([0,T]:X)$  satisfying  $u(t) \in B$  for  $0 \le t \le T$ , we have

$$U_u(t,s)Y \subset Y$$
,  $0 < s < t < T$ 

and  $U_u(t,s)$  is strongly continuous in Y for  $0 \le s \le t \le T$ .

- $(A_6)$  Closed bounded convex subsets of Y are closed in X.
- $(A_7)$  For every  $(t,b) \in J \times B$ ,  $f(t,b) \in Y$  and  $((t,s),b) \in \Omega \times B$ ,  $g(t,s,b) \in \Omega \times B$ Y.
- $(A_8)$   $h: \mathcal{PC}([0,T]:B) \to Y$  is Lipschitz continuous in X and bounded in Y, that is, there exist constant  $H_1 > 0$  and  $H_2 > 0$  such that

$$||h(u) - h(v)||_Y \le H_1 ||u - v||_{\mathcal{PC}}, \quad u, v \in \mathcal{PC}([0, T]; X) \text{ and } H_2 = ||h(0)||.$$

For the conditions  $(A_9)$  and  $(A_{10})$  let Z be taken as both X and Y.

 $(A_9)$   $g_j: \Omega \times Z \to Z$  is continuous and there exist constants  $G_j>0$  and  $G_j^1>0$  such that

$$\int_0^t \|g_j(t, s, u) - g_j(t, s, v)\|_Z ds \le G_j \|u - v\|_Z, \quad u, v \in X,$$
$$G_j^1 = \max\{\int_0^t \|g_j(t, s, 0)\|_Z ds : (t, s) \in \Omega\}, \quad j = 1, 2.$$

 $(A_{10})$   $k_j:\Omega\times Z\to Z$  is continuous and there exist constants  $K_j>0$  and  $K_j^1>0$  such that

$$\int_0^t ||k_j(t, s, u) - k_j(t, s, v)||_Z ds \le K_j ||u - v||_Z, \quad u, v \in X,$$

$$K_j^1 = \max\{\int_0^t ||k_j(t, s, 0)||_Z ds : (t, s) \in \Omega\}, \quad j = 1, 2.$$

 $(A_{11})$   $f_j:[0,T]\times Z\times Z\times Z\to Z$  is continuous and there exist constants  $F_j>0$  and  $F_j^1>0$  such that

$$||f_j(t, u_1, u_2, u_3) - f_j(t, v_1, v_2, v_3)|| \le F_j \Big[ ||u_1 - v_1|| + ||u_2 - v_2|| + ||u_3 - v_3|| \Big],$$
for  $u_i, v_i \in X$ ,  $i = 1, 2, 3$ .  $F_j^1 = \max_{t \in [0, T]} ||f(t, 0, 0, 0)||_Z$ ,  $j = 1, 2$ .

$$\begin{split} \|A(t,u)f_1(t,u_1,u_2,u_3) - f_1(t,v_1,v_2,v_3)\| &\leq F_f \Big[ \|u_1 - v_1\| + \|u_2 - v_2\| + \|u_3 - v_3\| \Big], \\ & \text{for } u_i,v_i \in X, \ i = 1,2,3. \\ F_f^1 &= \max_{t \in [0,T]} \|A(t,0)f(t,0,0,0)\|_Z. \end{split}$$

Let us take  $M_0 = \max\{\|U_u(t,s)\|_{B(Z)}, 0 \le s \le t \le T, \ u \in B\}$ .

 $(A_{12})$   $I_i: X \to X$  is continuous and there exist constant  $l_i > 0$ ,  $i = 1, 2, 3, \dots, m$  such that

$$||I_i(u) - I_i(v)|| \le ||I_i||u - v||, \ u, v \in X \ \text{and} \ l_c = ||I_i(0)||.$$

 $(A_{13})$  There exist a positive constant r > 0 such that

$$\begin{split} \Big\{ M_0 \Big[ (1+F_1)[\|u_0\|_Y + H_1r + H_2] + F_1^1 + TF_f[r(1+G_1+K_1) + G_1^1 + K_1^1] + F_f^1 \\ + TF_2[r(1+G_2+K_2) + G_2^1 + K_2^1] + F_2^1 + \sum_{i=1}^m (l_ir + l_c) \Big] \\ + TF_1[r(1+G_1+K_1) + G_1^1 + K_1^1] + F_1^1 \Big\} &\leq r \\ \text{and} \\ q &= \Big\{ \tilde{K}T \Big[ \|u_0\|_Y + H_1r + H_2 + T \Big[ F_1 \Big( r[1+G_1+K_1] + G_2 + K_2 + F_2 \Big] \\ &+ \sum_{i=1}^m (l_ir + l_c) \Big] + M_0 \Big[ H_1 + T(F_1+G_1+K_1) + \sum_{i=1}^m l_i \Big] \Big\} < 1. \end{split}$$

