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LARGE DEVIATIONS FOR PERTURBED REFLECTED DIFFUSION
PROCESSES DRIVEN BY A FRACTIONAL BROWNIAN MOTION IN

HÖLDERIAN NORM

RADO ABRAHAM RANDRIANOMENJANAHARY1, DINA MIORA RAKOTONIRIANA,
AND TOUSSAINT JOSEPH RABEHERIMANANA

ABSTRACT. In this paper we establish a large deviations for perturbed re-
flected diffusion processes driven by a fractional brownian motion for any
Hurst parameter H ∈ (0, 1) using the method of Azencott in Hölderian norm.

1. INTRODUCTION

In recent years, many results on the fractional brownian motion (Fbm for
short) have been obtained. This process was introduced by Kolmogorov [22]
and studied by Mandelbrot and Van Ness [24], where a stochastic integral rep-
resentation in terms of a standard Brownian motion was obtained [8]. Actually,
many phenomena in telecommunication network, mathematical finance, filter-
ing theory, biology, etc., are modeled by fractional Brownian motion [12]. It
is well known that the fBm is not Markovian, nor a semi-martingale, but has a
long-range dependence and it is self-similar.

There are several attempts to construct a stochastic calculus with respect to
fBm, such as: sample paths theory, semimartingale approach and the Skorohod
integral. SDE with respect to fBm are considered in [13], [4]. Such stochastic

1corresponding author
2010 Mathematics Subject Classification. 60F10, 60H30.
Key words and phrases. Hölderian norm, perturbed reflected diffusion process, fractional

Brownian motion, large deviations.
839



840 R. A. RANDRIANOMENJANAHARY, D. M. RAKOTONIRIANA, AND T. J. RABEHERIMANANA

equations are of Volterra type with a weakly regular kernel and are not covered
by standard stochastic Volterra equations as treated for example in Berger and
Mizel [6], Protter [31].

Large deviations for stochastic equations driven by semi-martingales are
by now well known (see Azencot [2], Baldi and Chaleyat-Maurel [3], Cut-
land [14], Dozzi [18], Freidlin and Wentzell [19], Liptser and Pukhalskii [23],
Nualart and Rovira [28], Perez-Abreu and Tudor [30], Priouret [17], Rovira
and Sanz-Solé [33]).

Doney and Zhang [16], obtained the existence and uniqueness of the solu-
tions for the following perturbed diffusion and perturbed reflected diffusion
equations:

(1.1)
Xt = x0 +

∫ t

0

b(Xs) ds+
√
ε

∫ t

0

σ(Xs) dW
H
s + β sup

0≤s≤t
Xs

H ∈ (0, 1), t ∈ [0, 1] .

Let T = (Tt), t ≥ 0 solution of stochastic differential equation

(1.2) Tt = y +

∫ t

0

ς(Ts) dW
H
s + β sup

0≤s≤t
Ts + Lt, H ∈ (0, 1), t ∈ [0, 1] ,

where α ∈ [0, 1], x ∈ R, y ∈ R+ are deterministic, b, σ : R −→ R and ς : R+ −→
R are bounded Lipschitz continuous function, {Lt, t ∈ [0, 1]} is non-decreasing
with L0 and ∫ t

0

χ{ys=0} dLs = Lt .

We may think of {Lt, t ∈ [0, 1]} the local time of the semi-martingale {Tt, t ∈
[0, 1]} at point zero. {WH

t , t ∈ [0, 1]} is a fractional Brownian motion (fBm) of
Hurst parameter H ∈ (0,1) and {Wt, t ∈ [0, 1]} 1-dimensional standard Brown-
ian motion on a completed probability space (Ω,F , (F)t≥0,P) .

For α ∈]0, 1/2[, let Cα([0, 1],R) be the separable space of α-Hölder continu-
ous functions from [0, 1] to R. Consider the small noise perturbations of (1.1)
and (1.2)

(1.3)
Xε
t = x0 +

∫ t

0

b(Xε
s ) ds+

√
ε

∫ t

0

σ(Xε
s ) dW

H
s + β sup

0≤s≤t
Xε
t

H ∈ (0, 1), t ∈ [0, 1] .

Let T ε = (T εt ), t ≥ 0 solution of stochastic differential equation
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(1.4) T εt = y +
√
ε

∫ t

0

ς(T εs ) dWH
s + β sup

0≤s≤t
T εt + Lt ,

where H ∈ (0, 1), t ∈ [0, 1]. The aim of this paper is to establish for α ∈]0, 1/2[

and β ∈]0, 1[ (resp. α ∈]0, 1/2[ and β ∈]0, 1/2[) a large deviation princi-
ple (LDP) for the laws of Xε (resp. T ε ) solution of (1.3) (resp. (1.4)) in
Cα([0, 1],R) by using the classical Azencott’s method.

