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NON-EXISTENCE OF SKOLEM MEAN LABELING
FOR FOUR STAR GRAPHS

S. SUDHAKAR1, A. MANSHATH, AND V. BALAJI

ABSTRACT. In this paper, we prove if r > s < t, the four star G = k1,r ∪
k1,r ∪ k1,s ∪ k1,t is not a skolem mean graph if |s− t| > 4 + 2r for r = 2, 3 · · · ;
s = 1, 2 · · · and t ≥ 2r + s+ 5.

1. INTRODUCTION

In [1], V. Balaji and etl proved that the three star graph K1,` ∪K1,m ∪K1,n,
` ≤ m < n is skolem mean graph if |m− n| ≤ ` + 4. In [2], they have proved
that the four star graph K1,`∪K1,`∪K1,m∪K1,n, ` ≤ m < n is skolem mean graph
if |m− n| ≤ 2` + 4. In [3], V. Balaji and etl proved that the three star graph
K1,p ∪K1,q ∪K1,r, p > q < r is skolem mean graph if and only if |p− q| ≤ r+4.

Definition 1.1. A graph G with p nodes and q links is said to be a skolem mean
graph if there exists a function f from the node set of G to {1, 2, · · · , p} such that
the induced map f ∗ from the link set of G to {2, 3, · · · , p} defined by

f ∗ (e = uv) =

{
f(u)+f(v)

2
if f (u) + f (v) is even;

f(u)+f(v)+1
2

if f (u) + f (v) is odd,

then the resulting links get distinct labels from the set {2, 3, · · · , p}.
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2. MAIN RESULT

Theorem 2.1. If r > s < t, the four star K1,r ∪K1,r ∪K1,s ∪K1,t is not a skolem
mean graph if |s− t| > 4+2r with r− s = 1, for r = 2, 3 · · · and s = 1, 2 · · · and
t ≥ 2r + s+ 5.

Proof. Let G = K1,r ∪K1,r ∪K1,s ∪K1,t where,

V (G) = {va,b : 1 ≤ a ≤ 2, 0 ≤ b ≤ 3} ∪ {v3,b : 0 ≤ b ≤ 2} ∪ {v4,b : 0 ≤ b ≤ 13}

E(G) = {va,0va,b : 1 ≤ a ≤ 2, 1 ≤ b ≤ 3} ∪ {v3,0v3,b : 1 ≤ b ≤ 2}

∪ {v4,0v4,b : 1 ≤ b ≤ 13} .

Then, p = 25 and q = 21.
Suppose G is a skolem mean graph, then there exists a function f from the

node set of G to 1, 2 · · · such that the induced map f ∗ from the link set of G to
2, 3 · · · defined by

f ∗ (e = uv) =

{
f(u)+f(v)

2
if f (u) + f (v) is even;

f(u)+f(v)+1
2

if f (u) + f (v) is odd
.

Then, the resulting links get distinct labels from the set {2, 3 · · · p}. Let xa,b be
the label given to the node va,b for 1 ≤ a ≤ 2, 0 ≤ b ≤ 3, v3,b for 0 ≤ b ≤ 2 and
v4,b for 0 ≤ b ≤ 13.

Let ya,b be the respective link label of the link va,ova,b for 1 ≤ a ≤ 2, 0 ≤ b ≤ 3,
v3,0v3,b for 1 ≤ b ≤ 2 and v4,0v4,b for 0 ≤ b ≤ 13.

Let us first consider the case that x4,0 = 24. If v4,b = 2t − 1 and v4,c = 2t for
some n and for some b and c, then,

f ∗(v4,0v4,b) =
24 + 2t

2
=

24 + 2t− 1

2
= 12 + t = f ∗(v4,0v4,b)

This is not possible as f ∗ is a bijection. Therefore, the 13 nodes x4,b for 1 ≤
b ≤ 13 are among the 13 numbers (1/2), (3/4), (5/6), (7/8), (9/10), (11/12),
(13/14), (15/16), (17/18), (19/20), (21/22), 23 and 25. Since x4,0 = 24, first let
us consider all the biggest link labels possible for K1,13. That is, for 13 nodes
x4,b for 1 ≤ b ≤ 13. Consider the 13 choices that may induce the larger link
values.

Therefore, the 13 choices are (1/2), (3/4), (5/6), (7/8), (9/10), (11/12),
(13/14), (15/16), (17/18), (19/20), (21/22), 23 and 25. The respective link
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FIGURE 1. K1,13

labels are 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25. Then, the set
{y4,b : 1 ≤ b ≤ 13} = {13, 14 · · · 25}.

