

Advances in Mathematics: Scientific Journal **9** (2020), no.2, 691–698 ISSN: 1857-8365 (printed); 1857-8438 (electronic) Special Issue on ICCSPAM2020; https://doi.org/10.37418/amsj.9.2.18

NON-EXISTENCE OF SKOLEM MEAN LABELING FOR FOUR STAR GRAPHS

S. SUDHAKAR¹, A. MANSHATH, AND V. BALAJI

ABSTRACT. In this paper, we prove if r>s< t, the four star $G=k_{1,r}\cup k_{1,r}\cup k_{1,s}\cup k_{1,t}$ is not a skolem mean graph if |s-t|>4+2r for $r=2,3\cdots$; $s=1,2\cdots$ and $t\geq 2r+s+5$.

1. Introduction

In [1], V. Balaji and etl proved that the three star graph $K_{1,\ell} \cup K_{1,m} \cup K_{1,n}$, $\ell \leq m < n$ is skolem mean graph if $|m-n| \leq \ell+4$. In [2], they have proved that the four star graph $K_{1,\ell} \cup K_{1,\ell} \cup K_{1,m} \cup K_{1,n}$, $\ell \leq m < n$ is skolem mean graph if $|m-n| \leq 2\ell+4$. In [3], V. Balaji and etl proved that the three star graph $K_{1,p} \cup K_{1,q} \cup K_{1,r}$, p>q < r is skolem mean graph if and only if $|p-q| \leq r+4$.

Definition 1.1. A graph G with p nodes and q links is said to be a skolem mean graph if there exists a function f from the node set of G to $\{1, 2, \dots, p\}$ such that the induced map f^* from the link set of G to $\{2, 3, \dots, p\}$ defined by

$$f^{*}\left(e=uv\right)=\left\{\begin{array}{cc} \frac{f\left(u\right)+f\left(v\right)}{2} & \text{if} \quad f\left(u\right)+f\left(v\right) \text{is even};\\ \frac{f\left(u\right)+f\left(v\right)+1}{2} & \text{if} \quad f\left(u\right)+f\left(v\right) \text{is odd,} \end{array}\right.$$

then the resulting links get distinct labels from the set $\{2, 3, \dots, p\}$.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C78.

Key words and phrases. Skolem Mean Graph, Star Graph.

2. Main result

Theorem 2.1. If r > s < t, the four star $K_{1,r} \cup K_{1,r} \cup K_{1,s} \cup K_{1,t}$ is not a skolem mean graph if |s - t| > 4 + 2r with r - s = 1, for $r = 2, 3 \cdots$ and $s = 1, 2 \cdots$ and t > 2r + s + 5.

Proof. Let $G = K_{1,r} \cup K_{1,r} \cup K_{1,s} \cup K_{1,t}$ where,

$$V(G) = \{v_{a,b} : 1 \le a \le 2, 0 \le b \le 3\} \cup \{v_{3,b} : 0 \le b \le 2\} \cup \{v_{4,b} : 0 \le b \le 13\}$$

$$E(G) = \{v_{a,0}v_{a,b} : 1 \le a \le 2, 1 \le b \le 3\} \cup \{v_{3,0}v_{3,b} : 1 \le b \le 2\}$$

$$\cup \{v_{4,0}v_{4,b} : 1 \le b \le 13\}.$$

Then, p = 25 and q = 21.

Suppose G is a skolem mean graph, then there exists a function f from the node set of G to $1, 2 \cdots$ such that the induced map f^* from the link set of G to $2, 3 \cdots$ defined by

$$f^*\left(e=uv\right) = \begin{cases} \frac{f(u)+f(v)}{2} & \text{if} \quad f\left(u\right)+f\left(v\right) \text{ is even;} \\ \frac{f(u)+f(v)+1}{2} & \text{if} \quad f\left(u\right)+f\left(v\right) \text{ is odd} \end{cases}$$

Then, the resulting links get distinct labels from the set $\{2, 3 \cdots p\}$. Let $x_{a,b}$ be the label given to the node $v_{a,b}$ for $1 \le a \le 2$, $0 \le b \le 3$, $v_{3,b}$ for $0 \le b \le 2$ and $v_{4,b}$ for $0 \le b \le 13$.

