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LARGE DEVIATIONS FOR PERTURBED REFLECTED DIFFUSION
PROCESSES DRIVEN BY A FRACTIONAL BROWNIAN MOTION IN
HOLDERIAN NORM

RADO ABRAHAM RANDRIANOMENJANAHARY!, DINA MIORA RAKOTONIRIANA,
AND TOUSSAINT JOSEPH RABEHERIMANANA

ABSTRACT. In this paper we establish a large deviations for perturbed re-
flected diffusion processes driven by a fractional brownian motion for any
Hurst parameter H € (0,1) using the method of Azencott in Holderian norm.

1. INTRODUCTION

In recent years, many results on the fractional brownian motion (Fbm for
short) have been obtained. This process was introduced by Kolmogorov [22]
and studied by Mandelbrot and Van Ness [24], where a stochastic integral rep-
resentation in terms of a standard Brownian motion was obtained [8]. Actually;
many phenomena in telecommunication network, mathematical finance, filter-
ing theory, biology, etc., are modeled by fractional Brownian motion [12]. It
is well known that the fBm is not Markovian, nor a semi-martingale, but has a
long-range dependence and it is self-similar.

There are several attempts to construct a stochastic calculus with respect to
fBm, such as: sample paths theory, semimartingale approach and the Skorohod
integral. SDE with respect to fBm are considered in [13], [4]. Such stochastic
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equations are of Volterra type with a weakly regular kernel and are not covered
by standard stochastic Volterra equations as treated for example in Berger and
Mizel [6], Protter [31].

Large deviations for stochastic equations driven by semi-martingales are
by now well known (see Azencot [2], Baldi and Chaleyat-Maurel [3], Cut-
land [14], Dozzi [18], Freidlin and Wentzell [19], Liptser and Pukhalskii [23],
Nualart and Rovira [28], Perez-Abreu and Tudor [30], Priouret [17], Rovira
and Sanz-Solé [33]).

Doney and Zhang [16], obtained the existence and uniqueness of the solu-
tions for the following perturbed diffusion and perturbed reflected diffusion
equations:

t
Xt::cng/( ds+\/_/ o) AWH + 3 sup X,
0

0<s<t

(1.1)
H e (0,1),t€0,1].

Let T' = (1;),t > 0 solution of stochastic differential equation

¢
(1.2) T, = y+/ ¢(T%) dWSH + B sup Ts+ Ly, H € (0,1),¢ € [0,1],
0

0<s<t

where a € [0,1],x € R,y € R, are deterministic, b0 : R — Rand¢: R, —
R are bounded Lipschitz continuous function, {L;,t € [0, 1]} is non-decreasing
with Ly and

t
/ X{ys=0} dLS = Lt.
0

We may think of {L;,¢ € [0,1]} the local time of the semi-martingale {7}, €
[0,1]} at point zero. {W/} t € [0,1]} is a fractional Brownian motion (fBm) of
Hurst parameter H € (0,1) and {W;,¢ € [0, 1]} 1-dimensional standard Brown-
ian motion on a completed probability space (2, F, (F);>0, P) .

For a €]0,1/2[, let C*(]0,1],R) be the separable space of a-Hoélder continu-
ous functions from [0, 1] to R. Consider the small noise perturbations of (1.1)
and (1.2)

Xf::co—l—/ b(X¢) ds+\/_/ (X)) dWH + g sup X7

(1.3) 0<s<t
H e (0,1),te(0,1].

Let T° = (17),t > 0 solution of stochastic differential equation



LARGE DEVIATIONS FOR PERTURBED REFLECTED ... 841

t
(1.4 Tf=y+\/5/ S(T5) AW + 8 sup Ty + Ly,
0

0<s<t

where H € (0,1),t € [0,1]. The aim of this paper is to establish for o €]0,1/2]
and g €0,1] (resp. « €]0,1/2[ and B €]0,1/2]) a large deviation princi-
ple (LDP) for the laws of X* (resp. 7° ) solution of (1.3) (resp. (1.4)) in
C*(]0, 1], R) by using the classical Azencott’s method.