The special case β ≡ 0 was studied by Freidlin and Wentzell [19] see also ref-
ered to Varadhan [35], Azencott [2] and Stroock [34] with the usual topology
uniform, Ben Arous and Ledoux [5] have developed a large deviation princi-
ple(LDP) in Cα([0, 1],R).

Doss and Priouret [17] considered the LDP for the small noise perturbations
of reflected diffusions, through checking uniform Freidlin-Ventzell estimates.
Further, Millet et al. [26] used the Freidlin-Ventzell estimates to obtain the LDP
of a class of anticipating stochastic differential equations. Recently, Mohammed
and Zhang [27] studied a LDP for small noise perturbed family of stochastic
systems with memory.

When H = 1/2 the fBm becomes the standard Brownian motion, the per-
turbed reflected Brownian motion was first introduced by Le Gall and Yor [20],
[21] and subsequently studied by Carmona et al. [9], [10], Perman and Werner
[29] and Chaumont and Doney [11] and Bo and Zhang [7], L.I.Rajaonarison
and Rabeherimanana [32] . The approach used here will be based on a classi-
cal result of Azencott [2] with uniform topology.

The rest of the paper is organized as follows. Section 2 contains some pre-
liminary definitions and general results. Section 3 is for the LDP of perturbed
diffusion processes. The large deviation estimates for the perturbed reflected
diffusion processes are shown in Section 4.

2. PRELIMINARY DEFINITIONS AND RESULTS

2.1. Preliminary definitions.

Definition 2.1. A rate function is a function I : Ξ −→ [0; +∞] on a Hausdorff
topological space Ξ which is lower semi-continuous, ie. where all the level set
Γλ = {x ∈ Ξ, I(x) ≤ λ} are closed in Ξ. A rate function I : Ξ −→ [0; +∞] is
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called a good rate function, if all the level set {x ∈ Ξ, I(x) ≤ λ} for λ ≥ 0 are
compact in Ξ .

Definition 2.2. A family {P ε}ε>0 of probabilities measures on Hausdorff topolog-
ical space Ξ is satisfies the large deviation principle (or shorter LDP) with the rate
function I : Ξ −→ [0; +∞], if the following two estimates hold:

i) (Lower bound.) For every open subset O of Ξ

lim inf
ε−→0

ε logPε(O) ≥ −I(O) .

ii) (Upper bound.) For every closed subset F of Ξ

lim sup
ε−→0

ε logPε(F) ≤ −I(F) .

Now, we give a new formulation for the contraction principle which will be
needed later.

Lemma 2.1. Let (Ex, dx), (Ey, dy), (Ez, dz), (E, d) denote Polish spaces and (Ω,F ,P)

be a probability space.
Suppose that (Xε, ε > 0) is a family of random variables with values in Ex

satisfing a LDP with a rate function Ix, and (Y ε, ε > 0) a random variable with
values in Ey satisfing a LDP with a rate function Iy.

Suppose that for each ε > 0, Xε is independent of Y ε then the family of random
variable Z = F (Xε, Y ε) satisfing a LDP with rate function IF (z) defined by

IF (z) = inf
F (x,y)=z

{
Ix(x) + Iy(y)

}
where F : Ex × Ey → Ez is continuous.

As a reminder for Azencott’s method

Proposition 2.1. let (Ei,di), i = 1, 2 be two Polish spaces and X i
ε → Ei, ε >

0, i = 1, 2 two families of random variables. Assume that {Xε
1 , ε > 0} satisfies a

LDP with rate function I1 : E1 → [0,+∞]. Let Φ : {I1 <∞} → E2 be a mapping
such that its restriction to the compact sets {I1 ≤ a} is continuous in the topology
of E1. For any g ∈ E2 we set I(g) = inf

{
I1(f),Φ(f) = g

}
. Suppose that for

R, ρ, a > 0 there exist α and ε0 > 0 such that for any h ∈ E1 satisfying I1(h) ≤ a

and ε ≤ ε0 we have:

P
{
d2(Xε

2 ,Φ(h)) ≥ ρ, d1(Xε
1 , h) ≤ α

}
≤ exp(−R

ε2
) .
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Then the family {Xε
2 , ε > 0} satisfies a LDP with rate function I.

I(g) = inf{I1(h); Φ(h) = g} .

Let us now introduce some function spaces that will be used in the analysis
of solutions of the stochastic differential equation (1.1) .

2.2. Hölderian norm. For α ∈]0, 1/2[, we define the α−Hölder space Cα([0, 1],R)

as the space of continuous functions f such that:

‖ f ‖α= sup
0≤u6=v≤1

|f(u)− f(v)|
|v − u|α

<∞ .

Define the Hölderian modulus of continuity of f by

Dα(f, δ) = sup
0≤u6=v≤δ

|f(v)− f(u)|
|v − u|α

.