Let $y_{a,b}$ be the respective link label of the link $v_{a,o}v_{a,b}$ for $1 \le a \le 2$, $0 \le b \le 3$, $v_{3,0}v_{3,b}$ for $1 \le b \le 2$ and $v_{4,0}v_{4,b}$ for $0 \le b \le 13$.

Let us first consider the case that $x_{4,0} = 24$. If $v_{4,b} = 2t - 1$ and $v_{4,c} = 2t$ for some n and for some b and c, then,

$$f^*(v_{4,0}v_{4,b}) = \frac{24+2t}{2} = \frac{24+2t-1}{2} = 12+t = f^*(v_{4,0}v_{4,b})$$

This is not possible as f^* is a bijection. Therefore, the 13 nodes $x_{4,b}$ for $1 \le b \le 13$ are among the 13 numbers (1/2), (3/4), (5/6), (7/8), (9/10), (11/12), (13/14), (15/16), (17/18), (19/20), (21/22), 23 and 25. Since $x_{4,0} = 24$, first let us consider all the biggest link labels possible for $K_{1,13}$. That is, for 13 nodes $x_{4,b}$ for $1 \le b \le 13$. Consider the 13 choices that may induce the larger link values.

Therefore, the 13 choices are (1/2), (3/4), (5/6), (7/8), (9/10), (11/12), (13/14), (15/16), (17/18), (19/20), (21/22), 23 and 25. The respective link

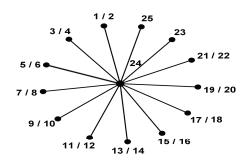


FIGURE 1. $K_{1.13}$

labels are 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25. Then, the set $\{y_{4,b}: 1 \le b \le 13\} = \{13, 14 \cdots 25\}.$

Case(A): $x_{4,3}=21$ (we have $x_{4,0}=24, x_{4,1}=25, x_{4,2}=23$ and $x_{1,0}=22$). Now, 22 is a label of either $x_{a,0}$ for $1 \le a \le 2$ or $x_{a,b}$ for $1 \le a \le 2$; $1 \le b \le 3$. That is, 22 is a label of pendent or non-pendent node in $K_{1,2}$ or $K_{1,3}$ component of G. Without loss of generality, let us assume that $x_{1,0}=22$.

Case(A₁): $x_{1,0} = 22$ (we have $x_{4,0} = 24$, $x_{4,1} = 25$, $x_{4,2} = 23$)

If $x_{1,0}=22$, then, $x_{1,1}$ take the values one among 1,2 [As $x_{1,1}\geq 3$ would imply that $y_{1,1}\geq 13$. This is not possible]. Let $x_{1,1}=1$ and $x_{4,13}=2$, then, respective link labels are $y_{1,1}=12$ and $y_{4,3}=23$. Next, $t_{4,4}$ is either 20 or 19.

Case(A₂): $x_{4,4} = 19 \ or \ 20$

If $x_{4,4} = 19$, then, let $x_{1,2} = 20$, then, $y_{1,2} = 21$, but, $y_{4,5} = 21$ is already alloted. Hence, $x_{1,2} = 20$ is not possible.

FIGURE 2

Case(B): $x_{4,13}=2$ or 1 we have $x_{4,0}=24, x_{4,1}=25, x_{4,2}=23$ and $x_{1,0}=1$. Now, 2 is a label of either $x_{a,0}$ for $1 \le a \le 2$ or $x_{a,b}$ for $1 \le a \le 2$; $1 \le b \le 3$. That is, 2 is a label of pendent or non-pendent node in $K_{1,2}$ or $K_{1,3}$ component

of G. Without loss of generality, let us assume that $x_{1,0} = 2$. Then, 2 is a label of non-pendent node in $K_{1,2}$ component of G.