The special case 5 = 0 was studied by Freidlin and Wentzell [19] see also ref-
ered to Varadhan [35], Azencott [2] and Stroock [34] with the usual topology
uniform, Ben Arous and Ledoux [5] have developed a large deviation princi-
ple(LDP) in C*([0, 1], R).

Doss and Priouret [17] considered the LDP for the small noise perturbations
of reflected diffusions, through checking uniform Freidlin-Ventzell estimates.
Further, Millet et al. [26] used the Freidlin-Ventzell estimates to obtain the LDP
of a class of anticipating stochastic differential equations. Recently, Mohammed
and Zhang [27] studied a LDP for small noise perturbed family of stochastic
systems with memory.

When H = 1/2 the fBm becomes the standard Brownian motion, the per-
turbed reflected Brownian motion was first introduced by Le Gall and Yor [20],
[21] and subsequently studied by Carmona et al. [9], [10], Perman and Werner
[29] and Chaumont and Doney [11] and Bo and Zhang [7], L.I.Rajaonarison
and Rabeherimanana [32] . The approach used here will be based on a classi-
cal result of Azencott [2] with uniform topology.

The rest of the paper is organized as follows. Section 2 contains some pre-
liminary definitions and general results. Section 3 is for the LDP of perturbed
diffusion processes. The large deviation estimates for the perturbed reflected
diffusion processes are shown in Section 4.

2. PRELIMINARY DEFINITIONS AND RESULTS

2.1. Preliminary definitions.

Definition 2.1. A rate function is a function I : = — [0; +00| on a Hausdorff
topological space = which is lower semi-continuous, ie. where all the level set
'y = {z € 2,I(x) < A} are closed in =. A rate function [ : = — [0;+o0] is
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called a good rate function, if all the level set {x € Z,1(x) < A} for A > 0 are
compact in =.

Definition 2.2. A family { P¢}.-( of probabilities measures on Hausdorff topolog-
ical space = is satisfies the large deviation principle (or shorter LDP) with the rate
function I : = — [0; +o0], if the following two estimates hold:

i) (Lower bound.) For every open subset O of =
lig%felog P.(O)>—-1(0).

ii) (Upper bound.) For every closed subset F of =
limsupelog P.(F) < —I(F).

e—0

Now, we give a new formulation for the contraction principle which will be
needed later.

Lemma 2.1. Let (E,,d,), (E,,d,), (E.,d.), (E,d) denote Polish spaces and (2, F,P)
be a probability space.

Suppose that (X¢,¢ > 0) is a family of random variables with values in E,
satisfing a LDP with a rate function I,, and (Y¢,e > 0) a random variable with
values in E, satisfing a LDP with a rate function I,,.

Suppose that for each £ > 0, X¢ is independent of Y© then the family of random
variable Z = F(X*¢,Y?) satisfing a LDP with rate function Ir(z) defined by

Ip(z) = inf {[z(az)—i—ly(y)}

F(zy)=2
where F': E, x E, — E, is continuous.

As a reminder for Azencott’s method

Proposition 2.1. let (E;,d;), i = 1,2 be two Polish spaces and X! — E;, € >
0,7 = 1,2 two families of random variables. Assume that { X%, ¢ > 0} satisfies a
LDP with rate function I, : Ey — [0, 4+00]. Let ® : {I; < oo} — E, be a mapping
such that its restriction to the compact sets {I; < a} is continuous in the topology
of Ey. For any g € Ey we set I(g) = inf {]1(f),<1>(f) = g}. Suppose that for
R, p,a > 0 there exist « and ¢y > 0 such that for any h € F; satisfying I,(h) < a
and € < gy we have:

P{d>(X5, ®(h)) = p. di(X},h) < o} < exp(— ).
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Then the family { X5, e > 0} satisfies a LDP with rate function I.
I(g) = inf{Ly(h); ®(h) = g} .

Let us now introduce some function spaces that will be used in the analysis
of solutions of the stochastic differential equation (1.1) .