Case(A): x4,3 = 21 (we have x4,0 = 24, x4,1 = 25, x4,2 = 23 and x1,0 = 22).
Now, 22 is a label of either xa,0 for 1 ≤ a ≤ 2 or xa,b for 1 ≤ a ≤ 2; 1 ≤ b ≤ 3.
That is, 22 is a label of pendent or non-pendent node in K1,2 or K1,3 component
of G. Without loss of generality, let us assume that x1,0 = 22.

Case(A1): x1,0 = 22 (we have x4,0 = 24, x4,1 = 25, x4,2 = 23)
If x1,0 = 22, then, x1,1 take the values one among 1,2 [As x1,1 ≥ 3 would imply
that y1,1 ≥ 13. This is not possible]. Let x1,1 = 1 and x4,13 = 2, then, respective
link labels are y1,1 = 12 and y4,3 = 23. Next, t4,4 is either 20 or 19.

Case(A2): x4,4 = 19 or 20

If x4,4 = 19, then, let x1,2 = 20, then, y1,2 = 21, but, y4,5 = 21 is already alloted.
Hence, x1,2 = 20 is not possible.

FIGURE 2

Case(B): x4,13 = 2 or 1 we have x4,0 = 24, x4,1 = 25, x4,2 = 23 and x1,0 = 1.
Now, 2 is a label of either xa,0 for 1 ≤ a ≤ 2 or xa,b for 1 ≤ a ≤ 2; 1 ≤ b ≤ 3.
That is, 2 is a label of pendent or non-pendent node in K1,2 or K1,3 component
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of G. Without loss of generality, let us assume that x1,0 = 2. Then, 2 is a label
of non-pendent node in K1,2 component of G.

Case(B1): x4,3 = 22 or 21

Let x4,3 = 21. That is, 22 is a label of pendent node in a K1,2 component of
G. Let us assume that x1,1 = 22. Let x4,0 = 24, x4,1 = 25, x4,2 = 23, x4,3 = 21,
x4,13 = 1, x1,0 = 2, x1,1 = 22. Then, y4,13 = 13, y4,1 = 25, y4,2 = 24, y4,3 = 23 and
y1,1 = 12.

Case(B2): x4,4 = 19 or 20

Let t4,4 = 19, then, 20 should be a label of another pendent or adjacent node
in K1,2 component of G. Then x1,2 = 20. Let x4,0 = 24, x4,1 = 25, x4,2 = 23,
x4,3 = 21, x4,13 = 1 and x4,4 = 19, x1,0 = 2, x1,1 = 22, x1,2 = 20. Then, y4,13 = 13,
y4,1 = 25, y4,2 = 24, y4,3 = 23, y1,1 = 12 and y1,2 = 11.

FIGURE 3

Case(C): x4,5 = 17 or 18

Let x4,5 = 18, then, 17 should be a label of pendent or non-pendent node in
K1,3 component of G. Without loss of generality. Let x2,0 = 17, then 17 should
be label of non-pendent node in K1,3 component of G.

Case(C1): x4,12 = 3 or 4

If x4,12 = 4 and x1,2 ≥ 4, then, 3 should be a label of pendent node of K1,3

component of G, then, x2,1 ≥ 11. This is not possible.

Case(C2): x4,12 = 3 or 4

Now, let x4,5 = 18, so 17 should be a label of unlabeled node. To avoid the
complication, let us allot 17 to a pendent node. Without loss of generality, let
it be x2,1 = 17, i.e x2,1 = 17, y2,b , 1 ≤ b ≤ 3.
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Case(D): x4,12 = 3 or 4

Let x4,12 = 4, then, 3 should be a label of non-pendent node in K1,3 component
of G. Then, t2,0 = 3.

Case(D1): t4,6 = 15 or 16

If t4,6 = 16, so 15 should be a label of a pendent node in K1,3 of G. Then,
x2,2 = 15.

Case(D2): x4,7 = 13 or 14

Let x4,7 = 14, then, 13 should a be label of another pendent node in K1,3

component of G.
Without loss of generality , let x2,3 = 13. Let x4,0 = 24, x4,1 = 25, x4,2 = 23,

x4,3 = 21, x4,13 = 1, x4,4 = 19„ x4,5 = 18, x4,6 = 16, x4,7 = 14, x4,12 = 4,
x1,0 = 2, x1,1 = 22, x1,2 = 20, x2,0 = 3, x2,1 = 17, x2,2 = 15 and x2,3 = 13 . Then
y4,13 = 13, y4,1 = 25, y4,2 = 24, y4,3 = 23, y1,1 = 12, y1,2 = 11, y2,1 = 10, y2,2 = 9

and y2,3 = 8.

FIGURE 4

Case(E): x4,8 = 11 or 12 (we have x4,0 = 24, x4,1 = 25, x4,2 = 23 and x1,0 = 1 )
Now, 12 is a label of tb,0 for 1 ≤ b ≤ 3. That is, 12 is a label of pendent or
non-pendent node in another K1,3 component of G. Without loss of generality,
let us assume that t3,0 = 12. Then 12 is a label of non-pendent node in K1,3

component of G.

