

Advances in Mathematics: Scientific Journal **9** (2020), no.2, 699–709 ISSN: 1857-8365 (printed); 1857-8438 (electronic) Special Issue on ICCSPAM-2020 https://doi.org/10.37418/amsj.9.2.19

$B\gamma$ -OPEN SETS IN TOPOLOGICAL SPACES

R. VIJAYALAKSHMI¹ AND A. VADIVEL

ABSTRACT. The aim of this paper is to introduce and study the notion of $B\gamma$ -open, B pre open, B semi open and $B\beta$ -open sets. Some characterization of these notions are presented.

1. Introduction

Levine [7] in 1963, started the study of generalized open sets with the introduction of semi-open sets. And in the year 1970, Levine [7] introduced g-closed sets in topological spaces (briefly, ts's) as a generalization of closed sets. Levine [8], defined the notion of B-open sets in a ts and he obtained various properties. The purpose of this paper is to introduce and study the notion of $B\gamma$ -open, B pre open, B semi open and $B\beta$ -open sets. Also, some characterizations of these notions are presented. Throughout this paper (X,τ) and (Y,σ) (simply X and Y) represent nonempty ts's on which no separation axioms are assumed, unless otherwise mentioned. For a subset A of a space (X,τ) , cl(A), int(A) and $X\setminus A$ denote the closure of A, the interior of A and the complement of A respectively.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54D10, 54E55.

Key words and phrases. $B\gamma$ -closed, B semi-closed, B pre-closed, $B\beta$ -closed sets.

2. Preliminaries

Since, we shall require the following known definitions, notations and some properties, we recall them in this section. A subset A of a space (X,τ) is called semiopen [10] (resp. β -open [1] or semi-preopen [2], b-open [3] or γ -open [4] or sp-open [5] and preopen [11] set) if $A \subseteq cl(int(A))$ (resp. , $A \subseteq cl(int(cl(A)))$ $A \subseteq int(cl(A)) \cup cl(int(A))$ and $A \subseteq int(cl(A))$). The complement of a semi open (resp. β open, γ open and pre open) set is called semi-closed(resp. β -closed, γ -closed and pre closed) set. The intersection of all semi closed (resp. β -closed, γ -closed and pre closed) sets containing A is called the semi-closue (resp. β -closure, γ -closure and pre closure) of A and is denoted by scl(A) (resp. $\beta cl(A)$, $\gamma cl(A)$ and pcl(A)). The union of all semi-open (resp. β -open, γ -open and pre-open) sets contained in A is called the semi-interior (resp. β -interior, γ -interior and pre-interior) of A and is denoted by sint(A) (resp. $\beta int(A)$, $\gamma int(A)$ and pint(A). The family of all semi-open (resp. β -open, γ -open and pre-open) is denoted by SO(X) (resp. β O(X), γ O(X) and PO(X)).

Definition 2.1. A subset A of a ts (X, τ) is called g-closed [9] if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in (X, τ) . The complement of g-closed set is called g-open.

Definition 2.2. Levine [8], defined $\tau(B) = \{O \cup (O' \cap B) : O, O' \in \tau\}$ and called it simple expansion of τ by B, where $B \notin \tau$.

Lemma 2.1. [8] Let A & B be subsets of a space (X, τ) . Then

- (i) A is B-open (briefly, Bo) iff A = Bint(A).
- (ii) Bint(A) is the union of all open sets of X whose closures are contained in A.
- (iii) For any subset A of X, $A \subseteq cl(A) \subseteq Bcl(A)$ (resp. $Bint(A) \subseteq int(A) \subseteq A$.)
- (iv) $Bint(A \cap C) = Bint(A) \cap Bint(C)$ and $Bint(A) \cup Bint(C) \subset Bint(A \cup C)$.
- (v) $Bcl(A \cup C) = Bcl(A) \cup Bcl(C)$ and $Bcl(A \cap C) = Bcl(A) \cap Bcl(C)$.

Definition 2.3.

(i) A subset A of X is called a locally closed set [6] if $A = U \cap F$, where $U \in \tau$, F is closed in X.

