

Advances in Mathematics: Scientific Journal 9 (2020), no.3, 711-723

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.3.1

INTEGRAL INEQUALITIES OF HADAMARD TYPE FOR SUB $E ext{-}\text{FUNCTIONS}$

NASHAT FARIE, MOHAMED S. S. ALI, AND ZEINAB M. YEHIA¹

ABSTRACT. In this paper, we show that the power function of sub E-function $f^n(x)$ is sub E-function. Furthermore, we establish some new integral inequalities of Hadamard type involving sub E-functions and concave E-functions.

1. Introduction

Let $f:I\to\mathbb{R}$ be a convex function on the interval I of real numbers and $a,b\in I$ with a< b. There are many generalizations of the notion of convex functions see [3,4,7,10]. One way to generalize the notion of convex function is to replace linear functions by another family of functions in the sense of Beckenbach [3]. In this paper, we deal with a family $\{E(x)\}$ of exponintial functions

$$E(x) = A \exp Bx$$

where A, B arbitrary constants.

The Hermite-Hadamard integral inequality for convex functions $f:[a,b] \to \mathbb{R}$

(1.1)
$$f(\frac{a+b}{2}) \le \frac{1}{b-a} \int_a^b f(x) dx \le \frac{f(a) + f(b)}{2},$$

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 26A51, 26B25, 26D15.

Key words and phrases. Generalized convex functions, sub *E*-functions, supporting functions, Hadamard's inequality.

is well known in the literature and has many applications for special means, see for example [2,6,9]. The Hermite-Hadamard integral inequality (1.1) was established for sub E-functions in [1] as

$$f(\frac{a+b}{2}) \le \frac{1}{b-a} \int_a^b f(x) dx \le L(f(a), f(b)),$$

where,
$$L(f(a), f(b)) := \frac{f(b) - f(a)}{\ln f(b) - \ln f(a)}$$
, $f(a), f(b) \ge 0$, $f(a) \ne f(b)$.

In this work, we proved that the higher powers of sub E-function is sub E-function in addition to establish some new integral inequalities of Hadamard type involving sub E-functions and concave E-functions.

2. Definitions and Preliminary Results

In this section, we introduce the basic definitions and results which will be used later. For more informations see [1], [5], [8].

Definition 2.1. A positive function $f: I \to (0, \infty)$ is called sub E-function on I, if for any $a, b \in I$ with a < b the graph of f(x) for a < x < b lies on or under the graph of a function

$$E(x) = Ae^{Bx}.$$

where A and B are taken so that E(a) = f(a), and E(b) = f(b). Equivalenty, for all $x \in [a, b]$

(2.1)
$$f(x) \leq E(x)$$

$$= exp\left[\frac{(b-x)\ln f(a) + (x-a)\ln f(b)}{b-a}\right].$$

If the inequality (2.1) holds with " \geq ", then the function will be called concave E-function on I.

Note the following: There is more than one formula for the function E(x) other than that stated in (2.1); for example,

$$E(x) = f(a)e^{B(x-a)}; B = \frac{\ln f(b) - \ln f(a)}{b-a},$$

or in a multiplicative form

$$E(x) = [f(a)]^{\frac{b-x}{b-a}} \cdot [f(b)]^{\frac{x-a}{b-a}}.$$

Remark 2.1. The sub E-functions possess a number of properties analogous to those of convex functions. For example: If $f: I \to (0, \infty)$ is sub E-function, then for any $a, b \in I$, the inequality $f(x) \geq E(x)$ holds outside the interval [a, b].

Definition 2.2. Let a function $f: I \to (0, \infty)$ be sub E-function. A function

$$T_u(x) = Ae^{Bx}$$
,

is said to be supporting function for f(x) at the point $u \in (a, b)$ if

- (1) $T_u(u) = f(u)$,
- (2) $T_u(x) \le f(x) \ \forall x \in I$.

That is, if f(x) and $T_u(x)$ agree at x = u, the graph of f(x) lies on or above the support curve.

Proposition 2.1. If $f: I \to \mathbb{R}$ is a differentiable sub E-function, then the supporting function for f(x) at the point $u \in I$ has the form

$$T_u(x) = f(u) \exp \left[(x - u) \frac{f'(u)}{f(u)} \right].$$

Remark 2.2. For a sub E-function $f: I \to (0, \infty)$, we write the supporting function at $u \in I$ in the following form

$$T_u(x) = f(u) \exp \left[(x - u) \frac{M_{u,f}}{f(u)} \right].$$

The constant $M_{u,f}$ is equal to f'(u) if f is differentiable at the point $u \in I$; otherwise $f'_{-}(u) \leq M_{u,f} \leq f'_{+}(u)$.