It is well known that Cα([0, 1],R) is not separable but its closed subspace, de-
fined by

Cα,0([0, 1],R) = {f ∈ Cα([0, 1],R); lim
δ→0

Dα(f, δ) = 0} ,

is separable. Both Cα([0, 1],R) and Cα,0([0, 1],R) are Banach spaces for the
norm ‖ f ‖α and ‖ f ‖∞. It is well known that P (‖ D ‖α< ∞) = 1 for
0 < α < 1/2.

It is a remarkable fact that

(2.1) ‖ f ‖∞ ≤ ‖ f ‖α .

2.3. Fractional Brownian motion. We considerW = {x ∈ C([0, 1],R) : x(0) =

0} equipped with the supremum norm. We denote byW ′ the strong topological
dual ofW. For H ∈ (0, 1) we denote by PH the unique probability measure on
W such that the canonical process {WH

t }t∈[0,1] is a fBm with Hurst parameter
H. Recall that the covariance RH of W is given by

RH(s, t) =
CH
2

(
s2H + t2H − |t− s|2H

)
,

CH =
Γ(2− 2H) cosπH

πH(1− 2H)
.

In order to represent the fBm in terms of standard Brownian motion (ob-
tained for H = 1

2
) we need hypergeometric functions.
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We consider the Gauss hypergeometric function F (λ, β, γ, z) which is the ana-
lytic continuation on C ×C ×C\{0,−1,−2, . . . }× {z ∈ C : Arg(1− z) < π} of
the power series

F (λ, β, γ, z) =
∞∑
k=0

(λ)k(β)k
(γ)kk!

zk,

(a)k = a(a+ 1)....(a+ k − 1). Consider the square integrable kernel

KH(t, r) =
(t− r)H− 1

2

Γ(H + 1
2
)
F
(1

2
−H,H − 1

2
, H +

1

2
, 1− t

r

)
1[0,t)(r) .

It is known that, see [15]:

RH(t, s) =

∫ t∧s

0

KH(t, r) KH(s, r)dr .

Next we shall denote by ∇H the Gross-Sobolev derivative operator, δ its dual
(divergence operator) and we define the stochastic integral with respect the
fBm by ∫ 1

0

us δHWs = δH(KHu) ,

for processes u for which KHu is in the domain of δH .

Remark 2.1. It is known that [15]

(i)
{∫ 1

0

KH(t, s) δHW
H
s

}
t∈T

= {WH
t }t∈T .

(ii)
{∫ 1

0

1[0,t] δHW
H
s

}
t∈T

:= {W}t∈T is a standard Brownian motion on

(W ,B(W), PH).
(iii) For every u ∈ L2(W × [0, 1]), u adapted,∫ t

0

us δHW
H
s =

∫ t

0

us dWs, t ∈ [0, 1],

(the last integral is the usual Itô integral).
(iv) We have the following representation for the fBm

WH
t =

∫ t

0

KH(t, s) dWs, t ∈ [0, 1].

(v) When H>1/2, the square integrable kernel can be written

KH(t, s) = cH s
1
2
−H
∫ t

s

(
u− s

)H− 3
2
uH−

1
2 du
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where cH = (t−r)H−
1
2

Γ(H+ 1
2

)
.

2.4. Preliminaries results. The following LDP proved by Baldi et al. (1992)
extends the classical Schilder theorem (see Schilder 1996; Deuschel and Strook
1989)

Theorem 2.1. Let P ε be the law of
√
εW on C([0, 1],R) equipped with the norm

‖.‖∞ satisfying the LDP with the good rate function λ(.) defined by:

λ(h) =


1

2

∫ T

0

|ḣ(s)|2 ds if h ∈ H

+∞ otherwise .

One of the basic tools in large deviation theory is the ’contraction principle’ (see
Deuschel and Strook 1989). It enables the new rate function to be computed
after the data have been transformed by a continuous map [25].

Theorem 2.2. Let Qε be a family of probability measure on a Polish space E and
satisfies the LDP with a good rate function λ.
Let F : E → E ′ be countinuous. Denote by Qε = P ε ◦ F−1 the family of image
measure of P ε, then {Qε} satisfies the LDP with a good rate function λ̃ defined by

λ̃(y) = inf
x:F (x)=y

λ(x).

Lemma 2.2. Let {D(t)}t∈T be a bounded nonanticipating real process and 0 <

α < H. Then, for any a > 0,

P

(
‖
∫ .

0

KH(., s)D(s)dWs ‖α> a

)
≤ K1exp{−(aK2 − 1)2},

where 0 < Ki = Ki

(
α,H, ‖D‖∞

)
<∞.

In particular

P

(
sup

0≤t≤1

∣∣∣ ∫ t

0

KH(t, s)D(s)dWs

∣∣∣ > a

)
≤ K1exp{−(aK2 − 1)2} .