Case(B₁): $x_{4,3} = 22 \ or \ 21$

Let $x_{4,3}=21$. That is, 22 is a label of pendent node in a $K_{1,2}$ component of G. Let us assume that $x_{1,1}=22$. Let $x_{4,0}=24$, $x_{4,1}=25$, $x_{4,2}=23$, $x_{4,3}=21$, $x_{4,13}=1$, $x_{1,0}=2$, $x_{1,1}=22$. Then, $y_{4,13}=13$, $y_{4,1}=25$, $y_{4,2}=24$, $y_{4,3}=23$ and $y_{1,1}=12$.

Case(B₂): $x_{4,4} = 19 \ or \ 20$

Let $t_{4,4} = 19$, then, 20 should be a label of another pendent or adjacent node in $K_{1,2}$ component of G. Then $x_{1,2} = 20$. Let $x_{4,0} = 24$, $x_{4,1} = 25$, $x_{4,2} = 23$, $x_{4,3} = 21$, $x_{4,13} = 1$ and $x_{4,4} = 19$, $x_{1,0} = 2$, $x_{1,1} = 22$, $x_{1,2} = 20$. Then, $y_{4,13} = 13$, $y_{4,1} = 25$, $y_{4,2} = 24$, $y_{4,3} = 23$, $y_{1,1} = 12$ and $y_{1,2} = 11$.

FIGURE 3

Case(C): $x_{4.5} = 17 \ or \ 18$

Let $x_{4,5} = 18$, then, 17 should be a label of pendent or non-pendent node in $K_{1,3}$ component of G. Without loss of generality. Let $x_{2,0} = 17$, then 17 should be label of non-pendent node in $K_{1,3}$ component of G.

Case(C₁): $x_{4,12} = 3 \text{ or } 4$

If $x_{4,12} = 4$ and $x_{1,2} \ge 4$, then, 3 should be a label of pendent node of $K_{1,3}$ component of G, then, $x_{2,1} \ge 11$. This is not possible.

Case(C₂): $x_{4,12} = 3 \text{ or } 4$

Now, let $x_{4,5}=18$, so 17 should be a label of unlabeled node. To avoid the complication, let us allot 17 to a pendent node. Without loss of generality, let it be $x_{2,1}=17$, i.e $x_{2,1}=17$, $y_{2,b}$, $1 \le b \le 3$.

Case(D): $x_{4,12} = 3 \ or \ 4$

Let $x_{4,12} = 4$, then, 3 should be a label of non-pendent node in $K_{1,3}$ component of G. Then, $t_{2,0} = 3$.

Case(D₁): $t_{4.6} = 15 \ or \ 16$

If $t_{4,6}=16$, so 15 should be a label of a pendent node in $K_{1,3}$ of G. Then, $x_{2,2}=15$.

Case(D₂): $x_{4.7} = 13 \ or \ 14$

Let $x_{4,7} = 14$, then, 13 should a be label of another pendent node in $K_{1,3}$ component of G.

Without loss of generality , let $x_{2,3}=13$. Let $x_{4,0}=24$, $x_{4,1}=25$, $x_{4,2}=23$, $x_{4,3}=21$, $x_{4,13}=1$, $x_{4,4}=19$, $x_{4,5}=18$, $x_{4,6}=16$, $x_{4,7}=14$, $x_{4,12}=4$, $x_{1,0}=2$, $x_{1,1}=22$, $x_{1,2}=20$, $x_{2,0}=3$, $x_{2,1}=17$, $x_{2,2}=15$ and $x_{2,3}=13$. Then $y_{4,13}=13$, $y_{4,1}=25$, $y_{4,2}=24$, $y_{4,3}=23$, $y_{1,1}=12$, $y_{1,2}=11$, $y_{2,1}=10$, $y_{2,2}=9$ and $y_{2,3}=8$.