Case(E1): x4,11 = 5 or 6

If x4,11 = 6, so 5 should be a label of a pendent node in K1,3 component of G.
Then, x3,1 = 5. Let x3,0 = 11, x3,1 = 5, x4,8 = 12, x4,11 = 6. Then, y4,8 = 18,
y4,11 = 15, y3,1 = 8. But , the link value 8 is already allotted y2,3 = 8. Hence,
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x3,0 = 11 is not a non-pendent node in second K1,3 component of G.Hence,
y3,1 = 8 is not possible. Hence, x3,0 6= 11. Similarly x3,0 6= 12.

Case(F): x4,11 = 5 or 6

If x4,11 = 6, so 5 should be a label of a pendent or non-pendent node in another
K1,3 component of G. Without loss of generality, let x3,0 = 5, then, 5 should be
a label of a non-pendent node in K1,3 component of G.

Case(F1): x4,8 = 11 or 12

If x4,8 = 12, so 11 should be a label of a pendent node in second K1,3 component
of G. Let us assume that x3,1 = 11. Then, y3,1 = 8, but, the link value 8 is already
allotted y2,3 = 8.Then, x3,1 6= 11 and similarly x3,1 6= 12.

Case(F2): x4,9 = 9 or 10

If x4,9 = 10, then, 9 should be a label of a pendent node in second K1,3 compo-
nent of G. Let us assume that the node is x3,1 = 9, then we get the link value
y3,1 = 7.

Case(F3): x4,10 = 7 or 8

If x4,9 = 8, then, 7 should be a label of a pendent node in second K1,3 com-
ponent of G. Let us assume that x3,2 = 7. Then, x3,1 = 6. But, x3,2 = 8 is not
possible. Suppose x3,2 = 8, then, we get the link value y3,2 = 7, but the link
value 7 is already allotted y3,1 = 7. Hence, x3,2 6= 8.

Case(G): x4,8 = 11 or 12

If x4,8 = 12, then, 11 should be a label of a pendent node in second K1,3

component of G. Let us assume that x3,3 = 11. Then, y3,3 = 8, but, the link
value 8 is already allotted y2,3 = 8.Then, x3,3 6= 11 and similarly x3,3 6= 12.

FIGURE 5
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Let x4,0 = 24, x4,1 = 25, x4,2 = 23, x4,3 = 21, x4,13 = 1, x4,4 = 19, x4,5 = 18,
x4,6 = 16, x4,7 = 14, x4,12 = 4, x4,8 = 12, x4,9 = 10, x4,10 = 8, x4,11 = 6, x1,0 = 2,
x1,1 = 22, x1,2 = 20, x2,0 = 3, x2,1 = 17, x2,2 = 15, x2,3 = 13, x3,0 = 5, x3,1 = 9,
x3,2 = 7, x3,3 = 11.

Then, y4,13 = 13, y4,1 = 25, y4,2 = 24, y4,3 = 23, y1,1 = 12, y1,2 = 11, y2,1 = 10,
y2,2 = 9, y2,3 = 8,y3,0 = 7,y3,2 = 6,y3,3 = 8.

Suppose that x4,8 = 11 and one of the unlabeled node should be 12, we know
that all the node labels smaller than 5 are already allotted to the nodes. So,
giving label greater than 5 to the adjacent node of the unknown node, labeled
12 will induce a link label 9, but, 9 is already the link label of y2,2, which fails
the bijection of the labeling defined. Obviously, G = 2K1,3 ∪K1,2 ∪K1,13 is not
a skolem mean graph for x4,0 = 24.

A similar argument can prove that G is not a skolem mean graph, when, x4,0

takes other values as such the edges y4,j get the higher values.
Hence, we failed to generate a skolem mean labeling for G = 2K1,3 ∪K1,2 ∪

K1,13, even, when the K1,13 component of G takes the smaller of the values.
Hence, G = 2K1,3 ∪K1,2 ∪K1,13 is not a skolem mean graph, when, G assumes
smaller as well as greater values. Hence, G = 2K1,3∪K1,2∪K1,13 is not a skolem
mean graph. That is, G is not a skolem mean graph, when, |s− t| = 5 + 2r. In
a similar way, we shall prove that G = 2K1,4 ∪K1,2 ∪K1,15 is also not a skolem
mean graph. Argumently, we may assert that graph with bigger difference
between s and t will never make a skolem mean graph.

Hence, the four star G = K1,r ∪K1,r ∪K1,s ∪K1,t is not a skolem mean graph, if
|s− t| > 4 + 2r for r = 2, 3 · · · ; s = 1, 2 · · · . �
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