(ii) A space (X, τ) is called extremely disconnected [12] if the closure of every open set of X is open.

3. $B\gamma$ -open sets

Definition 3.1. Let (X, τ) be a ts. Then a subset A of X is said to be

- (i) $B\gamma$ -open (briefly, $B\gamma o$) set if $A \subseteq Bint(Bcl(A)) \cup Bcl(Bint(A))$.
- (ii) B-semi open (briefly, Bso) set if $A \supseteq Bcl(Bint(A))$.
- (iii) *B-pre open (briefly,* Bpo) set if $A \supseteq Bint(Bcl(A))$.
- (iv) $B\beta$ open (briefly, $B\beta o$) set $A \subseteq Bcl(Bint(Bcl(A)))$.

The complement of a $B\gamma o$ set (resp. Bso, Bpo and $B\beta o$) is called $B\beta$ -closed set (resp. B-semi closed, B-pre closed and $B\beta$ closed) (briefly, $B\gamma c$ (resp. Bsc, Bpc, $B\beta c$)). The family of all $B\gamma o$, Bso, Bpo and $B\beta o$ (resp. $B\gamma c$, Bsc, Bpc and $B\beta c$) subsets of a space (X,τ) will be as always denoted by $B\gamma O(X)$, BSO(X), BPO(X) and $B\beta O(X)$ (resp. $B\gamma C(X)$, BSC(X), BPC(X) and $B\beta C(X)$).

Proposition 3.1. Let A be a subset of a space (X, τ) . Then

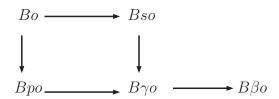
- (i) Every Bo set is Bso (resp. Bpo).
- (ii) Every Bso set is $B\gamma o$.
- (iii) Every Bpo set is $B\gamma o$.
- (iv) Every $B\gamma o$ set is $B\beta o$.

Remark 3.1. The converse of the above proposition is not necessarily true as shown by the following examples.

Example 1. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$, a non open set $B = \{c, d\}$. Then the subset

- (i) $\{a, e\}$ of X is Bso but not Bo.
- (ii) $\{c\}$ of X is Bpo (resp. $B\gamma o$) but not Bo (resp. Bso).
- (iii) A subset $\{a,b\}$ of X is $B\gamma o$ but not Bpo.
- (iv) A subset $\{c, e\}$ of X is $B\beta$ -open but not $B\gamma o$.

Remark 3.2. According to Definition 3.1 and Proposition 3.1, the following diagram holds for a subset A of a space X:



In the following, we present some properties on the notion of $B\gamma o$.

Proposition 3.2.

- (i) If A is a $B\gamma o$ subset of a ts (X, τ) and $Bint(A) = \phi$, then A is Bpo.
- (ii) If A is a Bso subset of a ts (X, τ) and $Bint(A) = \phi$, then A is Bo.
- (iii) If A is a Bpo subset of a ts (X, τ) and $Bint(A) = \phi$, then A is Bo.
- (iv) If A is a $B\beta o$ subset of a ts (X, τ) and $Bint(A) = \phi$, then A is $B\gamma o$.

Lemma 3.1. Let (X, τ) be a ts. Then the following statements are hold.

- (i) The union of arbitrary $B\gamma o$ sets (resp. Bso, Bpo and $B\beta o$) is $B\gamma o$ (resp. Bso, Bpo and $B\beta o$).
- (ii) The intersection of arbitrary $B\gamma c$ sets (resp. Bsc, Bpc and $B\beta c$) is $B\gamma c$ (resp. Bsc, Bpc and $B\beta c$).

Proof. (i) Let $\{A_i \in I\}$ be a family of $B\gamma o$ sets. Then $A_i \subseteq Bint(Bcl(A_i)) \cup Bcl(Bint(A_i))$. Hence $\bigcup_i A_i \subseteq \bigcup_i (Bint(Bcl(A_i)) \cup Bcl(Bint(A_i))) \subset (Bint(Bcl(\bigcup_i A_i)) \cup Bcl(Bint(\bigcup_i A_i))$, for all $i \in I$. Thus $\bigcup_i A_i$ is $B\gamma o$.