Theorem 2.1. Let $f: I \to (0, \infty)$ be a two times continuously differentiable function. The function f is sub E-function on I if and only if $f(x)f''(x) - (f'(x))^2 \ge 0$ for all x in I.

Theorem 2.2. A function $f: I \to (0, \infty)$ is sub *E*-function on *I* if and only if there exist a supporting function for f(x) at each point $x \in I$.

Theorem 2.3. If a function $f:[a,b] \to \mathbb{R}$ is continuous and g is an integrable function that does not change sign on [a,b], then there exists c in (a,b) such that

$$\int_a^b f(x)g(x)dx = f(c)\int_a^b g(x)dx.$$

3. Main Results

Theorem 3.1. Let $f: I \to (0, \infty)$ be sub *E*-function and two times continuously differentiable then the higher powers of f(x) is sub *E*-function.

Proof. Since f(x) is non-negative and sub E-function then,

(3.1)
$$f(x) \ge 0, \ f(x)f''(x) - (f'(x))^2 \ge 0 \ \forall x \in I.$$

$$(f^n(x))' = nf^{n-1}(x)f'(x),$$

$$(f^n(x))'' = n(n-1)f^{n-2}(x)(f'(x))^2 + nf^{n-1}(x)f''(x).$$

Hence,

$$\begin{split} f^n(x)(f^n(x))'' - ((f^n(x))')^2 &= f^n(x)[n(n-1)(f^{n-2}(x))(f'(x))^2 + nf^{n-1}(x)f''(x)] \\ &- n^2 f^{2n-2}(x)(f'(x))^2 \\ &= n(n-1)f^{2n-2}(x)(f'(x))^2 + nf^{2n-1}(x)f''(x) \\ &- n^2 f^{2n-2}(x)(f'(x))^2 \\ &= nf^{2n-1}(x)f''(x) - nf^{2n-2}(x)(f'(x))^2 \\ &= nf^{2n-2}[f(x)f''(x) - (f'(x))^2]. \end{split}$$

Now using (3.1), we conclude that:

$$f^{n}(x)(f^{n}(x))'' - ((f^{n}(x))')^{2} \ge 0.$$

Hence, $f^n(x)$ is sub *E*-function.

Theorem 3.2. Let $f: I \to (0, \infty)$ be sub *E*-function, $n \in \mathbb{N}$ and $a, b \in I$ with a < b, then

$$\frac{f^n(a)}{nB} \left[e^{nB(b-a)} - 1 \right] \le \int_a^b f^n(x) dx \le \frac{f^{n+1}(u)}{nf'(u)} \left[\exp\left[n(b-u) \frac{f'(u)}{f(u)} \right] - \exp\left[n(a-u) \frac{f'(u)}{f(u)} \right] \right],$$
 where, $B = \frac{\ln f(b) - \ln f(a)}{b-a}$.

Proof. Let u an arbitrary point in (a,b). As f(x) is a sub E-function, then from Definition 2.1 we observe that the graph of f(x) lies nowhere above the function

(3.2)
$$E(x) = f(a)e^{B(x-a)}; B = \frac{\ln f(b) - \ln f(a)}{b-a},$$

and nowhere below any supporting function.

(3.3)
$$T_u(x) = f(u) \exp\left[(x - u) \frac{f'(u)}{f(u)} \right]$$

at the point $u \in (a, b)$. Thus,

$$T_u(x) \le f(x) \le E(x), x \in [a, b].$$

As f(x), $T_u(x)$ are non-negative functions, then

$$T_n^n(x) \le f^n(x) \le E^n(x) \ \forall n \in \mathbb{N}.$$

(3.4)
$$\int_a^b T_u^n(x)dx \le \int_a^b f^n(x)dx \le \int_a^b E^n(x)dx.$$

Using (3.2), one has

$$\int_{a}^{b} f^{n}(x)dx \leq \int_{a}^{b} E^{n}(x)dx$$

$$= \int_{a}^{b} f^{n}(a)e^{nB(x-a)}dx$$

$$= \frac{f^{n}(a)}{nB}e^{nB(x-a)}\Big|_{a}^{b}$$

$$= \frac{f^{n}(a)}{nB}\Big[e^{nB(b-a)} - 1\Big].$$
(3.5)

Using (3.3), (3.4), one obtains:

$$\int_{a}^{b} f^{n}(x)dx \geq \int_{a}^{b} T_{u}^{n}(x)dx$$

$$= \int_{a}^{b} f^{n}(u) \exp\left[n(x-u)\frac{f'(u)}{f(u)}\right]dx$$

$$= \int_{a}^{b} f^{n}(u) \exp\left[n(x-u)$$

Hence, from (3.4), (3.5), (3.6) we get the required inequality.