For the proof of this result we refer to [12].
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3. LDP FOR PERTURBED DIFFUSION PROCESSES

In this section, we will give a LDP of the perturbed diffusion process solu-
tion of (1.3). Let H be the Cameron Martin space associated to the standard
Brownian motion, that is:

H =

 h : [0, 1]→ R, h is absolutely continuous such that

h(0) = 0 and
∫ 1

0

|ḣs|2 ds < +∞ .


Let Φx(h)(t) be the unique solution of the following deterministic perturbed
equation:
(3.1)

Φx(h)(t) = x0 +

∫ t

0

KH(t, s)b
(

Φx(h)(s)
)
ds+

∫ t

0

KH(t, s)σ
(

Φx(h)(s)
)
ḣ(s)ds

+β sup
0≤s≤t

Φx(h)(s) .

We have the following main results.

Theorem 3.1. For H ∈ (0, 1), α ∈]0, 1/2[, β ∈]0, 1[ , let {ηε, ε > 0} be the
probability measure induced byXε on Cα([0, 1],R) equipped with the norm ‖ . ‖α ,
then ηε is satisfying the LDP with the good rate function I(.) defined by:

I(g) = inf
h∈H;g=Φx(h)

λ(h) ,

where the inf over the empty set is taken to be∞.

Theorem 3.2. For H ∈ (0, 1), α ∈]0, 1/2[, β ∈]0, 1[ and h ∈ H. For any R, δ > 0

there exist ρ > 0 such that

P
(
‖ Xε − Φx(h) ‖α> ρ, ‖

√
εW − h ‖∞< δ

)
≤ exp(−R

ε
).

Proof. By (1.3) and (3.1),

Xε
t − Φx(h)(t) =

∫ t

0

σH(Xε
s )
(√

ε dWs − ḣ(s)
)
ds

+

∫ t

0

σH(Xε
s ) − σH

(
Φx(h)(s)

)
ḣ(s) ds

+

∫ t

0

bH(Xε
s ) − bH

(
Φx(h)(s)

)
ds

+ β
(

sup
0≤s≤t

Xε
s − sup

0≤s≤t
Φx(h)(s)

)
,
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where σH(x) = KH(t, s) σ(x) and bH(x) = KH(t, s) b(x) . Consequently,

|Xε
t − Φx(h)(t)| ≤

∫ t

0

|σH(Xε
s ) (
√
ε dWs − ḣ(s) ds)|

+ L

∫ t

0

(
|Xε

s − Φx(h)(s)| |KH(t, s)|

(1 + |ḣ(s)|)
)
ds

+ β sup
0≤s≤t

|Xε
s − Φx(h)(s)| ,

where L > 0 is the Lipschitz coefficient, and we also used the fact that∣∣ sup
0≤s≤t

u(s)− sup
0≤s≤t

v(s)
∣∣ ≤ sup

0≤s≤t

∣∣u(s)− v(s)
∣∣ .

For any two continuous functions u and v on R+. Thus, it follows from that,
for t ∈ [0, 1]

sup
0≤u≤t

|Xε
u − Φx(h)(u)| ≤

1
1−β sup

0≤u≤t

∫ u

0

|σH(Xε
s ) (
√
ε dWs − ḣ(s)ds)|

+ L
1−β sup

0≤u≤t

∫ u

0

|Xε
s − Φx(h)(s)| |KH(u, s)| (1 + |ḣ(s)|) ds .

By the Gronwall lemma and Cauchy-Schwarz inequality this yields that

‖ Xε
t − Φx(h)(t) ‖∞≤

1
1−β sup

0≤t≤1

∫ t

0

|σH(Xε
s ) (
√
ε dWs − ḣ(s)| ds

×exp
(∫ t

0

L

1− β
|KH(t, s)| (1 +

∣∣ḣ(s)|
)
ds

≤ C1(h) sup
0≤t≤1

∫ t

0

|σH(Xε
s )
(√

ε dWs − ḣ(s)
)
| ds

≤ C1(h) ‖
∫ t

0

σH(Xε
s )
(√

ε dWs − ḣ(s)
)
ds ‖∞ ,

where C1(h) = 1
1−β exp

(
C(H) L (1+ ‖ h ‖H)/(1−β)

)
,with ‖ h ‖H=

(∫ 1

0

|ḣs|2 ds
)1/2

for h ∈ H . When H ∈ (0, 1), since t ≤ 1, we have:(∫ 1

0

|KH(t, s)|2ds
)1/2

=‖ KH(t, .) ‖L2([0,1])= C(H) .
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By using the inequality (2.1) and h = 0, we deduce that

(3.2) ‖ Xε
t − Φx(0) ‖∞ ≤ C1(0) ‖

∫ t

0

√
ε KH(t, s) σ(Xε

s ) dWs ‖α .