(ii) Similar to (i).

Remark 3.3. The intersection of any two $B\gamma o$ sets is not $B\gamma o$. Let $X=\{a,b,c,d,e\}$, $\tau=\{X,\phi,\{a\},\{b\},\{a,b\}\},B=\{c,d\}$. Then $A=\{a,e\}$ & $B=\{b,e\}$ are $B\gamma o$ sets, but $A\cap B=\{e\}$ is not $B\gamma o$.

Definition 3.2. Let (X, τ) be a ts. Then

- (i) The union of all $B\gamma o$ sets (resp. Bso, Bpo and $B\beta o$) of X contained in A is called the $B\gamma$ -interior (resp. B-semi interior, B-pre interior and $B\beta$ -interior) of A and is denoted by $B\gamma int(A)$ (resp. Bsint(A), Bpint(A) and $B\beta int(A)$).
- (ii) The intersection of all $B\gamma c$ sets (resp. Bsc, Bpc and $B\beta c$) of X contained in A is called the $B\gamma$ -(resp. B-semi, B-pre and $B\beta$) closure of A and is denoted by $B\gamma cl(A)$ (resp. Bscl(A), Bpcl(A) and $B\beta cl(A)$).

Proposition 3.3. For subsets A, B of a space (X, τ) , the following statements hold:

- (i) $Bscl(A) = A \cup Bint(Bcl(A)), Bint(A) = A \cap Bcl(Bint(A)),$
- (ii) $Bpcl(A) = A \cup Bcl(Bint(A)), Bpint(A) = A \cap Bint(Bcl(A)),$
- (iii) $Bscl(X \setminus A) = X \setminus Bsint(A), Bscl(A \cup C) \subset Bscl(A) \cup Bscl(C),$
- (iv) $Bpcl(X \setminus A) = X \setminus Bpint(A)$, $Bpcl(A \cup C) \subset Bpcl(A) \cup Bpcl(C)$,
- (v) $X \setminus (Bint(A)) = Bcl(X \setminus A)$ and $Bint(X \setminus A) = X \setminus Bcl(A)$.

Lemma 3.2. The following hold for a subset H of a space (X, τ) .

- (i) $Bpcl(H) = H \cup Bcl(Bint(H))$ and $Bpint(H) = H \cap Bint(Bcl(H))$,
- (ii) $Bpcl(Bpint(H)) = Bpint(H) \cup Bcl(Bint(H))$ and $Bpint(Bpcl(H)) = Bpcl(H) \cap Bint(Bcl(H))$,
- (iii) $Bsint(H) = H \cap Bcl(Bint(H))$ and $Bscl(H) = H \cup Bint(Bcl(H))$.

Lemma 3.3. The following hold for a subsets H of a space (X, τ) ,

- (i) Bcl(Bint(H)) = Bcl(int(H)), and
- (ii) Bint(Bcl(H)) = Bint(Bcl(H)).

Theorem 3.1. Let (X, τ) be a ts and $A \subset X$. Then the following statements are equivalent

- (i) A is a $B\gamma o$ set,
- (ii) $A = Bsint(A) \cup Bpint(A)$.

Proof. (i) \Rightarrow (ii): Let A be an $B\gamma o$ set. Then $A\subseteq Bint(Bcl(A))\cup Bcl(Bint(A))$, hence by Proposition 3.3 and Lemma 3.2

$$Bsint(A) \cup Bpint(A) = (A \cap Bint(Bcl(A))) \cup (A \cup Bcl(Bint(A)))$$

= $A \cap (Bint(Bcl(A)) \cup Bcl(Bint(A)) = A$.

(ii) \Rightarrow (i): Suppose that $A = Bsint(A) \cup Bpint(A)$. Then by Proposition 3.3 and Lemma 3.2

$$A = (A \cap Bint(Bcl(A))) \cup (A \cup Bcl(Bint(A))) \subset Bint(Bcl(A) \cup Bcl(Bint(A))).$$
 Therefore, A is $B \gamma o$.