Theorem 3.3. If $f: I \to (0, \infty)$ is sub E-function on I then,

$$f(\frac{x+y}{2}) \le \sqrt{f(x)f(y)}, \ \forall x, y \in I.$$

Proof. For all $a, b \in I$ with a < b, from Definition 2.1, let $x = \frac{a+b}{2}$

$$f\left(\frac{a+b}{2}\right) \leq \exp\left[\frac{\frac{b-a}{2}\ln f(a) + \frac{b-a}{2}\ln f(b)}{b-a}\right]$$

$$= \exp\left[\frac{\ln f(a) + \ln f(b)}{2}\right]$$

$$= \exp\left[\frac{\ln f(a)f(b)}{2}\right]$$

$$= \sqrt{f(a)f(b)}.$$

Theorem 3.4. Let $f, g: I \to (0, \infty)$ be continuous, sub *E*-functions on $I, a, b \in I$ with $a < b, c_1, c_2 \in (a, b)$ and $\alpha, \beta > 0$ with $\alpha + \beta = 1$. Then the following inequality holds

$$\int_{a}^{b} f(x)g(x)dx \le \alpha f(a)g(c_1) \left[\frac{1}{B_1} (e^{B_1(b-a)} - 1) \right] + \beta g(a)f(c_2) \left[\frac{1}{B_2} (e^{B_2(b-a)} - 1) \right].$$

Proof. Since f, g are sub E-functions, we have

(3.7)
$$f(x) \le f(a)e^{B_1(x-a)}, \ B_1 = \frac{\ln f(b) - \ln f(a)}{b-a},$$

(3.8)
$$g(x) \le g(a)e^{B_2(x-a)}, \ B_2 = \frac{\ln g(b) - \ln g(a)}{b-a},$$

multiplying both sides of (3.7) and (3.8) by $\alpha g(x)$ and $\beta f(x)$ respectively and adding the resulting inequalities we get

(3.9)
$$f(x)g(x) \le \alpha f(a)g(x)e^{B_1(x-a)} + \beta g(a)f(x)e^{B_2(x-a)}.$$

Integrating both sides of (3.9) with respect to x from a to b, we get

$$\int_{a}^{b} f(x)g(x)dx \le \alpha f(a) \int_{a}^{b} g(x)e^{B_{1}(x-a)}dx + \beta g(a) \int_{a}^{b} f(x)e^{B_{2}(x-a)}dx.$$

Let $c_1, c_2 \in (a, b)$, by using integral form of mean value theorem, we get

$$\int_{a}^{b} f(x)g(x)dx \leq \alpha f(a)g(c_{1}) \int_{a}^{b} e^{B_{1}(x-a)} dx + \beta g(a)f(c_{2}) \int_{a}^{b} e^{B_{2}(x-a)} dx,
= \alpha f(a)g(c_{1}) \left[\frac{1}{B_{1}} (e^{B_{1}(b-a)} - 1) \right] + \beta g(a)f(c_{2}) \left[\frac{1}{B_{2}} (e^{B_{2}(b-a)} - 1) \right].$$

Hence, the theorem follows.

Theorem 3.5. Let $f, g: I \to (0, \infty)$ be continuous, sub E-functions on $I, a, b \in I$ with a < b and $\alpha, \beta > 0$ with $\alpha + \beta = 1$. Then the following inequality holds:

$$\int_{a}^{b} f(x)g(x)dx \geq \frac{\alpha}{M_{a,f}} f^{2}(a)g(c_{1}) \left[\exp \frac{M_{a,f}(b-a)}{f(a)} - 1 \right] + \frac{\beta}{M_{a,g}} g^{2}(a)f(c_{2}) \left[\exp \frac{M_{a,g}(b-a)}{g(a)} - 1 \right].$$