For any t ∈ [0, 1], for any continuous functions f : [0, 1]→ R, denote by

‖ f ‖α,t= sup
0≤u6=v≤t

|f(u)− f(v)|
|v − u|α

<∞ .

Next, we set

DXε

Φx(0)(u) = Xε
u − Φx(0)(u) .

By the reflexion principle, we have∣∣∣DXεΦx(0)(t)−DX
ε

Φx(0)(s)

∣∣∣
|t−s|α ≤

1
|t−s|α

(∣∣∣ 1

1− β

∫ t

s

√
ε σH(Xε

v) dWv

+ β
1−β sup

s≤u≤t

(√
ε

∫ u

s

σH(Xε
v) dWv

)

+ β
1−β sup

s≤u≤t

∫ u

s

b(Xε
v)− b

(
Φx(0)(v)

)
dv
∣∣∣) .

Consequently, we obtain :

‖ (Xε − Φx(0)) ‖α,t ≤ 1
1−β ‖

√
ε

∫ t

0

σH(Xε
v) dWv ‖α,t

+ β L
1−β ‖ Xε − Φx(0) ‖∞

+ β L
1−β

∫ t

0

‖ Xε − Φx(0) ‖α,t dv .

By using (3.2), we get

‖ (Xε − Φx(0)) ‖α≤
(

1
1−β + β C1(0) L

1−β

)
‖
√
ε

∫ t

0

KH(t, s) σ(Xε
v) dWv ‖α

+ β L
1−β

∫ t

0

‖ Xε − Φx(0) ‖α dv .
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By the Gronwall lemma we have:

‖ (Xε − Φx(0)) ‖α≤
(

1
1−β + β C1(0) L

1−β

)
‖ ×
√
ε

∫ t

0

KH(t, s) σ(Xε
v) dWv ‖α Θ(0) ,

where Θ(0) = exp
(
β L
1−β

)
. Similar with the proof of (3.2), we obtain:

(3.3) ‖ Xε
t − Φx(h)(t) ‖∞≤ C1(h) ‖

∫ t

0

σH(Xε
s )

(√
εdWs − ḣ(s)

)
ds ‖α

Next we have:∣∣∣∣DXεΦx(h)(t)−DX
ε

Φx(h)(s)

∣∣∣
|t−s|α ≤ 1

|t−s|α

(∣∣∣
1

1−β

∫ t

s

σH(Xε
v)
(√

ε dWv − ḣ(v)
)
dv

+ β
1−β sup

s≤u≤t

(∫ u

s

√
ε σH(Xε

v) dWv

)

+ β
1−β sup

s≤u≤t

(∫ u

s

bH(Xε
v)− bH

(
Φx(h)(v)

)
dv

+ β
1−β sup

s≤u≤t

∫ u

s

[
σH(Xε

v)(v)− σH
(

Φx(h)
)

(v)
]
ḣ(v) dv

∣∣∣)
An application of formula (3.3), we obtain

‖ (Xε − Φx(h)) ‖α,t≤

1
1−β ‖

∫ .

0

σH(Xε
s )
[√

ε dWs − ḣ(s)
]
ds ‖α,t

+ β L
1−βC1(h) ‖

∫ t

0

σH(Xε
s )
[√

ε dWs − ḣ(s)
]
ds ‖α

+ β L
1−β

∫ .

0

(1 + |ḣs|) ‖ Xε − Φx(h) ‖α,t ds
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By the Gronwall lemma
(3.4)

‖ (Xε − Φx(h)) ‖α≤
(

1
1−β + β L C1(h)

(1−β)

)
× ‖

∫ t

0

KH(t, s) σ(Xε
s ) (
√
ε dWs − ḣs ds) ‖α Θ(h)

where Θ(h) = exp
(
βL(1+‖h‖H)

1−β

)
�

Theorem 3.3. For α ∈]0, 1/2[, β ∈]0, 1[. For any R, δ, ã > 0 there exist ρ > 0

and ε0 > 0 such that, for any h ∈ Cα([0, 1],R) satisfying λ(h) ≤ ã and ε ≤ ε0

P

(
‖ KH(t, s) σ(Xε

s )
(√

ε dWs − ḣ(s) ds
)
‖α> ρ, ‖

√
ε Ws − h ‖∞< δ

)
≤ exp

(
− R

ε

)
.