2.2. Holderian norm. For o €]0, 1/2], we define the a—Holder space C'*([0, 1], R)
as the space of continuous functions f such that:

£ lla= sup MU= T0N o
0<uto<t |V —

Define the Holderian modulus of continuity of f by
D5 — sy LIS

o<uzv<s |V —ul®
It is well known that C*([0, 1], R) is not separable but its closed subspace, de-
fined by

C*0([0,1),R) = {f € C*([0,1], R); lim Da(f,0) = 0},
_>

is separable. Both C*([0,1],R) and C*°(][0,1],R) are Banach spaces for the
norm || f |l and || f |le. It is well known that P(|| D |,< oo) = 1 for

0<a<l1/2
It is a remarkable fact that

2.1) | flloo <M1 S lla -

2.3. Fractional Brownian motion. We consider W = {z € C([0,1],R) : 2(0) =
0} equipped with the supremum norm. We denote by W’ the strong topological
dual of W. For H € (0,1) we denote by Py the unique probability measure on
W such that the canonical process {W/ },cj0,1) is a fBm with Hurst parameter
H. Recall that the covariance Ry of W is given by

C
Ru(s,t) = 7H<32H 2 g s|2H>,

I'(2—2H)cosTtH
mH(1—2H)
In order to represent the fBm in terms of standard Brownian motion (ob-

Cy =

tained for H = 1) we need hypergeometric functions.
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We consider the Gauss hypergeometric function F'(\, 3,, z) which is the ana-
lytic continuation on C' x C' x C\{0,—1,-2,...} x {z € C: Arg(1 —z) < 7} of
the power series

= (Nk(B)k k
F(A76777Z)_; (V)kk" )

(a)g = a(a+1)....(a+ k — 1). Consider the square integrable kernel

t—r)i—2 /1 1 1 t
Ky(t,r) =~ F(——H,H——,H+—,1——>10,t (r).
T(H+3)  \2 2 2" )

It is known that, see [15]:
tAs
Ry(t,s) = / Ky(t,r) Kg(s,r)dr.
0

Next we shall denote by V the Gross-Sobolev derivative operator, ¢ its dual
(divergence operator) and we define the stochastic integral with respect the
fBm by

/1 us oWy = o (Kgyu) ,
for processes u for which K Iju is in the domain of §.
Remark 2.1. It is known that [15]

(0 { /O 1 Ky(t,s) oW }teT = (W} er
1

(ii) { / Lo, SuWkH } := {Wher is a standard Brownian motion on

0 teT
W, B(W), Pp).
(iii) For every u € L*(W x [0, 1]), u adapted,

t t
/ us ogWH :/ us dWs, t € [0,1],
0 0

(the last integral is the usual Ité integral).
(iv) We have the following representation for the fBm

t
whH = / Ky(t,s) dWs, t € [0,1].
0
(v) When H>1/2, the square integrable kernel can be written

) t H-3 1
Ky(t,s) =cpy 52H/ (u — 3> w72 du
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(t—r)H~3

D(H+1) -

where cyg =

2.4. Preliminaries results. The following LDP proved by Baldi et al. (1992)
extends the classical Schilder theorem (see Schilder 1996; Deuschel and Strook
1989)

Theorem 2.1. Let P* be the law of \/eW on C([0, 1], R) equipped with the norm
||l satisfying the LDP with the good rate function \(.) defined by:

1 [
5/ |h(s)|* ds ifh€H
0

400 otherwise .

A(R) =

One of the basic tools in large deviation theory is the ’contraction principle’ (see
Deuschel and Strook 1989). It enables the new rate function to be computed
after the data have been transformed by a continuous map [25].

Theorem 2.2. Let )¢ be a family of probability measure on a Polish space E and
satisfies the LDP with a good rate function .

Let F : E — E' be countinuous. Denote by ()° = P° o F~! the family of image
measure of P¢, then {Q)°} satisfies the LDP with a good rate function ) defined by

AMy) = inf  A(x).

z:F(z)=y

Lemma 2.2. Let {D(t)}+cr be a bounded nonanticipating real process and 0 <
o < H. Then, for any a > 0,

P (H /0 Ku(., $)D(s)dW, [[o> a) < Kiexp{—(aKy — 1)},

where 0 < K; = K; (a, H, HDHOO> < o0.