Proposition 3.4. Let (X, τ) be a ts and $A \subset X$. Then the following statements are equivalent:

- (i) A is an $B\gamma c$ set,
- (ii) $A = Bscl(A) \cap Bpcl(A)$.

Theorem 3.2. Let A be a subset of a space (X, τ) . Then

- (i) $B\gamma cl(A) = Bscl(A) \cap Bpcl(A)$,
- (ii) $B\gamma int(A) = Bsint(A) \cup Bpint(A)$.

Proof. (i) It is easy to see that $B\gamma cl(A) = Bscl(A) \cap Bpcl(A)$. Also, $Bscl(A) \cap Bpcl(A) = (A \cup Bint(Bcl(A)) \cap A \cup Bcl(Bint(A))) = A \cup (Bint(Bcl(A)) \cap Bcl(Bint(A)))$. But, $B\gamma cl(A)$ is $B\gamma c$, hence $B\gamma cl(A) \supset Bint(Bcl(B\gamma cl(A))) \cap Bcl(Bint(B\gamma cl(A))) \supset Bint(Bcl(A)) \cap Bcl(Bint(A))$. Thus $A \cup (Bint(Bcl(A)) \cap Bcl(Bint(A))) \subset A \cup B\gamma cl(A) = B\gamma cl(A)$, therefore, $Bscl(A) \cap Bpcl(A) \subset B\gamma cl(A)$. So, $B\gamma cl(A) = Bscl(A) \cap Bpcl(A)$.

(ii) Similar to (i).

Theorem 3.3. Let A be a subset of a space (x, τ) . Then

- (i) A is an $B\gamma o$ set (resp. Bso set, Bpo set and $B\beta o$ set) iff $A=B\gamma int(A)$ (resp. A=Bsint(A), A=Bpint(A) and $A=B\beta int(A)$),
- (ii) A is an $B\gamma c$ set (resp. Bsc set, Bpc set and $B\beta c$ set) iff $A = B\gamma cl(A)$ (resp. A = Bscl(A), A = Bpcl(A) and $A = B\beta cl(A)$).

Proof. (i) Let A be an $B\gamma o$ set. Then by Theorem 3.1, $A=Bsint(A)\cup Bpint(A)$ and by Theorem 3.2, we have $A=B\gamma int(A)$. Conversely, let $A=B\gamma int(A)$. Then by Theorem 3.2, $A=Bsint(A)\cup Bpint(A)$ and by Theorem 3.1, A is $B\gamma o$.

(ii) Similar to (i).

Theorem 3.4. Let A and B be a subsets of a space (X, τ) . Then the following are hold

- (i) $B\gamma cl(X\backslash A) = X\backslash B\gamma int(A)$.
- (ii) $B\gamma int(X\backslash A) = X\backslash B\gamma cl(A)$.
- (iii) If $A \subset B$, then $B\gamma cl(A) \subseteq B\gamma cl(B)$ and $B\gamma int(A) \subseteq B\gamma int(B)$.
- (iv) $x \in B\gamma cl(A)$ iff there exists an $B\gamma o$ set U and $x \in U$ such that $U \cap A \neq \phi$.
- (v) $B\gamma cl(B\gamma cl(A)) = B\gamma cl(A)$ and $B\gamma int(B\gamma int(A)) = B\gamma int(A)$.
- (vi) $B\gamma cl(A) \cup B\gamma cl(B) \subset B\gamma cl(A \cup B)$ and $B\gamma int(A) \cup B\gamma int(B) \subset B\gamma int(A \cup B)$.
- (vii) $B\gamma int(A\cap B)\subset B\gamma int(A)\cap B\gamma int(B)$ and $B\gamma cl(A\cap B)\subset v-cl(A)\cap B\gamma cl(B)$.