For ε > 0 , define a probability measure Pε on Ω by

(3.5) dPε = Mε dP = exp
(
− 2√

ε

∫ 1

0

ḣs dWs +
1

ε

∫ 1

0

|ḣs|2 ds
)

dP

Then, Girsanov’s theorem implies that{
W ε
t = Wt− 1√

ε
ḣt, t ∈ [0, 1]

}
is a Wiener process with respect to the probability

Pε. Let {U ε
t , 0 ≤ t ≤ 1} be the solution of SDE

(3.6)

U ε(t) = x0 +

∫ t

0

KH(t, s) b(U ε(s)) ds+

∫ t

0

KH(t, s) σ(U ε(s)) ḣ(s) ds+ β sup
0≤s≤t

U ε(s)

To simplify the notation, set for any ρ ,α, ε > 0

Aε =

{
‖ KH(t, s) σ(Xε

s )
(√

ε dWs − ḣ(s) ds
)
‖α> ρ, ‖

√
ε Ws − h ‖∞< δ

}
Then by the Cauchy-Schwarz inequality,

P (Aε) =

∫
Ω

M−1
ε χ{Aε(w)}Pε(dW ) ≤

(∫
Ω

M−2
ε (w) Pε(dW )

)1/2(
Pε(Aε)

)1/2

An application of formula (3.5), we obtain∫
Ω

M−2
ε (w)Pε(dW ) = EPε

[
exp
(
− 2√

ε

∫ 1

0

ḣs dWs +
1

ε

∫ 1

0

|ḣs|2 ds
)]

= EPε

[
exp
(
− 2√

ε

∫ 1

0

ḣs dWs −
2

ε

∫ 1

0

|ḣs|2 ds
)]
× exp

(
1

ε

∫ 1

0

|ḣs|2 ds
)
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Finally, we obtain ∫
Ω

M−2
ε (w) Pε(dW ) = exp

(
1

ε
‖ h ‖2

H

)
Therefore, if λ(h) ≤ a then

(3.7) P (Aε) ≤ exp
(
ã
ε

)(
Pε(Aε)

)1/2

.

Therefore,

Pε(Aε) = Pε
(
‖ KH(t, s) σ(Xε

s )
(√

ε dWs − ḣ(s)ds
)
‖α> ρ, ‖

√
ε Ws − h ‖∞< δ

)

= Pε
(
‖ KH(t, s) σ(Xε

s )
√
ε dW ε

s ‖α> ρ, ‖
√
ε W ε

s − h ‖∞< δ

)

= P
(
‖ KH(t, s) σ(Xε

s )
√
ε dWs ‖α> ρ, ‖

√
ε Ws − h ‖∞< δ

)
.

Theorem 3.4. For α ∈]0, 1/2[, β ∈]0, 1[. For any R, δ, ã > 0 there exist ρ > 0

and ε0 > 0 such that, for any h ∈ Cα([0, 1],R) satisfying λ(h) ≤ ã and ε ≤ ε0

P
(
‖
∫ t

0

KH(t, s)
√
ε σ(U ε

s ) dWs ‖α> ρ ‖
√
ε Wt − h ‖∞< δ

)
≤ exp

(
− R

ε

)
.

For any n ∈ N∗ we consider the approximation sequence of the process U ε

defined by

U ε,n
t = U ε

j
n

, if s ∈
[ j
n
,
j + 1

n

[
for all j = 0, 1, 2, ..., n− 1

For γ > 0 and for every n ∈ N, we have

Aε =

{
‖
√
ε

∫ .

0

KH(t, s)σ(Y ε
s ) dW ε

s ‖α≥ ρ, ‖
√
εW ε ‖∞≤ δ

}
⊂ Aε1 ∪ Aε2 ∪ Aε3

where

Aε1 =
{
‖
√
ε

∫ .

0

KH(t, s)
(
σ(U ε

s )− σ(U ε,n
s )
)
dW ε

s ‖α≥
ρ

2
, ‖ U ε − U ε,n ‖∞≤ γ

}
Aε2 =

{
‖ U ε − U ε,n ‖∞≥ γ

}
Aε3 =

{
‖
√
ε

∫ .

0

KH(t, s) σ(U ε,n
s ) dW ε

s ‖α≥
ρ

2
, ‖
√
εW ε ‖∞≤ δ

}
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On the set {‖ U ε−U ε,n ‖∞≤ γ}, we have the following estimates ‖
√
ε[σ(U ε

s )−
σ(U ε,n

s )] ‖α≤
√
εLγ and by Lemma (2.2), it follows that

P (Aε1) ≤ K1 exp
{
−
(

ρ

2
√
εLγ

K2 − 1

)2}
To treat P

(
Aε3

)
. On the set {‖

√
εW ε ‖∞≤ δ}, if σ is bounded by M , we get

‖
√
ε
∫ t

0
KH(t, s)σ(U ε,n

s ) dW ε
s ‖α=

√
ε ‖
∑n−1

j=0 KH(t, s) σ(U ε,n
tj )
(
W ε(tj+1 ∧ .)−W ε(tj ∧ .)