Proof. Since f, g are sub E-functions on I, from Definition 2.2, we have that $\forall x, y \in I$

(3.10)
$$f(x) \geq f(y) \exp\left[(x-y)\frac{M_{y,f}}{f(y)}\right],$$

(3.11)
$$g(x) \geq g(y) \exp\left[(x-y)\frac{M_{y,g}}{g(y)}\right],$$

where $M_{y,f}$ is a fixed real number depending on y, f. Multiplying both sides of (3.10) and (3.11) by $\alpha g(x)$ and $\beta f(x)$ respectively and adding the resulting inequalities, we get

(3.12)
$$f(x)g(x) \ge \alpha g(x)f(y) \exp\left[(x-y)\frac{M_{y,f}}{f(y)}\right] + \beta f(x)g(y) \exp\left[(x-y)\frac{M_{y,g}}{g(y)}\right],$$

by taking y = a in (3.12), we get

(3.13)
$$f(x)g(x) \ge \alpha g(x)f(a) \exp\left[(x-a)\frac{M_{a,f}}{f(a)}\right] + \beta f(x)g(a) \exp\left[(x-a)\frac{M_{a,g}}{g(a)}\right].$$

Integrating both sides of (3.13) with respect to x from a to b, we get

$$\int_a^b f(x)g(x)dx \ge \alpha f(a) \int_a^b g(x) \exp\left[(x-a)\frac{M_{a,f}}{f(a)}\right] dx + \beta g(a) \int_a^b f(x) \exp\left[(x-a)\frac{M_{a,g}}{g(a)}\right] dx,$$

Let $c_1, c_2 \in (a, b)$, by using integral form of mean value theorem, we get

$$\int_{a}^{b} f(x)g(x)dx \ge \alpha f(a)g(c_{1}) \int_{a}^{b} \exp\left[\left(x-a\right)\frac{M_{a,f}}{f(a)}\right] dx + \beta g(a)f(c_{2}) \int_{a}^{b} \exp\left[\left(x-a\right)\frac{M_{a,g}}{g(a)}\right] dx,$$

$$= \frac{\alpha}{M_{a,f}} f^{2}(a)g(c_{1}) \left[\exp\frac{M_{a,f}(b-a)}{f(a)} - 1\right] + \frac{\beta}{M_{a,g}} g^{2}(a)f(c_{2}) \left[\exp\frac{M_{a,g}(b-a)}{g(a)} - 1\right].$$

Hence, the theorem follows.

Theorem 3.6. Let $f: I \to (0, \infty)$ be sub *E*-function on I, $g: I \to (0, \infty)$ be concave *E*-function on I, $a, b \in I$ with a < b and $\alpha > 1$ with $\alpha + \beta = 1$. Then the

following inequality holds

$$\int_{a}^{b} f(x)g(x)dx \geq \alpha f(\frac{a+b}{2}) \int_{a}^{b} g(x) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M(\frac{a+b}{2}, f)}{f(\frac{a+b}{2})}\right] dx + \beta g(\frac{a+b}{2}) \int_{a}^{b} f(x) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M(\frac{a+b}{2}, g)}{g(\frac{a+b}{2})}\right] dx.$$

Proof. Since f is sub E-function on I and g is concave E-function on I, we have that $\forall x,y\in I$

(3.14)
$$f(x) \geq f(y) \exp\left[(x-y)\frac{M_{y,f}}{f(y)}\right],$$

(3.15)
$$g(x) \leq g(y) \exp\left[(x-y)\frac{M_{y,g}}{g(y)}\right],$$

where $M_{y,f}$ is a fixed real number depending on y, f. Multiplying both sides of (3.14) and (3.15) by $\alpha g(x)$ and $\beta f(x)$ respectively and adding the resulting inequalities, we get

$$(3.16) f(x)g(x) \ge \alpha g(x)f(y) \exp\left[(x-y)\frac{M_{y,f}}{f(y)}\right] + \beta f(x)g(y) \exp\left[(x-y)\frac{M_{y,g}}{g(y)}\right].$$

