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INTEGRAL INEQUALITIES OF HADAMARD TYPE FOR SUB
E-FUNCTIONS

NASHAT FARIE, MOHAMED S. S. ALI, AND ZEINAB M. YEHIA1

ABSTRACT. In this paper, we show that the power function of sub E-function
fn(x) is sub E-function. Furthermore, we establish some new integral in-
equalities of Hadamard type involving sub E-functions and concave E-functions.

1. INTRODUCTION

Let f : I → R be a convex function on the interval I of real numbers and
a, b ∈ I with a < b. There are many generalizations of the notion of convex
functions see [3,4,7,10]. One way to generalize the notion of convex function
is to replace linear functions by another family of functions in the sense of
Beckenbach [3]. In this paper, we deal with a family {E(x)} of exponintial
functions

E(x) = A expBx,

where A,B arbitrary constants.
The Hermite-Hadamard integral inequality for convex functions f : [a, b]→ R

(1.1) f(
a+ b

2
) ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
,
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is well known in the literature and has many applications for special means,
see for example [2,6,9]. The Hermite-Hadamard integral inequality (1.1) was
established for sub E-functions in [1] as

f(
a+ b

2
) ≤ 1

b− a

∫ b

a

f(x)dx ≤ L(f(a), f(b)),

where, L(f(a), f(b)) :=
f(b)− f(a)

ln f(b)− ln f(a)
, f(a), f(b) ≥ 0, f(a) 6= f(b).

In this work, we proved that the higher powers of sub E-function is sub E-
function in addition to establish some new integral inequalities of Hadamard
type involving sub E-functions and concave E-functions.

2. DEFINITIONS AND PRELIMINARY RESULTS

In this section, we introduce the basic definitions and results which will be
used later. For more informations see [1], [5], [8].

Definition 2.1. A positive function f : I → (0,∞) is called sub E-function on I,
if for any a, b ∈ I with a < b the graph of f(x) for a < x < b lies on or under the
graph of a function

E(x) = AeBx,

where A and B are taken so that E(a) = f(a), and E(b) = f(b).
Equivalenty, for all x ∈ [a, b]

f(x) ≤ E(x)

= exp

[
(b− x) ln f(a) + (x− a) ln f(b)

b− a

]
.(2.1)

If the inequality (2.1) holds with “ ≥ ”, then the function will be called concave
E-function on I.

Note the following: There is more than one formula for the function E(x)

other than that stated in (2.1); for example,

E(x) = f(a)eB(x−a); B =
ln f(b)− ln f(a)

b− a
,

or in a multiplicative form

E(x) = [f(a)]
b−x
b−a .[f(b)]

x−a
b−a .
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Remark 2.1. The sub E-functions possess a number of properties analogous to
those of convex functions. For example: If f : I → (0,∞) is sub E-function, then
for any a, b ∈ I, the inequality f(x) ≥ E(x) holds outside the interval [a, b].

Definition 2.2. Let a function f : I → (0,∞) be sub E-function. A function

Tu(x) = AeBx ,

is said to be supporting function for f(x) at the point u ∈ (a, b) if

(1) Tu(u) = f(u) ,

(2) Tu(x) ≤ f(x) ∀x ∈ I.
That is, if f(x) and Tu(x) agree at x = u, the graph of f(x) lies on or above the
support curve.

Proposition 2.1. If f : I → R is a differentiable sub E-function, then the sup-
porting function for f(x) at the point u ∈ I has the form

Tu(x) = f(u) exp

[
(x− u)f

′(u)

f(u)

]
.

Remark 2.2. For a sub E-function f : I → (0,∞), we write the supporting
function at u ∈ I in the following form

Tu(x) = f(u) exp

[
(x− u)Mu,f

f(u)

]
.

The constant Mu,f is equal to f ′(u) if f is differentiable at the point u ∈ I;
otherwise f ′−(u) ≤Mu,f ≤ f ′+(u).

Theorem 2.1. Let f : I → (0,∞) be a two times continuously differentiable func-
tion. The function f is sub E-function on I if and only if f(x)f ′′(x)− (f ′(x))2 ≥ 0

for all x in I.

Theorem 2.2. A function f : I → (0,∞) is sub E-function on I if and only if
there exist a supporting function for f(x) at each point x ∈ I.

Theorem 2.3. If a function f : [a, b] → R is continuous and g is an integrable
function that does not change sign on [a, b], then there exists c in (a, b) such that∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx .
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3. MAIN RESULTS

Theorem 3.1. Let f : I → (0,∞) be sub E-function and two times continuously
differentiable then the higher powers of f(x) is sub E-function.