)
‖α

≤M
∑n−1

j=0 KH(t, s)
√
ε ‖
(
W ε(tj+1)−W ε(tj)

)
‖∞

≤ n M δ ‖ K(t, .) ‖∞
where M > 0 is a common bound of b and σ. Therefore, if δ ≤ ρ

2 n M ‖K(t,.)‖∞
then P (Aε3) = 0. By using the formula (2.17) in Bo and Zhang [7], we have

P (Aε2) ≤ n exp
{
− n γ2(1− β)2

8L2ε

}
Proposition 3.1. Let α ∈]0, 1

2
[ and β ∈]0, 1[ be. For any ã ≤ 0, the map

F : Cα,0([0, 1],R) ∩
({

h ∈ H :‖ h ‖2
H≤ ã

})
−→ (Cα,0([0, 1],R), ‖ . ‖α) is

continuous.

4. LDP FOR PERTURBED REFLECTED DIFFUSION PROCESSES

In this section, we will prove the LDP for the solution of the perturbed re-
flected diffusion equation (1.4)

For y ≥ 0 and f ∈ Cy([0, 1],R) as the space of continuous functions in [0, 1] to
R starting from y.

Define two operators Γ : Cy([0, 1],R) −→ Cy([0, 1],R+) andK : Cy([0, 1],R) −→
Cy([0, 1],R+)

by Γf = f + f̃ and Kf = f̃ , where f̃ = − inf
s≤t

(f(s) ∧ 0), t ∈ [0, 1].

By the reflection principle, the solution T ε of (1.4) is given by

(4.1) T εt = (ΓZε)(t) and Lεt = (KZε)(t), t ∈ [0, 1]
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Where Zε is a solution of the following stochastic equation

(4.2) Zε = y +
√
ε

∫ t

0

ς(ΓZε)(t)) dWH
s + β sup

0≤s≤t
(ΓZε

s) t ∈ [0, 1]

For h ∈ H, let Φ̃y(h) the unique solution of the following equation:
(4.3)

Φ̃y(h)(t) = y +

∫ t

0

KH(t, s) ς(ΓΦ̃y(h))(s)) ḣs ds+ β sup
0≤s≤t

(ΓΦ̃y(h)(s)) + ηt t ∈ [0, 1]

where Φ̃y(h) is continuous, non-negative and η is an increasing continuous

function satisfying ηt =

∫ t

0

χ{Φ̃y(h)=0} dηs. The existence and uniqueness of the

solution to (4.4) might be obtained by Theorem (4.1) and Theorems 4.2 and
4.3 in [7]
Similar as (4.1), Φ̃y(h) can also be written as

(4.4) Φ̃y(h)(t) = (ΓV (h))(s) and ηt = (KV (h))(s), t ∈ [0, 1]

Where V (h) is a solution of the following stochastic equation
(4.5)

V (h)(t) = y +
√
ε

∫ t

0

KH(t, s) ς(ΓV (h)(s)) ḣs ds+ β sup
0≤s≤t

(ΓV (h)(s)) t ∈ [0, 1]

Let ν1
ε be the law of Zε on Cy([0, 1],R+) equipped with the Hölderian norm

‖ . ‖α We have the following main result.

Theorem 4.1. For α ∈]0, 1/2[, β ∈]0, 1/2[. Let {ν1
ε , ε > 0} be the probability

measure induced by Zε on Cy([0, 1],R+) equipped with the norm ‖.‖α , then ν1
ε

satisfying the LDP with the good rate function Ĩy(.) defined by:

(4.6) Ĩy(g) = inf
h∈H;g=Φ̃x(h)

λ(h)

where the inf over the empty set is taken to be∞.

Theorem 4.2. For α ∈]0, 1/2[, β ∈]0, 1/2[. Let {ν2
ε , ε > 0} be the probability

measure induced by T ε on Cy([0, 1],R+) equipped with the norm ‖.‖α , then ν2
ε

satisfying the LDP with the good rate function Īy(.) defined by:

(4.7) Īy(g) = inf
ḡ=Γg

Ĩy(g)
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Where the inf over the empty set is taken to be∞

Proof. By contraction principle, by using the formula Γψ − ψ = (Kψ, ..., 0) see
Anderson et Orey [1], it suffices to prove that Γ is continuous α-Hölderian.
Recall that ‖ Γψ1 − Γψ2 ‖∞≤‖ ψ1 − ψ2 ‖∞

‖Γψ1−Γψ2‖α
‖ψ1−ψ2‖α ≤ |(Γψ1(t)−Γψ2(t))−(Γψ1(s)−Γψ2(s))|

|ψ1−ψ2|

+ 2‖ψ1−ψ2‖∞+2‖ψ1−ψ2‖∞
‖ψ1−ψ2‖∞ = 4

It follows ‖ Γψ1 − Γψ2 ‖α≤ 4 ‖ ψ1 − ψ2 ‖α �

Theorem (4.2) is the consequence of the following two propositions.

Theorem 4.3. For α ∈]0, 1/2[, β ∈]0, 1/2[ and h ∈ H. For any R, ρ > 0 there
exist δ > 0 such that

P
(
‖ Zε,y − V y(h) ‖α> ρ, ‖

√
εw − h ‖∞< δ

)
≤ exp

(
− R

ε

)
.