FIGURE 4

Case(E): $x_{4,8}=11$ or 12 (we have $x_{4,0}=24$, $x_{4,1}=25$, $x_{4,2}=23$ and $x_{1,0}=1$) Now, 12 is a label of $t_{b,0}$ for $1 \le b \le 3$. That is, 12 is a label of pendent or non-pendent node in another $K_{1,3}$ component of G. Without loss of generality, let us assume that $t_{3,0}=12$. Then 12 is a label of non-pendent node in $K_{1,3}$ component of G.

Case(E₁): $x_{4,11} = 5 \ or \ 6$

If $x_{4,11} = 6$, so 5 should be a label of a pendent node in $K_{1,3}$ component of G. Then, $x_{3,1} = 5$. Let $x_{3,0} = 11$, $x_{3,1} = 5$, $x_{4,8} = 12$, $x_{4,11} = 6$. Then, $y_{4,8} = 18$, $y_{4,11} = 15$, $y_{3,1} = 8$. But , the link value 8 is already allotted $y_{2,3} = 8$. Hence,

 $x_{3,0}=11$ is not a non-pendent node in second $K_{1,3}$ component of G.Hence, $y_{3,1}=8$ is not possible. Hence, $x_{3,0}\neq 11$. Similarly $x_{3,0}\neq 12$.

Case(F): $x_{4,11} = 5 \ or \ 6$

If $x_{4,11} = 6$, so 5 should be a label of a pendent or non-pendent node in another $K_{1,3}$ component of G. Without loss of generality, let $x_{3,0} = 5$, then, 5 should be a label of a non-pendent node in $K_{1,3}$ component of G.

Case(F₁): $x_{4,8} = 11 \ or \ 12$

If $x_{4,8}=12$, so 11 should be a label of a pendent node in second $K_{1,3}$ component of G. Let us assume that $x_{3,1}=11$. Then, $y_{3,1}=8$, but, the link value 8 is already allotted $y_{2,3}=8$. Then, $x_{3,1}\neq 11$ and similarly $x_{3,1}\neq 12$.

Case(F₂): $x_{4,9} = 9 \ or \ 10$

If $x_{4,9} = 10$, then, 9 should be a label of a pendent node in second $K_{1,3}$ component of G. Let us assume that the node is $x_{3,1} = 9$, then we get the link value $y_{3,1} = 7$.

Case(F₃): $x_{4.10} = 7 \text{ or } 8$

If $x_{4,9} = 8$, then, 7 should be a label of a pendent node in second $K_{1,3}$ component of G. Let us assume that $x_{3,2} = 7$. Then, $x_{3,1} = 6$. But, $x_{3,2} = 8$ is not possible. Suppose $x_{3,2} = 8$, then, we get the link value $y_{3,2} = 7$, but the link value 7 is already allotted $y_{3,1} = 7$. Hence, $x_{3,2} \neq 8$.

Case(G): $x_{4,8} = 11 \text{ or } 12$

If $x_{4,8}=12$, then, 11 should be a label of a pendent node in second $K_{1,3}$ component of G. Let us assume that $x_{3,3}=11$. Then, $y_{3,3}=8$, but, the link value 8 is already allotted $y_{2,3}=8$. Then, $x_{3,3}\neq 11$ and similarly $x_{3,3}\neq 12$.

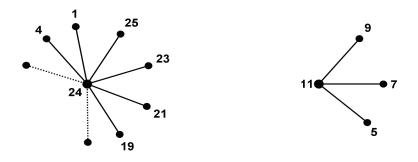


FIGURE 5

Let
$$x_{4,0} = 24$$
, $x_{4,1} = 25$, $x_{4,2} = 23$, $x_{4,3} = 21$, $x_{4,13} = 1$, $x_{4,4} = 19$, $x_{4,5} = 18$, $x_{4,6} = 16$, $x_{4,7} = 14$, $x_{4,12} = 4$, $x_{4,8} = 12$, $x_{4,9} = 10$, $x_{4,10} = 8$, $x_{4,11} = 6$, $x_{1,0} = 2$, $x_{1,1} = 22$, $x_{1,2} = 20$, $x_{2,0} = 3$, $x_{2,1} = 17$, $x_{2,2} = 15$, $x_{2,3} = 13$, $x_{3,0} = 5$, $x_{3,1} = 9$, $x_{3,2} = 7$, $x_{3,3} = 11$.