In particular

P ( sup
0<t<1

For the proof of this result we refer to [12].

/ K (t, $)D(s)dIV.

> a> < Kiexp{—(aKy — 1)*}.
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3. LDP FOR PERTURBED DIFFUSION PROCESSES

In this section, we will give a LDP of the perturbed diffusion process solu-
tion of (1.3). Let H be the Cameron Martin space associated to the standard
Brownian motion, that is:

h:[0,1] — R, h is absolutely continuous such that

H = L.
h(O)annd/ |hs|? ds < +o0.
0

Let ®*(h)(t) be the unique solution of the following deterministic perturbed
equation:
(3.1

DT (h)(t) = xo + /Ot Ky (t, s)b(cbm(h)(s))ds + /Ot Kyt s)o(cpw(h)(s))h(s)ds
+5 sup ®*(h)(s).

0<s<t

We have the following main results.

Theorem 3.1. For H € (0,1), « €]0,1/2[, g €]0,1], let {n.,e > 0} be the
probability measure induced by X© on C*([0, 1], R) equipped with the norm || . ||, ,
then 1. is satisfying the LDP with the good rate function I(.) defined by:
I(g) = inf
(9) heH;giqw(h) AR).

where the inf over the empty set is taken to be .

Theorem 3.2. For H € (0,1), a €]0,1/2[, 8 €]0,1[and h € H. For any R,§ > 0
there exist p > 0 such that

P17 = 0%(0) o | VAW 1 [ 8) < exp(—1).
Proof By (1.3) and (3.1),
Xg— 02 (h)(t) = / o(X2) (VE dW, ~ h(s)) ds
+ / ou(X —aH<c1>~’v(h)(s)) h(s) ds

bi(X5) — by (cpx(h)( )) ds
sup X: — sup ®%(h)(s)

)
0<s<t 0<s<t )

O

O

/\O

+ p
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where oy (z) = Kg(t,s) o(x) and by (z) = Kg(t, s) b(x) . Consequently,
X =@ O] < [ lon(X3) (VE W, = is) )

+ L [ (1 - W) Kats)

(14 [i(s))) ds
+ 0 sup [ X7 —®%(h)(s)],

0<s<t

where L > 0 is the Lipschitz coefficient, and we also used the fact that

| sup u(s) — sup v(s)| < sup |u(s) —v(s)].
0<s<t 0<s<t 0<s<t

For any two continuous functions v and v on R,. Thus, it follows from that,
fort € [0,1]

sup |X; — ®7(h)(u)| <

% sup/ lom(X5) \/_dW—h( )ds)|

0<u<t

wiks s [T - @) Kl s) (14 ()] ds

0<u<t Jo

By the Gronwall lemma and Cauchy-Schwarz inequality this yields that
|| Xi = @7(h)(1) llo<

sup / o (XE) (Ve dW, — h(s)| ds

<t<1

><exp</0 % |Ky(t,s)| (14 ‘h s ) ds
< Ci(h) sup /Ot log(X5) <\/§ dWs — h(s)>| ds

0<t<1

W[ o) (VE W= ) s e

) L 1/2

where Cy (h) = 115 exp(C’(H) L+ h HH)/(l—ﬁ)) ,with || h [|lz= (/ I |? ds)
0

for h € H.When H € (0, 1), since ¢t < 1, we have:

1 1/2
( ; |KH(t,s)|2ds> =|| Kg(t,.) HL?([OJ}): C(H).
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By using the inequality (2.1) and h = 0, we deduce that

t
(3.2) | X7 = @%(0) [loe < C1(0) || / Ve Ku(ts) o(X3) dW, la -
0

For any t € [0, 1], for any continuous functions f : [0, 1] — R, denote by

| fllag= sup M

<00,
o<ugv<t |V —ul®

Next, we set
D (0 (1) = X5 — 27(0)(u).
By the reflexion principle, we have

£

€
‘Dgzw) ()=Dga g) ()

[t—s|e

= B/‘/EOHXE) e

<

+‘T:— sup x/_ ij )(6 dVV'>

s<u<t

»

+% sup /su b(X;) — b(@x(O)(U)) dv

s<u<t

Consequently, we obtain :

t
X =050 o < 75 IV [ on(X0) W, o

+£5 | X5 = 7(0) [l
I t
4_§EE .}E ||)(8‘—‘$$(0) Ha¢ dU.