**Definition 2.4.** A function  $u \in \mathcal{PC}([0,T]:X)$  is a mild solution of equations (1.1)-(1.3) if it satisfies:

$$\begin{split} u(t) &= U_u(t,0)u_0 - U_u(t,0)h(u) + U_u(t,0)f_1(0,u(0),0,0) \\ &- f_1\Big(s,u(s), \int_0^s g_1(s,\tau,u(\tau))d\tau, \int_0^b k_1(s,\tau,u(\tau))d\tau\Big) \\ &+ \int_0^t A(s,u(s))U_u(t,s)\Big[f_1\Big(s,u(s), \int_0^s g_1(s,\tau,u(\tau))d\tau, \int_0^b k_1(s,\tau,u(\tau))d\tau\Big)\Big]ds \\ &+ \int_0^t U_u(t,s)\Big[f_2\Big(s,u(s), \int_0^s g_2(s,\tau,u(\tau))d\tau, \int_0^b k_2(s,\tau,u(\tau))d\tau\Big)\Big]ds \\ &+ \sum_{0 \le t_i \le t} U_u(t,t_i)I_i(u(t_i)), \quad 0 \le t \le T \,. \end{split}$$

**Definition 2.5.** A function  $u \in \mathcal{PC}([0,T]:X)$  such that  $u(t) \in D(A(t,u(t)))$  for  $t \in (0,T], u \in C^1((0,T] \setminus \{t_1,t_2,\ldots,t_m\}:X)$  and satisfies (1.1)-(1.3) in X is called a classical solution of (1.1)-(1.3) on [0,T].

Further there exists a constant  $\tilde{K} > 0$  such that for every  $u, v \in \mathcal{PC}([0, T]: X)$  and every  $y \in Y$  we have

$$||U_u(t,s)y - U_v(t,s)y|| \le \tilde{K}T||y||_Y||u - v||_{\mathcal{PC}}.$$

## 3. Existence Result

**Theorem 3.1.** Let  $u_0 \in Y$  and let  $B = \{u \in X : ||u||_X \le r\}$ , r > 0. If the assumptions  $(A_1)$ – $(A_{13})$  are satisfied, then (1.1)-(1.3) has a unique mild solution  $u \in \mathcal{PC}([0,T]:Y)$ .

*Proof.* Let S be a nonempty closed subset of  $\mathcal{PC}([0,T]:X)$  defined by  $S=\{u:u\in\mathcal{PC}([0,T]:X),\|u(t)\|_{\mathcal{PC}}\leq r \text{ for } 0\leq t\leq T\}$ . Consider a mapping  $\Phi$  on S defined by:

$$\begin{split} (\Phi u)(t) &= U_u(t,0)u_0 - U_u(t,0)h(u) + U_u(t,0)f_1(0,u(0),0,0) \\ &- f_1\Big(s,u(s), \int_0^s g_1(s,\tau,u(\tau))d\tau, \int_0^b k_1(s,\tau,u(\tau))d\tau\Big) \\ &+ \int_0^t A(s,u(s))U_u(t,s)\Big[f_1\Big(s,u(s), \int_0^s g_1(s,\tau,u(\tau))d\tau, \int_0^b k_1(s,\tau,u(\tau))d\tau\Big)\Big]ds \\ &+ \int_0^t U_u(t,s)\Big[f_2\Big(s,u(s), \int_0^s g_2(s,\tau,u(\tau))d\tau, \int_0^b k_2(s,\tau,u(\tau))d\tau\Big)\Big]ds \\ &+ \sum_{0 < t_i < t} U_u(t,t_i)I_i(u(t_i)). \end{split}$$