Theorem 4.4. For α ∈]0, 1/2[, β ∈]0, 1[. For any R, ρ > 0 there exist δ > 0 and
ε0 > 0 such that, for any ε small enough

P
(
‖
∫ t

0

KH(t, s)
√
ε ς(ΓZε,y

s (s)) dWs ‖α> ρ,

‖
√
ε w ‖∞< δ

)
≤ exp

(
− R

ε

)
.

For any n ∈ N∗ we consider the approximation sequence of the process Zε

defined by

Zε,n
t = Zε

j
n

, if s ∈
[ j
n
,
j + 1

n

[
for all j = 0, 1, 2, ..., n− 1

For α > 0 and for every n ∈ N, we have

Ãε =
{
‖
√
ε

∫ .

0

KH(t, s) ς(Y ε
s ) dW ε

s ‖α≥ ρ, ‖
√
εW ε ‖∞≤ δ

}
⊂ Ãε1 ∪ Ãε2 ∪ Ã3
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where

Ãε1 =
{
‖
√
ε

∫ .

0

KH(t, s)

(
ς(ΓZε

s)− ς(ΓZε,n,y
s )

)
dW ε

s ‖α≥
ρ

2
, ‖ Zε − Zε,n,y ‖∞≤ γ

}
Ãε2 =

{
‖ Zε,y − Zε,n,y ‖∞≥ γ

}
Ãε3 =

{
‖
√
ε

∫ .

0

KH(t, s) ς(ΓZε,n,y
s ) dW ε

s ‖α≥
ρ

2
, ‖
√
εW ε ‖∞≤ δ

}
By the result obtained in Bo and Zhang [7], we have

P (Ãε2) ≤ n exp
(
− nγ(1− 2β)2

8N2ε

)
For any R, γ > 0 there exist ε̃0 > 0 and ñ0 > 0 such that if ε ≤ ε̃0 and n ≥ ñ0

P (Ãε2) ≤ exp
(
− R

ε

)
By Lemma (2.2) and Theorem (4.3),

P (Ãε1) ≤ C exp
(
− ρ2

8Lγ2ε

)
Lemma 4.1. (Existence and uniqueness of solution)
Assume that σ, b are bounded and Lipschitz, the equation (3.1) has a unique
solution

Proof. If Φ(1)(h) and Φ(2)(h) are continuous solutions of (3.1) then it follows

Put DΦ(h)(t) = Φ(1)(h)(t)− Φ(2)(h)(t)

Then ‖ Φ(1)(h)− Φ(2)(h) ‖α can be rewritten as ‖ DΦ(h) ‖α

(4.8) |DΦ(h)(t)| ≤ L

∫ t

0

|KH(t, s)| DΦ(h)(s)(1 + ḣ) ds+ β sup
0≤s≤t

|DΦ(h)(s)|

Thus,

(4.9) ‖ DΦ(h) ‖α≤ L
1

1− β

∫ t

0

|KH(t, v)| ‖ DΦ(h) ‖α (1 + |ḣv|) dv

Set,

(4.10) φt = |KH(t, v)| (1 + |ḣv|) ∈ L2([0, 1])
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By Cauchy-Schwarz inequality we obtain∫ 1

0

φs ds ≤
(∫ 1

0

|KH(t, s)|2ds
)1/2 (∫ 1

0

(1 + |ḣs|)2ds

)1/2

= C(H)(1+ ‖ h ‖H) <∞

We can be deduced from Gronwall’s lemma ‖ Φ(1)(h) − Φ(2)(h) ‖α= 0, thus
Φ(1)(h) = Φ(2)(h)

For the existence we use the successive approximations. Define

Φn
t = x0 +

∫ t

0

KH(t, s) b(Φn−1
t ) ds+

∫ t

0

KH(t, s) σ(Φn−1
t ) ḣ(s) ds+ β sup

0≤s≤t
Φn−1
s

Denote by Φn(t) =‖ Φn+1
t − Φn

t ‖α then we have

Φ0(t) ≤ L

1− β

∫ t

0

|KH(t, s)| (1 + ḣs) ds <∞

Φn(t) ≤ L

1− β

∫ t

0

|KH(t, s)| Φn−1(s) (1 + ḣs) ds <∞

And by iteration

Φn(t) ≤
(

L

1− β

)n
D K

(1)
n−1(t)

Then we deduce that Φn(t) −→ Φ(t) uniformly in t and Φ is the solution of
(3.1) �

5. CONCLUSIONS

In the present paper, we have etablished a large deviation principle (LDP) for
perturbed reflected diffusion processes driven by a fractional brownian motion
for any Hurst parameter H ∈ (0, 1) using the method of Azencott in Hölderian
norm. This extends the LDP proved by Lijun Bo in [7].
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