By using (3.2), we get
HM“@WWé<—+Ml)HI/KmS(FMWM

t
+15_—LB/O | X — ®%(0) ||o dv.
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By the Gronwall lemma we have:

| (X2~ 9%(0)) [lo< (—Mcl )|><f/ Ku(t, s) o(X2) WV, || ©(0),

where O(0) = exp( ) Similar with the proof of (3.2), we obtain:

-8

B3 X7 = 27(W)@) o< Cilh) | /0 UH(XE)(\/EdWs - h(S)) ds ||a

Next we have:

Dé,(;(h) (t)_D;f;(h)(s)
1
[t—s| < [t—s|e <‘

Lﬁ/taH(Xf) (\/’ AW, — (v )) dv

42 sup / [on (X)) — i (250 )] o) d”D

s<u<t

An application of formula (3.3), we obtain

| (X5 = ®7(h)) [las<

P [ () [VE W, = i(s)]ds g
+kaim) | [ on(x) [VEaw,— i) ds L.

+LL / (14 l) || X5 = @7(R) [l ds
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By the Gronwall lemma
(3.4)

106 = @) = (25 + ZES2)x | [ K, ) o(X0) (VE W, — b ds) o 08

where O(h) = exp(%llﬁflllu)) -

Theorem 3.3. For a €)0,1/2[, 5 €]0,1[. For any R,d0,a > 0 there exist p > 0
and €y > 0 such that, for any h € C*([0, 1], R) satisfying A(h) < a and € < g

P((1Eult.s) o(X2) (VE W, = i(5) ds) o | VW, =t 8) <xp (= 2).

For ¢ > 0, define a probability measure P° on (2 by
2

(3.5) dp® = M, dP = exp( h dW, + - / |hg|? ds)
\/_

Then, Girsanov’s theorem implies that

We = Wt—\/ig he, t €0, 1]} is a Wiener process with respect to the probability
P°. Let {Uf,0 <t < 1} be the solution of SDE

(3.6)
t t
Us(t) = xo +/ Ky(t,s) b(U(s)) ds +/ Ky(t,s) o(U(s)) h(s) ds+ p sup U°(s)
0 0 0<s<t
To simplify the notation, set for any p ,a, € > 0
47 = {1 Bt,) 0(X2) (VE W = h(s) ) o | VE W, = |
Then by the Cauchy-Schwarz inequality,

1/2 1/2
AE /M X{AE(w }P dW (/M P8 dW)) (Pa(AE)>

An application of formula (3.5), we obtain

/M w)P(dW) = Epe{exp( Nl de+ /|h|2ds>}

1
:Epg[exp< 2 h AW, —g/ |hs? ds)] xexp(l/ |hsl? ds)
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[ by ey —exp (2112 )

Therefore, if A(h) < a then

. p <o) (1)

Therefore,

P(47) = PE( | Kn(t,s) o(X5) (VE AW, = h(s)ds) lla> .|| VE Wi = B o< 5)

Finally, we obtain

_ Pf( | Kult,s) o(X2)E AW > p. ]| VEWE = h o< 5)

_ P( | Kult,s) o(X2)E AW, o> o]l V& Wo = b o< 6).

Theorem 3.4. For o €)0,1/2[, 5 €]0,1[. For any R,d,a > 0 there exist p > 0
and €y > 0 such that, for any h € C*([0, 1], R) satisfying A(h) < a and € < g

p( || /Ot Ku(t,s) vVZEo(US) dW, o> p | VE W — h [l 5) < exp ( _ 5).