We claim that  $\Phi$  maps S into S. For  $u \in S$ , we have

$$\|\Phi u(t)\|_{Y} \leq$$

$$\leq \left\{ M_{0} \Big[ (1+F_{1})[\|u_{0}\|_{Y} + H_{1}r + H_{2}] + F_{1}^{1} + TF_{f}[r(1+G_{1}+K_{1}) + G_{1}^{1} + K_{1}^{1}] + F_{f}^{1} + TF_{2}[r(1+G_{2}+K_{2}) + G_{2}^{1} + K_{2}^{1}] + F_{2}^{1} + \sum_{i=1}^{m} (l_{i}r + l_{c}) \Big] + TF_{1}[r(1+G_{1}+K_{1}) + G_{1}^{1} + K_{1}^{1}] + F_{1}^{1} \right\}$$

From assumption  $(A_{13})$ , one gets  $\|\Phi u(t)\|_Y \leq r$ . Therefore  $\Phi$  maps S into itself.

Moreover, if  $u, v \in S$ , then

$$\begin{split} \|\Phi u(t) - \Phi v(t)\| &\leq \|U_u(t,0)u_0 - U_v(t,0)u_0\| + \|U_u(t,0)h(u) - U_v(t,0)h(v)\| \\ &+ \|U_u(t,0)f_1(0,u(0),0,0) - U_v(t,0)f_1(0,v(0),0,0)\| \\ &+ \|\left[f_1\left(s,u(s),\int_0^s g_1(s,\tau,u(\tau))d\tau,\int_0^b k_1(s,\tau,u(\tau))d\tau\right)\right] \\ &- \left[f_1\left(s,v(s),\int_0^s g_1(s,\tau,v(\tau))d\tau,\int_0^b k_1(s,\tau,v(\tau))d\tau\right)\right] \| \\ &+ \int_0^t \|U_u(t,s)A(s,u(s))\left[f_1\left(s,u(s),\int_0^s g_1(s,\tau,u(\tau))d\tau,\int_0^b k_1(s,\tau,u(\tau))d\tau\right)\right] \\ &- U_v(t,s)A(s,v(s))\left[f_1\left(s,v(s),\int_0^s g_1(s,\tau,v(\tau))d\tau,\int_0^b k_1(s,\tau,v(\tau))d\tau\right)\right] \|ds \\ &+ \int_0^t \|U_u(t,s)\left[f_2\left(s,u(s),\int_0^s g(s,\tau,u(\tau))d\tau,\int_0^b k(s,\tau,u(\tau))d\tau\right)\right] \\ &- U_v(t,s)\left[f_2\left(s,v(s)\right),\int_0^s g(s,\tau,v(\tau))d\tau,\int_0^b k(s,\tau,v(\tau))d\tau\right)\right] \|ds \\ &+ \sum_{0 < t, < t} \|U_u(t,t_i)I_i(u(t_i)) - U_v(t,t_i)I_i(v(t_i))\|. \end{split}$$

Using assumptions  $(A_8)$ - $(A_{13})$ , one can get

$$\leq \left\{ \tilde{K}T \Big[ (1+F_1) \big[ \|u_0\|_Y + H_1r + H_2 \big] + F_1' + T \big[ F_f \big[ r(1+G_1+K_1) + G_1' + K_1' \big] + F_f' \right] \\
+ T \big[ F_2 \big[ r(1+G_1+K_1) + G_1' + K_1' \big] + F_2' \big] + \sum_{i=1}^m (l_ir + l_c) + M_0 \big( 1+F_1 \big) H_1 \\
+ T \big( F_f + F_2 \big) (1+G_1+K_1) + \sum_{i=1}^m l_i + F_1 \big( r(1+G_1+K_1) + G_1' + K_1' \big] + F_1' \right\}$$

where 0 < q < 1. From this inequality it follows that for any  $t \in [0, T]$ ,

$$\|\Phi u(t) - \Phi v(t)\| \le q\|u - v\|_{\mathcal{PC}},$$

so that  $\Phi$  is a contraction on S. From the contraction mapping theorem it follows that  $\Phi$  has a unique fixed point  $u \in S$  which is the mild solution of (1.1)-(1.3) on [0,T]. Note that u(t) is in  $\mathcal{PC}([0,T]:Y)$  by  $(A_6)$  see [13, pp. 135, 201-202 lemma 7.4]. In fact, u(t) is weakly continuous as a Y-valued function. This implies that u(t) is separably valued in Y, hence it is strongly measurable. Then  $||u(t)||_{\mathcal{PC}}$  is bounded and measurable

function in t. Using the relation  $u(t) = \Phi u(t)$ , we conclude that u(t) is in  $\mathcal{PC}([0,T]:Y)$ .