Then,
$$y_{4,13} = 13$$
, $y_{4,1} = 25$, $y_{4,2} = 24$, $y_{4,3} = 23$, $y_{1,1} = 12$, $y_{1,2} = 11$, $y_{2,1} = 10$, $y_{2,2} = 9$, $y_{2,3} = 8$, $y_{3,0} = 7$, $y_{3,2} = 6$, $y_{3,3} = 8$.

Suppose that $x_{4,8}=11$ and one of the unlabeled node should be 12, we know that all the node labels smaller than 5 are already allotted to the nodes. So, giving label greater than 5 to the adjacent node of the unknown node, labeled 12 will induce a link label 9, but, 9 is already the link label of $y_{2,2}$, which fails the bijection of the labeling defined. Obviously, $G=2K_{1,3}\cup K_{1,2}\cup K_{1,13}$ is not a skolem mean graph for $x_{4,0}=24$.

A similar argument can prove that G is not a skolem mean graph, when, $x_{4,0}$ takes other values as such the edges $y_{4,j}$ get the higher values.

Hence, we failed to generate a skolem mean labeling for $G=2K_{1,3}\cup K_{1,2}\cup K_{1,13}$, even, when the $K_{1,13}$ component of G takes the smaller of the values. Hence, $G=2K_{1,3}\cup K_{1,2}\cup K_{1,13}$ is not a skolem mean graph, when, G assumes smaller as well as greater values. Hence, $G=2K_{1,3}\cup K_{1,2}\cup K_{1,13}$ is not a skolem mean graph. That is, G is not a skolem mean graph, when, |s-t|=5+2r. In a similar way, we shall prove that $G=2K_{1,4}\cup K_{1,2}\cup K_{1,15}$ is also not a skolem mean graph. Argumently, we may assert that graph with bigger difference between s and t will never make a skolem mean graph.

Hence, the four star
$$G=K_{1,r}\cup K_{1,r}\cup K_{1,s}\cup K_{1,t}$$
 is not a skolem mean graph, if $|s-t|>4+2r$ for $r=2,3\cdots$; $s=1,2\cdots$.

ACKNOWLEDGEMENT

One of the authors, Dr. V. Balaji acknowledges University Grants Commission, SERO, Hyderabad, India, for financial assistance (No. FMRP 5766/15 (SERO/UGC)).

REFERENCES

[1] V. BALAJI: Solution of a Conjecture On Skolem Mean Graphs of Stars: $k_{1,\ell} \cup k_{1,m} \cup k_{1,n}$, International Journal of Mathematical Combinatorics, 4 (2011), 115 - 117.

- [2] V. BALAJI, D. S. T. RAMESH, V. MAHESWARI: Solution of a Conjecture On Skolem Mean Graphs of Stars: $k_{1,\ell} \cup k_{1,\ell} \cup k_{1,m} \cup k_{1,n}$, International Journal of Scientific and Engineering Research, **3**(11) (2012), 125-128.
- [3] V. SHENDRA SHAINY, V. BALAJI: On limits on Skolem Mean Labeling for Stars: $k_{1,p} \cup k_{1,q} \cup k_{1,r}$, Journal of Applied Science and Computations, 5(12) (2018), 1 6.

DEPARTMENT OF MATHEMATICS

SACRED HEART COLLEGE

TIRUPATTUR - 635 601

E-mail address: sudha31.sr@gmail.com

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

B. S. ABDUR RAHMAN CRESCENT INSTITUTE

OF SCIENCE AND TECHNOLOGY

Vandalur, Chennai - 48

E-mail address: ameer.manshath@gmail.com

DEPARTMENT OF MATHEMATICS SACRED HEART COLLEGE

TIRUPATTUR - 635 601

E-mail address: pulibala70@gmail.com