Proof. Since f(x) is non-negative and sub E-function then,

(3.1) f(x) ≥ 0, f(x)f ′′(x)− (f ′(x))2 ≥ 0 ∀x ∈ I .

(fn(x))′ = nfn−1(x)f ′(x) ,

(fn(x))′′ = n(n− 1)fn−2(x)(f ′(x))2 + nfn−1(x)f ′′(x) .

Hence,

fn(x)(fn(x))′′ − ((fn(x))′)2 = fn(x)[n(n− 1)(fn−2(x))(f ′(x))2 + nfn−1(x)f ′′(x)]

−n2f 2n−2(x)(f ′(x))2

= n(n− 1)f 2n−2(x)(f ′(x))2 + nf 2n−1(x)f ′′(x)

−n2f 2n−2(x)(f ′(x))2

= nf 2n−1(x)f ′′(x)− nf 2n−2(x)(f ′(x))2

= nf 2n−2[f(x)f ′′(x)− (f ′(x))2].

Now using (3.1), we conclude that:

fn(x)(fn(x))′′ − ((fn(x))′)2 ≥ 0 .

Hence, fn(x) is sub E-function. �

Theorem 3.2. Let f : I → (0,∞) be sub E-function, n ∈ N and a, b ∈ I with
a < b, then

fn(a)

nB

[
enB(b−a)−1

]
≤
∫ b

a

fn(x)dx ≤ fn+1(u)

nf ′(u)

[
exp

[
n(b−u)f

′(u)

f(u)

]
−exp

[
n(a−u)f

′(u)

f(u)

]]
,

where, B =
ln f(b)− ln f(a)

b− a
.

Proof. Let u an arbitrary point in (a, b). As f(x) is a sub E-function, then from
Definition 2.1 we observe that the graph of f(x) lies nowhere above the func-
tion

(3.2) E(x) = f(a)eB(x−a); B =
ln f(b)− ln f(a)

b− a
,
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and nowhere below any supporting function.

(3.3) Tu(x) = f(u) exp

[
(x− u)f

′(u)

f(u)

]
at the point u ∈ (a, b). Thus,

Tu(x) ≤ f(x) ≤ E(x), x ∈ [a, b].

As f(x), Tu(x) are non-negative functions, then

T n
u (x) ≤ fn(x) ≤ En(x) ∀n ∈ N.

(3.4)
∫ b

a

T n
u (x)dx ≤

∫ b

a

fn(x)dx ≤
∫ b

a

En(x)dx.

Using (3.2), one has∫ b

a

fn(x)dx ≤
∫ b

a

En(x)dx

=

∫ b

a

fn(a)enB(x−a)dx

=
fn(a)

nB
enB(x−a)

∣∣∣∣b
a

=
fn(a)

nB

[
enB(b−a) − 1

]
.(3.5)

Using (3.3), (3.4), one obtains:∫ b

a

fn(x)dx ≥
∫ b

a

T n
u (x)dx

=

∫ b

a

fn(u) exp

[
n(x− u)f

′(u)

f(u)

]
dx

= fn(u)
f(u)

nf ′(u)

[
exp

[
n(x− u)f

′(u)

f(u)

]]∣∣∣∣b
a

=
fn+1(u)

nf ′(u)

[
exp

[
n(b− u)f

′(u)

f(u)

]
− exp

[
n(a− u)f

′(u)

f(u)

]]
.(3.6)

Hence, from (3.4), (3.5), (3.6) we get the required inequality. �

Theorem 3.3. If f : I → (0,∞) is sub E-function on I then,

f(
x+ y

2
) ≤

√
f(x)f(y), ∀x, y ∈ I.
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Proof. For all a, b ∈ I with a < b, from Definition 2.1, let x =
a+ b

2

f

(
a+ b

2

)
≤ exp

[ b−a
2

ln f(a) + b−a
2

ln f(b)

b− a

]
= exp

[
ln f(a) + ln f(b)

2

]
= exp

[
ln f(a)f(b)

2

]
=

√
f(a)f(b).

�

Theorem 3.4. Let f, g : I → (0,∞) be continuous, sub E-functions on I, a, b ∈
I with a < b, c1, c2 ∈ (a, b) and α, β > 0 with α + β = 1. Then the following
inequality holds∫ b

a

f(x)g(x)dx ≤ αf(a)g(c1)

[
1

B1

(eB1(b−a) − 1)

]
+βg(a)f(c2)

[
1

B2

(eB2(b−a) − 1)

]
.