Proof. (i) Since $(X \setminus A) \subseteq X$, by Theorem 3.3, $B\gamma cl(X \setminus A) = Bscl(X \setminus A) \cap Bpcl(X \setminus A)$ and by Proposition 3.3,

$$B\gamma cl(X\backslash A) = (X\backslash Bsint(A)) \cap (X\backslash Bpint(A)) = X\backslash (Bsint(A)\cup Bpint(A)),$$

hence by Theorem 3.3, $B\gamma cl(X\backslash A) = X\backslash B\gamma int(A)$.

- (ii) Similar to (i).
- (iii) Since, $B\gamma cl(A) = Bscl(A) \cap Bpcl(A)$ and $A \subseteq B$,

$$B\gamma cl(A) = Bscl(A) \cap Bpcl(A) \subseteq Bscl(B) \cap Bpcl(B) = B\gamma cl(B)$$
.

(v) Since, $B\gamma cl(B\gamma cl(A)) = Bscl(B\gamma cl(A)) \cap Bpcl(B\gamma cl(A))$, by Theorem 3.3 we have:

$$Bscl(Bscl(A) \cap Bpcl(A)) \cap Bpcl(Bscl(A) \cap Bpcl(A))$$

$$\subseteq (Bscl(A) \cap Bscl(Bpcl(A))) \cap (Bpcl(Bscl(A) \cap Bpcl(A)))$$

$$= Bscl(A) \cap Bpcl(A) = B\gamma cl(A),$$

hence $B\gamma cl(B\gamma cl(A))\subseteq B\gamma cl(A)$. But, $B\gamma cl(A)\subseteq B\gamma cl(B\gamma cl(A))$. Therefore, $B\gamma cl(B\gamma cl(A))=B\gamma cl(A)$.

Remark 3.4. The inclusion relation in part (vi) and (vii) of the above theorem cannot be replaced by equality as shown by the following example.

Example 2. Let $X = \{a, b, c, d, e\}$, with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ a non-open set $B = \{c, d\}$. Then

- (i) If $A = \{a,b\}, B = \{a,c\}$ and $A \cup B = \{a,b,c\}$, then $B\gamma cl(A) = A$, $B\gamma cl(B) = B$ and $B\gamma cl(A \cup B) = X$. Hence, $B\gamma cl(A \cup B) \subset B\gamma cl(A) \cup B\gamma cl(B)$.
- (ii) If $A = \{a, b\}$, $C = \{a, c\}$ and $A \cap B = \{b\}$, then $B\gamma cl(A) = A$, $B\gamma cl(C) = C$ and $B\gamma cl(A \cap C) = X$. Therefore, $B\gamma cl(A \cap B) \subset B\gamma cl(A) \cap B\gamma cl(C)$.
- (iii) If $D = \{a, d\}$, $C = \{b, d\}$ and $D \cup C = \{a, b, d\}$, then $B\gamma int(D) = \phi$, $B\gamma int(C) = \{B\}$ and $B\gamma int(D \cup C) = \{a, b, d\}$. So, $B\gamma int(D \cup C) \subset B\gamma int(D) \cup B\gamma int(C)$.

Lemma 3.4. Let A be a subset of a space (X, τ) . Then following statement hold: $Bpint(Bpcl(A)) = Bpcl(A) \cap Bint(Bcl(A))$ and $Bpcl(Bpint(A)) = Bpint(A) \cup Bcl(Bint(A))$.

Proposition 3.5. Let A be a subset of a space (X, τ) . Then:

- (i) $B\gamma cl(A) = A \cup Bpint(Bpcl(A))$.
- (ii) $B\gamma int(A) = A \cap Bpcl(Bpint(A))$.

Proof. (i) By Lemma 3.2,

$$A \cup Bpint(Bpcl(A)) = A \cup (Bpcl(A) \cap Bint(Bcl(A)))$$

$$= (A \cup Bpcl(A)) \cap (A \cup Bint(Bcl(A)))$$

$$= Bpcl(A) \cap Bscl(A)$$

$$= B\gamma cl(A).$$

(ii) Similar to (i).