3

For any n € N* we consider the approximation sequence of the process U*®
defined by

U = U?,zfse [‘7 ‘7:; [ for all j =0,1,2,...,n—1
For v > 0 and for every n € N, we have
= {12 [ Kt 5)ot2) W o . VW s 5] € A7 AU A
0
where

_ { | \@/0' Kyl(t,s) (a(Uj) — a(Uj’"))de (= g, | UF — U™ || < 7}

Ac
2

{I1Us=U" |z 7}

—{1VE [ Kutt.s) oz aws oz 5.1 vew= < 3}
0
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On the set {|| U — U*" || < 7}, we have the following estimates || \/z[o(UZ) —
o(Us™)] ||a< v/eL~v and by Lemma (2.2), it follows that

2
e P
To treat P(Ag). On the set {|| /eW?® ||< ¢}, if o is bounded by M, we get

| VE Jy Ku(t $)o(Us™) dW [la=
VE I S350 Kunlts) oUE™) (Wt A) = Wt A ) Hlo
< MY55 Kult,s) VE I (We(ti) = Wo(t)) llc

<n M| K(t.) o
where M > 0 is a common bound of b and o. Therefore, if § < m
then P(A5) = 0. By using the formula (2.17) in Bo and Zhang [7], we have

Pag) < nexp{ - =00

Proposition 3.1. Let o €]0,3[ and 3 €]0,1] be. For any a < 0, the map

F: ¢*([0,1],R) N ({h e H | h|2< a}) (C*9([0,1,R), || . |la) is

continuous.

4. LDP FOR PERTURBED REFLECTED DIFFUSION PROCESSES

In this section, we will prove the LDP for the solution of the perturbed re-
flected diffusion equation (1.4)

For y > 0 and f € C,([0,1],R) as the space of continuous functions in [0, 1] to
R starting from y.

Define two operators I' : C([0,1],R) — C,(]0,1],R;)and K : Cy([0,1],R) —
Cy([ov 1]7R+)

by'f=f+ fand Kf = f, where f = —irg(f(s) A0), t €]0,1].
By the reflection principle, the solution 7° of (1.4) is given by
4.1 Ty = (I'Z°)(t) and L; = (KZ°)(t), t € [0, 1]
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Where Z¢ is a solution of the following stochastic equation
t
42)  Z=y+E / S(TZ9)(t)) AW + 8 sup (TZE) t € [0, 1]
0 0<s<t
For h € H, let ®¥(h) the unique solution of the following equation:
(4.3)

B (h)(t) = y+ / Kan(t, ) «(DEV(1))(s) b ds + B sup (DB/()(s)) + e ¢ € [0,1]

0<s<t

where ®¥(h) is continuous, non-negative and 7 is an increasing continuous
t

function satisfying 7: = [ X(gv(n)—o) d1s- The existence and uniqueness of the

solution to (4.4) might be obtained by Theorem (4.1) and Theorems 4.2 and

4.3 in [7]

Similar as (4.1), ®¥(h) can also be written as

(4.4) ®(h)(t) = (TV(h))(s) and n; = (KV(h))(s), t € [0,1]

Where V' (h) is a solution of the following stochastic equation

(4.5)
V() =y + VE / Kop(t.s) «(TV()(s)) ha ds + 3 sup (TV(R)(s)) £ € 0.1

0<s<t
Let v! be the law of Z¢ on C,([0,1],R,) equipped with the Holderian norm
|| . ||« We have the following main result.

Theorem 4.1. For a €]0,1/2[, 8 €]0,1/2[. Let {v},e > 0} be the probability
measure induced by Z¢ on C,([0,1],R;) equipped with the norm ||.||, , then v/}
satisfying the LDP with the good rate function I,,(.) defined by:

(4.6) IL(g)= inf  A(h)
heH;g=2=(h)

where the inf over the empty set is taken to be oco.
Theorem 4.2. For a €]0,1/2[, 8 €]0,1/2[. Let {v?,e > 0} be the probability

measure induced by T¢ on C,([0,1],R,) equipped with the norm ||.||, , then 12
satisfying the LDP with the good rate function I,,(.) defined by:

4.7) I,(g) = inf I,(g)
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Where the inf over the empty set is taken to be co
Proof. By contraction principle, by using the formula I'y — ¢ = (K, ...,0) see

Anderson et Orey [1], it suffices to prove that I" is continuous «-Hoélderian.
Recall that || Ty — Ty o<l 1 — s [l

[C1=T¢alla  [(Cr(H)=Tep2(t)) = (e (s) =Ta(s))|
l1—tp2]|a - [Y1—2]

2|1 —vY2lloo+2]|1 —Y2lloc
+ 61 —walloo =4

It follows || by — Tty [la< 4 || ¥1 — 1o |la -

Theorem (4.2) is the consequence of the following two propositions.