Proof. Since f, g are sub E-functions, we have

(3.7) f(x) ≤ f(a)eB1(x−a), B1 =
ln f(b)− ln f(a)

b− a
,

(3.8) g(x) ≤ g(a)eB2(x−a), B2 =
ln g(b)− ln g(a)

b− a
,

multiplying both sides of (3.7) and (3.8) by αg(x) and βf(x) respectively and
adding the resulting inequalities we get

(3.9) f(x)g(x) ≤ αf(a)g(x)eB1(x−a) + βg(a)f(x)eB2(x−a).

Integrating both sides of (3.9) with respect to x from a to b, we get∫ b

a

f(x)g(x)dx ≤ αf(a)

∫ b

a

g(x)eB1(x−a)dx+ βg(a)

∫ b

a

f(x)eB2(x−a)dx.

Let c1, c2 ∈ (a, b), by using integral form of mean value theorem, we get∫ b

a

f(x)g(x)dx ≤ αf(a)g(c1)

∫ b

a

eB1(x−a)dx+ βg(a)f(c2)

∫ b

a

eB2(x−a)dx,

= αf(a)g(c1)

[
1

B1

(eB1(b−a) − 1)

]
+ βg(a)f(c2)

[
1

B2

(eB2(b−a) − 1)

]
.

Hence, the theorem follows. �
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Theorem 3.5. Let f, g : I → (0,∞) be continuous, sub E-functions on I, a, b ∈
I with a < b and α, β > 0 with α + β = 1. Then the following inequality holds:∫ b

a

f(x)g(x)dx ≥ α

Ma,f

f 2(a)g(c1)

[
exp

Ma,f (b− a)
f(a)

− 1

]
+

β

Ma,g

g2(a)f(c2)

[
exp

Ma,g(b− a)
g(a)

− 1

]
.

Proof. Since f, g are sub E-functions on I, from Definition 2.2, we have that
∀x, y ∈ I

f(x) ≥ f(y) exp

[
(x− y)My,f

f(y)

]
,(3.10)

g(x) ≥ g(y) exp

[
(x− y)My,g

g(y)

]
,(3.11)

where My,f is a fixed real number depending on y, f . Multiplying both sides
of (3.10) and (3.11) by αg(x) and βf(x) respectively and adding the resulting
inequalities, we get

(3.12) f(x)g(x) ≥ αg(x)f(y) exp

[
(x−y)My,f

f(y)

]
+βf(x)g(y) exp

[
(x−y)My,g

g(y)

]
,

by taking y = a in (3.12), we get

(3.13) f(x)g(x) ≥ αg(x)f(a) exp

[
(x−a)Ma,f

f(a)

]
+βf(x)g(a) exp

[
(x−a)Ma,g

g(a)

]
.

Integrating both sides of (3.13) with respect to x from a to b, we get∫ b

a

f(x)g(x)dx ≥ αf(a)

∫ b

a

g(x) exp

[
(x−a)Ma,f

f(a)

]
dx+βg(a)

∫ b

a

f(x) exp

[
(x−a)Ma,g

g(a)

]
dx,

Let c1, c2 ∈ (a, b), by using integral form of mean value theorem, we get∫ b

a

f(x)g(x)dx ≥ αf(a)g(c1)

∫ b

a

exp

[
(x− a)Ma,f

f(a)

]
dx+ βg(a)f(c2)

∫ b

a

exp

[
(x− a)Ma,g

g(a)

]
dx,

=
α

Ma,f

f 2(a)g(c1)

[
exp

Ma,f (b− a)
f(a)

− 1

]
+

β

Ma,g

g2(a)f(c2)

[
exp

Ma,g(b− a)
g(a)

− 1

]
.

Hence, the theorem follows. �

Theorem 3.6. Let f : I → (0,∞) be sub E-function on I, g : I → (0,∞) be
concave E-function on I, a, b ∈ I with a < b and α > 1 with α+ β = 1. Then the
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following inequality holds∫ b

a

f(x)g(x)dx ≥ αf(
a+ b

2
)

∫ b

a

g(x) exp

[
(x− a+ b

2
)
M(a+b

2
,f )

f(a+b
2
)

]
dx

+ βg(
a+ b

2
)

∫ b

a

f(x) exp

[
(x− a+ b

2
)
M(a+b

2
,g)

g(a+b
2
)

]
dx.

Proof. Since f is sub E-function on I and g is concave E-function on I, we have
that ∀x, y ∈ I

f(x) ≥ f(y) exp

[
(x− y)My,f

f(y)

]
,(3.14)

g(x) ≤ g(y) exp

[
(x− y)My,g

g(y)

]
,(3.15)

where My,f is a fixed real number depending on y, f . Multiplying both sides
of (3.14) and (3.15) by αg(x) and βf(x) respectively and adding the resulting
inequalities, we get

(3.16) f(x)g(x) ≥ αg(x)f(y) exp

[
(x−y)My,f

f(y)

]
+βf(x)g(y) exp

[
(x−y)My,g

g(y)

]
.