Theorem 3.5. Let A be a subset of a space (X, τ) . Then the following are equivalent:

- (i) A is an $B\gamma o$ set,
- (ii) $A \subseteq Bpcl(Bpint(A))$,
- (iii) Bpcl(A) = Bpcl(Bpint(A)).

Proof. (i) \Rightarrow (ii): Let A be an $B\gamma o$ set. Then by Theorem 3.3, $A=B\gamma int(A)$ and by Proposition 3.5, $A=A\cap Bpcl(Bpint(A))$ and hence, $A\subseteq Bpcl(Bpint(A))$.

(ii) \Rightarrow (i): Let $A \subseteq Bpcl(Bpint(A))$. Then by Proposition 3.5, $A \subseteq A \cap Bpcl(Bpint(A)) = B\gamma int(A)$. So, $A \subseteq B\gamma int(A)$. Then $A = B\gamma int(A)$ and hence, A is $B\gamma o$.

(ii) \Rightarrow (iii): Let $A \subseteq Bpcl(Bpint(A))$. Then $Bpcl(A) \subseteq Bpcl(Bpint(A))$ and hence, Bpcl(A) = Bpcl(Bpint(A)).

$$(iii) \Rightarrow (ii)$$
: Obvious.

Theorem 3.6. Let A be a subset of a ts X. Then the following are equivalent:

- (i) A is an $B\gamma c$ set,
- (ii) $Bpint(Bpcl(A)) \subseteq A$,
- (iii) Bpint(A) = Bpint(Bpcl(A)).

Theorem 3.7. If A is a subset of an extremally disconnected space (X, τ) . Then the following are equivalent:

- (i) A is an open set.
- (ii) A is $B\gamma o$ and locally closed.

Proof. (i) \Rightarrow (ii): Obvious from Definitions 2.2 and 3.1.

(ii) \Rightarrow (i): Let A be an $B\gamma o$ and a locally closed subset of X. Then $A = U \cap cl(A)$ and $A \subseteq Bcl(Bint(A))UBint(Bcl(A))$, hence:

```
A \subseteq U \cap [Bcl(Bint(A)) \cup Bint(Bcl(A))]
```

- $\subseteq (U \cap Bcl(Bint(A))) \cup Bint(U \cap Bcl(A)))$
- $\subseteq (U \cap Bcl(Bint(A))) \cup Bint(U \cap Bcl(A))$
- $\subseteq (U \cap Bint(Bcl(A))) \cup Bint(U \cap Bcl(A))(sinceXisE.D)$
- $\subseteq Bint(U \cap Bcl(A)) \cup Bint(U \cap Bcl(A)) = Bint(A) \cup Bint(A).$

Hence A is open.

Definition 3.3. A subset A of a ts (X, τ) is said to be

- (i) locally $B\gamma c$ if $A = U \cap F$ for each $U \in \tau$ and $F \in B\gamma C(X)$.
- (ii) locally Bsc if $A = U \cap F$ for each $U \in \tau$ and $F \in BSC(X)$.
- (iii) locally Bpc if $A = U \cap F$ for each $U \in \tau$ and $F \in BPC(X)$.
- (iv) locally $B\beta c$ if $A = U \cap F$ for each $U \in \tau$ and $F \in B\beta C(X)$.

Theorem 3.8. Let H be a subset of a space X. Then H is locally $B\gamma c$ (resp. locally Bsc, locally Bpc and locally $B\beta c$) iff $H = U \cap B\gamma cl(H)$ (resp. $H = U \cap BS - cl(H)$, $H = U \cap BP - cl(H)$, and $H = U \cap B\beta - cl(H)$).

Proof. Since H is a locally $B\gamma c$ set, $H = U \cap F$, for each $U \in \tau$ and $F \in B\gamma C(X)$, hence $H \subseteq B\gamma cl(H) \subseteq B\gamma cl(F) = F$, thus $H \subseteq U \cap B\gamma cl(H) \subseteq U \cap B\gamma cl(F) = H$. Therefore $H = U \cap B\gamma cl(H)$. Conversely, since $B\gamma cl(H)$ is $B\gamma c$ and $H = U \cap B\gamma cl(H)$, then H is locally $B\gamma c$.