By taking $y = \frac{a+b}{2}$ in (3.16), hence

(3.17)
$$f(x)g(x) \geq \alpha g(x)f(\frac{a+b}{2}) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M(\frac{a+b}{2}, f)}{f(\frac{a+b}{2})}\right] + \beta f(x)g(\frac{a+b}{2}) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M(\frac{a+b}{2}, g)}{g(\frac{a+b}{2})}\right],$$

integrating both sides of (3.17) with respect to x from a to b, we get the desired inequality

$$\int_{a}^{b} f(x)g(x)dx \geq \alpha f(\frac{a+b}{2}) \int_{a}^{b} g(x) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M(\frac{a+b}{2}, f)}{f(\frac{a+b}{2})}\right] dx
+ \beta g(\frac{a+b}{2}) \int_{a}^{b} f(x) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M(\frac{a+b}{2}, g)}{g(\frac{a+b}{2})}\right] dx,$$

Theorem 3.7. Let $f, g: I \to (0, \infty)$ be sub *E*-functions on I, $a, b \in I$ with a < b and $\alpha, \beta > 0$ with $\alpha + \beta = 1$. Then the following inequality holds

$$\int_{a}^{b} f(x)g(x)dx \geq \alpha f(\frac{a+b}{2}) \int_{a}^{b} g(x) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M(\frac{a+b}{2}, f)}{f(\frac{a+b}{2})}\right] dx
+ \beta g(\frac{a+b}{2}) \int_{a}^{b} f(x) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M(\frac{a+b}{2}, g)}{g(\frac{a+b}{2})}\right] dx.$$

Proof. Since f, g are sub E-functions on I, from Definition 2.2, we have that $\forall x,y\in I$

(3.18)
$$f(x) \geq f(y) \exp\left[(x-y)\frac{M_{y,f}}{f(y)}\right],$$

(3.19)
$$g(x) \geq g(y) \exp\left[(x-y)\frac{M_{y,g}}{g(y)}\right],$$

where $M_{y,f}$ is a fixed real number depending on y, f. Multiplying both sides of (3.18) and (3.19) by $\alpha g(x)$ and $\beta f(x)$ respectively and adding the resulting inequalities, we get

(3.20)
$$f(x)g(x) \ge \alpha g(x)f(y) \exp\left[(x-y)\frac{M_{y,f}}{f(y)}\right] + \beta f(x)g(y) \exp\left[(x-y)\frac{M_{y,g}}{g(y)}\right].$$

By taking $y = \frac{a+b}{2}$ in (3.20), hence

(3.21)
$$f(x)g(x) \geq \alpha g(x)f(\frac{a+b}{2}) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M(\frac{a+b}{2},f)}{f(\frac{a+b}{2})}\right] + \beta f(x)g(\frac{a+b}{2}) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M(\frac{a+b}{2},g)}{g(\frac{a+b}{2})}\right],$$

integrating both sides of (3.21) with respect to x from a to b, we get

$$\int_{a}^{b} f(x)g(x)dx \geq \alpha f(\frac{a+b}{2}) \int_{a}^{b} g(x) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M(\frac{a+b}{2}, f)}{f(\frac{a+b}{2})}\right] dx + \beta g(\frac{a+b}{2}) \int_{a}^{b} f(x) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M(\frac{a+b}{2}, g)}{g(\frac{a+b}{2})}\right] dx.$$

Theorem 3.8. Let f, g and $h: I \to (0, \infty)$ be sub E-functions on I and $a, b \in I$ with a < b. Then the following inequality holds

$$\begin{split} 3 \int_{a}^{b} f(x)g(x)h(x)dx & \geq f(\frac{a+b}{2}) \int_{a}^{b} g(x)h(x) \exp\left[(x - \frac{a+b}{2}) \frac{M(\frac{a+b}{2}, f)}{f(\frac{a+b}{2})} \right] dx \\ & + g(\frac{a+b}{2}) \int_{a}^{b} f(x)h(x) \exp\left[(x - \frac{a+b}{2}) \frac{M(\frac{a+b}{2}, g)}{g(\frac{a+b}{2})} \right] dx \\ & + h(\frac{a+b}{2}) \int_{a}^{b} f(x)g(x) \exp\left[(x - \frac{a+b}{2}) \frac{M(\frac{a+b}{2}, h)}{h(\frac{a+b}{2})} \right] dx. \end{split}$$

Proof. Since f, g and h are sub E-functions on I, from Definition 2.2, we have $\forall x, y \in I$