By taking y =
a+ b

2
in (3.16), hence

f(x)g(x) ≥ αg(x)f(
a+ b

2
) exp

[
(x− a+ b

2
)
M(a+b

2
,f )

f(a+b
2
)

]

+ βf(x)g(
a+ b

2
) exp

[
(x− a+ b

2
)
M(a+b

2
,g)

g(a+b
2
)

]
,(3.17)

integrating both sides of (3.17) with respect to x from a to b, we get the desired
inequality∫ b

a

f(x)g(x)dx ≥ αf(
a+ b

2
)

∫ b

a

g(x) exp

[
(x− a+ b

2
)
M(a+b

2
,f )

f(a+b
2
)

]
dx

+ βg(
a+ b

2
)

∫ b

a

f(x) exp

[
(x− a+ b

2
)
M(a+b

2
,g)

g(a+b
2
)

]
dx,

�
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Theorem 3.7. Let f, g : I → (0,∞) be sub E-functions on I, a, b ∈ I with a < b

and α, β > 0 with α + β = 1. Then the following inequality holds∫ b

a

f(x)g(x)dx ≥ αf(
a+ b

2
)

∫ b

a

g(x) exp

[
(x− a+ b

2
)
M(a+b

2
,f )

f(a+b
2
)

]
dx

+ βg(
a+ b

2
)

∫ b

a

f(x) exp

[
(x− a+ b

2
)
M(a+b

2
,g)

g(a+b
2
)

]
dx.

Proof. Since f, g are sub E-functions on I, from Definition 2.2, we have that
∀x, y ∈ I

f(x) ≥ f(y) exp

[
(x− y)My,f

f(y)

]
,(3.18)

g(x) ≥ g(y) exp

[
(x− y)My,g

g(y)

]
,(3.19)

where My,f is a fixed real number depending on y, f . Multiplying both sides
of (3.18) and (3.19) by αg(x) and βf(x) respectively and adding the resulting
inequalities, we get

(3.20) f(x)g(x) ≥ αg(x)f(y) exp

[
(x−y)My,f

f(y)

]
+βf(x)g(y) exp

[
(x−y)My,g

g(y)

]
.

By taking y = a+b
2

in (3.20), hence

f(x)g(x) ≥ αg(x)f(
a+ b

2
) exp

[
(x− a+ b

2
)
M(a+b

2
,f )

f(a+b
2
)

]

+ βf(x)g(
a+ b

2
) exp

[
(x− a+ b

2
)
M(a+b

2
,g)

g(a+b
2
)

]
,(3.21)

integrating both sides of (3.21) with respect to x from a to b, we get∫ b

a

f(x)g(x)dx ≥ αf(
a+ b

2
)

∫ b

a

g(x) exp

[
(x− a+ b

2
)
M(a+b

2
,f )

f(a+b
2
)

]
dx

+ βg(
a+ b

2
)

∫ b

a

f(x) exp

[
(x− a+ b

2
)
M(a+b

2
,g)

g(a+b
2
)

]
dx .

�
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Theorem 3.8. Let f, g and h : I → (0,∞) be sub E-functions on I and a, b ∈ I
with a < b. Then the following inequality holds

3

∫ b

a

f(x)g(x)h(x)dx ≥ f(
a+ b

2
)

∫ b

a

g(x)h(x) exp

[
(x− a+ b

2
)
M(a+b

2
,f )

f(a+b
2
)

]
dx

+ g(
a+ b

2
)

∫ b

a

f(x)h(x) exp

[
(x− a+ b

2
)
M(a+b

2
,g)

g(a+b
2
)

]
dx

+ h(
a+ b

2
)

∫ b

a

f(x)g(x) exp

[
(x− a+ b

2
)
M(a+b

2
,h)

h(a+b
2
)

]
dx.