#### 4. CONCLUSIONS

In this paper, we have studied the existence of solutions of neutral quasilinear mixed volterra-type integrodifferential equations with nonlocal and impulsive conditions in Banach spaces. Through semigroup theory and Banach fixed point principle, we have investigated the sufficient conditions for the existence of the system considered.

#### REFERENCES

- [1] D. BAHUGUNA: *Quasilinear integrodifferential in Banach spaces,* Nonlinear Anal. **24** (1995), 175–183.
- [2] K. BALACHANDRAN, F. PAUL SAMUEL: Existence of solutions for impulsive quasilinear mixed volterra-fredholm type integrodifferential equations, International Journal of Pure and Applied Mathematics, **90**(2) (2014), 195–203.
- [3] K. BALACHANDRAN, K. UCHIYAMA: Existence of solutions of quasilinear integrod-ifferential equations with nonlocal condition, Tokyo. J. Math., 23 (2000), 203–210.
- [4] M. CHANDRASEKARAN: Nonlocal Cauchy problem for quasilinear integrodifferential equations in Banach spaces, Electron. J. Diff. Eqns., 33 (2007), 1–6.
- [5] Q. DONG, G. LI, J. ZHANG: Quasilinear nonlocal integrodifferential equations in Banach spaces, Electron. J. Diff. Eqns., 19 (2008), 1–8.
- [6] T. GUNASEKAR, M. ANGAYARKANNI, K.R. SALINI: Existence and Controllability Results for Impulsive Neutral mixed-type Functional Integrodifferential Systems with infinite delay, Journal of Advanced Research in Dynamical and Control Systems, 10(1)(2018), 449–458.
- [7] T. GUNASEKAR, K. A. VENKATESAN, R. SHANMUGAPRIYA, K. NITHYANAND-HAN: Results for Damped Second-Order Neutral Integral Equation with Impulses and Infinite Delay, Advances in Mathematics: Scientific Journal, 8(3) (2019), 683–691.
- [8] S. KATO: Nonhomogeneous quasilinear evolution equations in Banach spaces, Nonlinear Anal., 9 (1985), 1061–1071.
- [9] V. LAKSHMIKANTHAM, D.D. BAINOV, P.S. SIMEONOV: Theory of Impulsive differential Equations, World Scientific, Singapore, 1989.
- [10] H. OKA: Abstract quasilinear Volterra integrodifferential equations, Nonlinear Anal., **28** (1997), 1019–1045.

- [11] H. OKA, N. TANAKA: Abstract quasilinear integrodifferential equtions of hyperbolic type, Nonlinear Anal., **29** (1997), 903–925.
- [12] J.Y.Park, K.Balachandran, N.Annapoorani: Existence results for impulsive neutral functional integrodifferential equations with infinite delay, Nonlinear Anal., 71 (2009), 3152–3162.
- [13] A. PAZY: Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
- [14] A.M.SAMOILENKO, N.A.PERESTYUK: *Impulsive Differential Equations*, World Scientific, Singapore, 1995.
- [15] N. SANEKATA: Abstract quasilinear equations of evolution in nonreflexive Banach spaces, Hiroshima Mathematical Journal, 19 (1989), 109–139.

DEPARTMENT OF MATHEMATICS

VELTECH RANGARAJAN DR. SAGUNTHALA R&D
INSTITUTE OF SCIENCE AND TECHNOLOGY
CHENNAI - 600062, TAMIL NADU, INDIA
E-mail address: nareshsastra@yahoo.co.in

DEPARTMENT OF MATHEMATICS

VELTECH RANGARAJAN DR.SAGUNTHALA R&D

INSTITUTE OF SCIENCE AND TECHNOLOGY

CHENNAI - 600062, TAMIL NADU, INDIA

E-mail address: venkimaths1975@gmail.com

DEPARTMENT OF MATHEMATICS

VELTECH RANGARAJAN DR. SAGUNTHALA R&D
INSTITUTE OF SCIENCE AND TECHNOLOGY
CHENNAI - 600062, TAMIL NADU, INDIA
E-mail address: tguna84@gmail.com

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF EASTERN AFRICA
BARATON, ELDORET 2500 - 30100, KENYA
E-mail address: paulsamuelphd@yahoo.com