Theorem 4.3. For o €]0,1/2[, 8 €]0,1/2] and h € H. For any R,p > 0 there
exist 0 > 0 such that

IP’( | Z5Y = VY(h) ||a> p, || VEw — R ||se< 5> < exp < _ g)

Theorem 4.4. For « €]0,1/2], 5 €]0,1[. For any R, p > 0 there exist § > 0 and
go > 0 such that, for any ¢ small enough

p<||/0 Kyt s) Ve «(DZY(s)) dW, |la> p,

[ VEw ls) <exp (= 2).

For any n € N* we consider the approximation sequence of the process Z°¢
defined by

o
Zi" =2 s [ for all =012, m -1
n n

n

For o > 0 and for every n € N, we have

A= {IVE [ Bueos) o(0) aW 2 | VAW [l 6} € AU A5 U A,
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where

A = {1VE [ Katto9) (025) = o0z ) aws oz 5,11 27 = 2209 oz o)
0

o

5= { Iz — zon |2

A= {IVE [ Kulton) «(rzem) aws o= 5. VAW < 3}

\

By the result obtained in Bo and Zhang [7], we have

ny(1 —28)°
8N2%e )

For any R,~ > 0 there exist £, > 0 and 719 > 0 such that if ¢ < &y and n > 7

P(45) < exp( - E)

P(AS) <n exp( —

3

By Lemma (2.2) and Theorem (4.3),
2

~E’ p
P(A]) <C exp( — 8L725>

Lemma 4.1. (Existence and uniqueness of solution)
Assume that o,b are bounded and Lipschitz, the equation (3.1) has a unique
solution

Proof. If (k) and @) (h) are continuous solutions of (3.1) then it follows
Put D®(h)(t) = @V (h)(t) — 3 (h)(¢t)

Then || @1 (h) — &) (h) ||, can be rewritten as || D®(h) ||,

(4.8) [DB(h)(1)] < L/Ot|KH(t,s)| DO(h)(s)(1 + h) ds + B sup [DB(h)(s)|

0<s<t
Thus,
1 t :
@9 DO 1< L= [ 1Kn(t.0) | DO [l 1+ fi) do
Set,

(4.10) 0 = |Ku(t,0)] (1+[h]) € L*([0,1])
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By Cauchy-Schwarz inequality we obtain

/ . ds < (/ Kt ofds) " (/ s i las) "

= C(H)(1+ [ 7 [le) < 00

We can be deduced from Gronwall’s lemma || @M (h) — ®®)(h) ||,= 0, thus
dW(h) = &3 (n)
For the existence we use the successive approximations. Define

t t
O = 1 +/ Ky (t,s) b(®r1) ds +/ Ky(t,s) o(®Y) h(s) ds + B sup 7!
0 0

0<s<t

Denote by ®,,(t) =|| ®}*' — &7 ||, then we have

@O(t)g—ﬁ/ Kt s)] (14 hy) ds < o

S—g/ | K5 (L, 5)| ®ry(s) (14 hs) ds < oo
And by iteration
L\ p o
< | ——
0.0 < (125) DKL
Then we deduce that ¢, (t) — ®(¢) uniformly in ¢ and & is the solution of
(3.1) O

5. CONCLUSIONS

In the present paper, we have etablished a large deviation principle (LDP) for
perturbed reflected diffusion processes driven by a fractional brownian motion
for any Hurst parameter H € (0, 1) using the method of Azencott in Holderian
norm. This extends the LDP proved by Lijun Bo in [7].
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