(3.22)
$$f(x) \geq f(y) \exp\left[(x-y)\frac{M_{y,f}}{f(y)}\right],$$

(3.23)
$$g(x) \geq g(y) \exp\left[(x-y)\frac{M_{y,g}}{g(y)}\right],$$

(3.24)
$$h(x) \geq h(y) \exp\left[(x-y)\frac{M_{y,h}}{h(y)}\right],$$

multiplying both sides of (3.22), (3.23) and (3.24) by g(x)h(x), f(x)h(x) and f(x)g(x) respectively and adding the resulting inequalities

$$3f(x)g(x)h(x) \geq g(x)h(x)f(y)\exp\left[(x-y)\frac{M_{y,f}}{f(y)}\right] + f(x)h(x)g(y)\exp\left[(x-y)\frac{M_{y,g}}{g(y)}\right] + f(x)g(x)h(y)\exp\left[(x-y)\frac{M_{y,h}}{h(y)}\right].$$
(3.25)

Now, if we choose $y = \frac{a+b}{2}$ in (3.25), we obtain

$$3f(x)g(x)h(x) \geq g(x)h(x)f(\frac{a+b}{2})\exp\left[\left(x - \frac{a+b}{2}\right)\frac{M(\frac{a+b}{2},f)}{f(\frac{a+b}{2})}\right] + f(x)h(x)g(\frac{a+b}{2})\exp\left[\left(x - \frac{a+b}{2}\right)\frac{M(\frac{a+b}{2},g)}{g(\frac{a+b}{2})}\right] + f(x)g(x)h(\frac{a+b}{2})\exp\left[\left(x - \frac{a+b}{2}\right)\frac{M(\frac{a+b}{2},h)}{h(\frac{a+b}{2})}\right].$$
(3.26)

Integrating both sides of (3.26) with respect to x from a to b, we get

$$\begin{split} 3 \int_{a}^{b} f(x)g(x)h(x)dx & \geq f(\frac{a+b}{2}) \int_{a}^{b} g(x)h(x) \exp\left[(x - \frac{a+b}{2}) \frac{M(\frac{a+b}{2}, f)}{f(\frac{a+b}{2})}\right] dx \\ & + g(\frac{a+b}{2}) \int_{a}^{b} f(x)h(x) \exp\left[(x - \frac{a+b}{2}) \frac{M(\frac{a+b}{2}, g)}{g(\frac{a+b}{2})}\right] dx \\ & + h(\frac{a+b}{2}) \int_{a}^{b} f(x)g(x) \exp\left[(x - \frac{a+b}{2}) \frac{M(\frac{a+b}{2}, h)}{h(\frac{a+b}{2})}\right] dx. \end{split}$$

Hence, the theorem follows.

Theorem 3.9. Let $f_1, f_2, ..., f_n$ and $h: I \to (0, \infty)$ be sub E-functions on I and $a, b \in I$ with a < b. Further, let $\alpha_1, \alpha_2, ..., \alpha_n > 0$ with $\sum_{i=1}^n \alpha_i = 1$. Then the following inequality holds

$$\int_{a}^{b} \prod_{i=1}^{n} f_{i}(x) dx \geq \alpha_{1} f_{1}(\frac{a+b}{2}) \int_{a}^{b} f_{2}(x) f_{3}(x) \dots f_{n}(x) \exp \left[(x - \frac{a+b}{2}) \frac{M(\frac{a+b}{2}, f_{1})}{f_{1}(\frac{a+b}{2})} \right] dx
+ \alpha_{2} f_{2}(\frac{a+b}{2}) \int_{a}^{b} f_{1}(x) f_{3}(x) \dots f_{n}(x) \exp \left[(x - \frac{a+b}{2}) \frac{M(\frac{a+b}{2}, f_{2})}{f_{2}(\frac{a+b}{2})} \right] dx
\vdots
+ \alpha_{n} f_{n}(\frac{a+b}{2}) \int_{a}^{b} f_{1}(x) f_{2}(x) \dots f_{n-1}(x) \exp \left[(x - \frac{a+b}{2}) \frac{M(\frac{a+b}{2}, f_{n})}{f_{n}(\frac{a+b}{2})} \right] dx .$$

Proof. Since $f_1, f_2, ..., f_n$ are sub E-functions on I, we have $\forall x, y \in I$

(3.27)
$$f_1(x) \geq f_1(y) \exp\left[(x - y) \frac{M_{y, f_1}}{f_1(y)} \right]$$

(3.28)
$$f_2(x) \geq f_2(y) \exp\left[(x-y) \frac{M_{y,f_2}}{f_2(y)}\right],$$

:

(3.29)
$$f_n(x) \geq f_n(y) \exp\left[(x-y)\frac{M_{y,f_n}}{f_n(y)}\right].$$

Multiplying both sides of (3.27), (3.28),... and (3.29) by $\alpha_1 f_2(x) f_3(x) ... f_n(x)$, $\alpha_2 f_1(x) f_3(x) ... f_n(x)$, and $\alpha_n f_1(x) f_2(x) ... f_{n-1}(x)$ respectively and adding the resulting inequalities

$$\prod_{i=1}^{n} f_{i}(x) \geq \alpha_{1} f_{2}(x) f_{3}(x) \dots f_{n}(x) f_{1}(y) \exp\left[\left(x-y\right) \frac{M_{y,f_{1}}}{f_{1}(y)}\right] \\
+ \alpha_{2} f_{1}(x) f_{3}(x) \dots f_{n}(x) f_{2}(y) \exp\left[\left(x-y\right) \frac{M_{y,f_{2}}}{f_{2}(y)}\right] \\
\vdots \\
+ \alpha_{n} f_{1}(x) f_{2}(x) \dots f_{n-1}(x) f_{n}(y) \exp\left[\left(x-y\right) \frac{M_{y,f_{n}}}{f_{n}(y)}\right].$$
(3.30)

Now, if we choose $y = \frac{a+b}{2}$ in (3.30), we obtain

$$\prod_{i=1}^{n} f_i(x) \geq \alpha_1 f_2(x) f_3(x) \dots f_n(x) f_1(\frac{a+b}{2}) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M_{\frac{a+b}{2}, f_1}}{f_1(\frac{a+b}{2})} \right] + \alpha_2 f_1(x) f_3(x) \dots f_n(x) f_2(\frac{a+b}{2}) \exp\left[\left(x - \frac{a+b}{2}\right) \frac{M_{\frac{a+b}{2}, f_2}}{f_2(\frac{a+b}{2})} \right]$$

:

(3.31)
$$+ \alpha_n f_1(x) f_2(x) \dots f_{n-1}(x) f_n(\frac{a+b}{2}) \exp\left[(x - \frac{a+b}{2}) \frac{M_{\frac{a+b}{2}, f_n}}{f_n(\frac{a+b}{2})} \right].$$

Integrating both sides of (3.31) with respect to x from a to b, we get the desired inequality.

REFERENCES

- [1] M. S. Ali: On certain properties for two classes of generalized convex functions, Abstract and Applied Analysis, **2016**, (2016), 7 pages.
- [2] I. D. ALEXANDRU: Some estimates on the Hermite-Hadamard inequality through quasiconvex functions, Annals of the University of Craiova-Mathematics and Computer Science Series, **34**, (2007), 82–87.
- [3] E. F. BECKENBACH: *Generalized convex functions*, Bulletin of the American Mathematical Society, **43**(6), (1937), 363–371.
- [4] E. F. BECKENBACH, R. H. BING: On generalized convex functions, Transactions of the American Mathematical Society, **58** (1945), 220–230.
- [5] M. COMENETZ: Calculus: The Elements, World Scientific, 2002.
- [6] S. DRAGOMIR: On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang Journal of Mathematics, **33**(1), (2002), 45–56.
- [7] H. HUDZIK, L. MALIGRANDA: Some remarks on s-convex functions, Aequationes Mathematicae, 48(1), (1994), 100–111.
- [8] M. M. PEIXOTO: *Generalized Convex Functions and Second Order Differential Inequalities*, Bulletin of the American Mathematical Society, **55**(6), (1949), 563–572, .
- [9] M. ZEKI, E. SET: Hermite Hadamard's inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57(9), (2013), 2403–2407.
- [10] G. H. TOADER: *Some generalizations of the convexity*, Proceedings of the Colloquium on Approximation and Optimization, University of Cluj-Napoca, (1984), 329–338.

DEPARTMENT OF MATHEMATICS

AIN SHAMS UNIVERSITY

CAIRO, EGYPT

E-mail address: nashatfaried@sci.asu.edu.eg

DEPARTMENT OF MATHEMATICS

AIN SHAMS UNIVERSITY

CAIRO, EGYPT

E-mail address: mss_ali5@yahoo.com

DEPARTMENT OF MATHEMATICS

AIN SHAMS UNIVERSITY

CAIRO, EGYPT

E-mail address: zeinabyehia@edu.asu.edu.eg