Proof. Since f, g and h are sub E-functions on I, from Definition 2.2, we have
∀x, y ∈ I

f(x) ≥ f(y) exp

[
(x− y)My,f

f(y)

]
,(3.22)

g(x) ≥ g(y) exp

[
(x− y)My,g

g(y)

]
,(3.23)

h(x) ≥ h(y) exp

[
(x− y)My,h

h(y)

]
,(3.24)

multiplying both sides of (3.22), (3.23) and (3.24) by g(x)h(x), f(x)h(x) and
f(x)g(x) respectively and adding the resulting inequalities

3f(x)g(x)h(x) ≥ g(x)h(x)f(y) exp

[
(x− y)My,f

f(y)

]
+ f(x)h(x)g(y) exp

[
(x− y)My,g

g(y)

]
+ f(x)g(x)h(y) exp

[
(x− y)My,h

h(y)

]
.(3.25)
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Now, if we choose y =
a+ b

2
in (3.25), we obtain

3f(x)g(x)h(x) ≥ g(x)h(x)f(
a+ b

2
) exp

[
(x− a+ b

2
)
M(a+b

2
,f )

f(a+b
2
)

]

+ f(x)h(x)g(
a+ b

2
) exp

[
(x− a+ b

2
)
M(a+b

2
,g)

g(a+b
2
)

]

+ f(x)g(x)h(
a+ b

2
) exp

[
(x− a+ b

2
)
M(a+b

2
,h)

h(a+b
2
)

]
.(3.26)

Integrating both sides of (3.26) with respect to x from a to b, we get

3

∫ b

a

f(x)g(x)h(x)dx ≥ f(
a+ b

2
)

∫ b

a

g(x)h(x) exp

[
(x− a+ b

2
)
M(a+b

2
,f )

f(a+b
2
)

]
dx

+ g(
a+ b

2
)

∫ b

a

f(x)h(x) exp

[
(x− a+ b

2
)
M(a+b

2
,g)

g(a+b
2
)

]
dx

+ h(
a+ b

2
)

∫ b

a

f(x)g(x) exp

[
(x− a+ b

2
)
M(a+b

2
,h)

h(a+b
2
)

]
dx.

Hence, the theorem follows. �

Theorem 3.9. Let f1, f2...., fn and h : I → (0,∞) be sub E-functions on I and
a, b ∈ I with a < b. Further, let α1, α2, ..., αn > 0 with

∑n
i=1 αi = 1. Then the

following inequality holds

∫ b

a

n∏
i=1

fi(x)dx ≥ α1f1(
a+ b

2
)

∫ b

a

f2(x)f3(x)...fn(x) exp

[
(x− a+ b

2
)
M(a+b

2
,f1
)

f1(
a+b
2
)

]
dx

+ α2f2(
a+ b

2
)

∫ b

a

f1(x)f3(x)...fn(x) exp

[
(x− a+ b

2
)
M(a+b

2
,f2
)

f2(
a+b
2
)

]
dx

...

+ αnfn(
a+ b

2
)

∫ b

a

f1(x)f2(x)...fn−1(x) exp

[
(x− a+ b

2
)
M(a+b

2
,fn

)

fn(
a+b
2
)

]
dx .
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Proof. Since f1, f2, ..., fn are sub E-functions on I, we have ∀x, y ∈ I

f1(x) ≥ f1(y) exp

[
(x− y)My,f1

f1(y)

]
(3.27)

f2(x) ≥ f2(y) exp

[
(x− y)My,f2

f2(y)

]
,(3.28)

...

fn(x) ≥ fn(y) exp

[
(x− y)My,fn

fn(y)

]
.(3.29)

Multiplying both sides of (3.27), (3.28),... and (3.29) by α1f2(x)f3(x)...fn(x),
α2f1(x)f3(x)...fn(x) . . . , and αnf1(x)f2(x)...fn−1(x) respectively and adding the
resulting inequalities

n∏
i=1

fi(x) ≥ α1f2(x)f3(x)...fn(x)f1(y) exp

[
(x− y)My,f1

f1(y)

]
+ α2f1(x)f3(x)...fn(x)f2(y) exp

[
(x− y)My,f2

f2(y)

]
...

+ αnf1(x)f2(x)...fn−1(x)fn(y) exp

[
(x− y)My,fn

fn(y)

]
.(3.30)

Now, if we choose y =
a+ b

2
in (3.30), we obtain

n∏
i=1

fi(x) ≥ α1f2(x)f3(x)...fn(x)f1(
a+ b

2
) exp

[
(x− a+ b

2
)
Ma+b

2
,f1

f1(
a+b
2
)

]

+ α2f1(x)f3(x)...fn(x)f2(
a+ b

2
) exp

[
(x− a+ b

2
)
Ma+b

2
,f2

f2(
a+b
2
)

]
...

+ αnf1(x)f2(x)...fn−1(x)fn(
a+ b

2
) exp

[
(x− a+ b

2
)
Ma+b

2
,fn

fn(
a+b
2
)

]
.(3.31)

Integrating both sides of (3.31) with respect to x from a to b, we get the desired
inequality. �
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