Theorem 3.9. Let A be a locally $B\gamma c$ subset of a space (X, τ) . Then the following statements are hold:

- (i) $B\gamma cl(A)\backslash A$ is an $B\gamma c$ set.
- (ii) $A \cup (X \setminus B \gamma cl(A))$ is an $B \gamma o$.
- (iii) $A \subseteq B\gamma int(A \cup (X \setminus B\gamma cl(A)))$.

Proof. (i) If A is locally $B\gamma c$ set, then there exist an open set U such that $A = U \cap B\gamma cl(A)$. Hence,

$$B\gamma cl(A)\backslash A = B\gamma cl(A)\backslash (U \cup B\gamma cl(A)))$$

$$= B\gamma cl(A) \cap [X\backslash (U \cap B\gamma cl(A))]$$

$$= B\gamma cl(A) \cap [(X\backslash U) \cup (X\backslash \cap B\gamma cl(A))]$$

$$= B\gamma cl(A) \cap (X\backslash U)$$

which is $B\gamma c$.

- (ii) From (i), $B\gamma cl(A)\backslash A$ is $B\gamma c$, then $X\backslash [B\gamma cl(A)\backslash A]$ is an $B\gamma o$ set and $X\backslash [B\gamma cl(A)\backslash A]=X\backslash B\gamma cl(A)\cup (X\cap A)=A\cup (X\backslash B\gamma cl(A))$, hence $A\cup (X\backslash B\gamma cl(A))$ is $B\gamma o$.
 - (iii) It is clear that, $A \subseteq (A \cup (X \setminus B\gamma cl(A))) = B\gamma int(A \cup (X \setminus B\gamma cl(A)))$. \square

CONCLUSION

In this paper is to introduced and studied the notion of $B\gamma$ -open, B pre open, B semi open and $B\beta$ -open sets. Some characterization of these notions are discussed.

REFERENCES

- [1] M. E. ABD EI-MONSEF, S. N. EI-DEEB, R. A. MAHMOUD: β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., **12**(1) (1983), 77–90.
- [2] D. ANDRIJEVIC: Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24-32.
- [3] D. ANDRIJEVIC: On b-open sets, Mat. Vesnik, **48**(1-2) (1996), 59–64.
- [4] A. A. EL- ATIK: A study of some types of mappings on topological spaces, MSc Thesis, Tanta Univ., Egypt, 1997.
- [5] J. DONTCHEV, M. PRZEMSKI, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar., 71(1-2) (1996), 109–120.
- [6] M. GANSTER, I. L. REILLY, Locally closed sets and LC-continuous functions, Internat. J. Math. Sci., 12(3) (1989), 417–424.
- [7] N. LEVINE: Semi-open sets and semi-continuity in topological spaces, American Mathematical Monthly, **70** (1963), 36–41.
- [8] N. LEVINE: Simple extension of Topologies, Amer. Math. Japan. Monthly, 71 (1964), 22–105.
- [9] N. LEVINE: Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo, **19**(2) (1970), 89–96.

- [10] A. S. MASHHOUR, M. E. ABD EL- MONSEF, S. N. EL-DEEB: On pre-continuouss and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, **53** (1982), 47–53.
- [11] O. NJASTED: On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [12] D. S. SIVARAJ: Extremally disconnected spaces, Indian J. Pure Appl. Math., 17 (1986), 1374–1375.

PG and Research Department of Mathematics

ARIGNAR ANNA GOVERNMENT ARTS COLLEGE

NAMAKKAL, TAMILNADU-637 002

MATHEMATICS SECTION (FEAT)

Annamalai University

Annamalainagar, Tamil Nadu, India-608 002

E-mail address: viji_lakshmi80@rediffmail.com

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

GOVERNMENT ARTS COLLEGE (AUTONOMOUS)

KARUR - 639 005

DEPARTMENT OF MATHEMATICS

ANNAMALAI UNIVERSITY

Annamalai Nagar - 608 002, Tamil Nadu, India

E-mail address: avmaths@gmail.com