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A STUDY ON CONCEPTS OF BALLS IN A INTUITIONISTIC FUZZY
D−METRIC SPACES

S. YAHYA MOHAMED AND E. NAARGEES BEGUM1

ABSTRACT. Dhage [2] introduced the concept of open balls in a D-Metric space
in two different ways and discussed at length the properties of the topologies
generated by the family of all open balls of each kind. In this paper, a new
concept of balls in a Intuitionistic Fuzzy D-Metric spaces are introduced.

1. INTRODUCTION

Fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets
are introduced by Lotti.A. Zadeh [3] (1965) as an extension of the classical no-
tion of sets. The concept of an intuitionistic fuzzy set can be viewed as an alter-
native approach to define a fuzzy set in cases where available information is not
sufficient for the definition of an imprecise concept by means of a conventional
fuzzy set. In general, the theory of intuitionistic fuzzy sets is the generalization
of fuzzy sets.

The idea of an intuitionistic fuzzy set was first published by Krassimir Atanassov
[1]. In general, the theory of intuitionistic fuzzy sets is the generalization of
fuzzy sets. Several researches have shown interest in the intuitionistic fuzzy set
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theory and successfully applied in many other field. Fuzzy application in al-
most every direction of mathematics such as arithmetic, topology, graph theory,
probability theory, logic etc.,

In 1992, B.C.Dhage [2] proposed the notion of a D−metric space in an at-
tempt to obtain analogous results to those for metric spaces, but in a more gen-
eral setting. This paper is organized as follows. The definition of intuitionistic
fuzzy metric space, D−metric space and fuzzy D−metric space are introduced
in section 2. In section 3, we introduce the new concept of intuitionistic fuzzy
D−metric spaces and also we discuss about the theorems on balls in a intuition-
istic fuzzy D−metric spaces.

2. PRELIMINARIES

Definition 2.1. Let A be a non-empty set. A function ρ : A × A × A → [0,∞) is
called a D−metric on X if

(1) ρ(a, b, c) = 0 if and only if a = b = c (coincidence);
(2) ρ(a, b, c) = ρ(p(a, b, c)) for all a, b, c ∈ A and for any permutation p(a, b, c)

of a, b, c(symmetry),
(3) ρ(a, b, c) ≤ ρ(a, b, r) + ρ(a, r, c) + ρ(r, b, c) for all a, b, c, r ∈ A (tetrahedral

inequality).

If A is a non-empty set and ρ is a D−metric on A, then the ordered pair (A, ρ) is
called a D−metric space. When the D−metric ρ is understood, X itself is called a
D−metric space.

Definition 2.2. The 3-tuple (A,M, ∗) is said to be a fuzzy D− metric space, where
A is an arbitrary set, ∗ is continuous t-norm and M is a fuzzy set on A×A×A→
[0,∞) satisfying the following conditions: For all a, b, c, r ∈ A, s, t, u > 0.

(1) M(a, b, c, t) = 0

(2) M(a, b, c, t) = 1 if and only if a = b = c

(3) M(a, b, c, t) = M(p(a, b, c, t)) for all a, b, c ∈ A and for any permutation
p(a, b, c) of a, b, c, t

(4) M(a, b, c, t+ s+ u) ≥M(a, b, r, t) ∗M(a, r, c, s) ∗M(r, b, c, u)

(5) M(a, b, c, ) : [0,∞)→ [0, 1] is continuous.



A STUDY ON CONCEPTS OF BALLS . . . 1021

Definition 2.3. A 5-tuple (A,M,N, ∗, ◦) is said to be an intuitionistic fuzzy metric
space if A is an arbitrary set, ∗ is a continuous t-norm, ◦ is a continuous t-conorm
and M,N are fuzzy sets on A2 × [0,∞) satisfying the conditions:

(1) M(a, b, t) +N(a, b, t) ≤ 1 for all a, b ∈ A and t > 0;
(2) M(a, b, 0) = 0 for all a, b ∈ A;
(3) M(a, b, t) = 1 for all a, b ∈ A and t > 0 if and only if a = b;
(4) M(a, b, t) =M(b, a, t) for all a, b ∈ A and t > 0;
(5) M(a, b, t) ∗M(b, c, s) ≤M(a, c, t+ s), for all a, b, c ∈ A and s, t0;
(6) M(a, b, .) : [0,∞)→ [0,∞] is left continuous, for all a, b ∈ A;
(7) limt→∞M(a, b, t) = 1 for all a, b ∈ A and t > 0;
(8) N(a, b, 0) = 1 for all a, b ∈ A;
(9) N(a, b, t) = 0, for all a, b ∈ A and t > 0 if and only if a = b;

(10) N(a, b, t) = N(b, a, t) for all a, b ∈ A and t > 0;
(11) N(a, b, t) ◦N(b, c, s) ≥ N(a, c, t+ s) for all a, b, c ∈ A and s, t > 0;
(12) N(a, b, .) : [0,∞)→ [0, 1] is right continuous, for all a, b ∈ A;
(13) limt→∞N(a, b, t) = 0 for all a, b ∈ A.

The functions M(a, b, t) and N(a, b, t) denote the degree of nearness and the degree
of non-nearness between a and b w.r.t. t respectively.

3. BALLS IN AN INTUITIONISTIC FUZZY D−METRIC SPACES

Definition 3.1. A 5-tuple (A,M,N, ∗, ◦) is said to be an intuitionistic fuzzyD−metric
space if A is an arbitrary set, ∗ is a continuous t-norm, ◦ is a continuous t− conorm
and M,N are fuzzy sets on A3 × [0,∞) satisfying the conditions:

(1) M(a, b, c, t) +N(a, b, c, t) ≤ 1 for all a, b, c ∈ A and t > 0;
(2) M(a, b, c, 0) = 0 for all a, b, c ∈ A,
(3) M(a, b, c, t) = 1 for all a, b, c ∈ A and t > 0 if and only if a = b = c;
(4) M(a, b, c, t) = M(p(a, b, c, t)) for all a, b, c ∈ A and for any permutation

p(a, b, c) of a, b, c, t > 0;
(5) (M(a, b, c, t + s + u) ≥ M(a, b, r, t) ∗ M(a, r, c, t) ∗ M(r, b, c, u), for all

a, b, c, r ∈ A and s, t, u > 0;
(6) M(a, b, c, .) : [0,∞)→ [0,∞] is left continuous for all a, b, c ∈ A;
(7) limt→∞M(a, b, c, t) = 1 for all a, b, c ∈ A and t > 0;
(8) N(a, b, c, 0) = 1 for all a, b, c ∈ A;
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(9) N(a, b, c, t) = 0 for all a, b, c ∈ A and t > 0 if and only if a = b = c;
(10) N(a, b, c, t) = N(p(a, b, c, t)) for all a, b, c ∈ A and for any permutation

p(a, b, c) of a, b, c, t > 0;
(11) N(a, b, r, t)◦N(a, r, c, s)◦N(r, b, c, s) ≥ N(a, b, c, t+s+u) for all a, b, c, r ∈

A and s, t, u > 0;
(12) N(a, b, c, .) : [0,∞)→ [0, 1] is right continuous, for all a, b, c ∈ A;
(13) limt→∞N(a, b, c, t) = 0 for all a, b, c ∈ A. The functions M(a, b, c, t) and

N(a, b, c, t) denote the degree of nearness and the degree of non-nearness
between a, b and c w.r.t. t respectively.

Definition 3.2. Let (A,M,N, ∗, ◦) be an intuitionistic fuzzyD−metric space. Then

(1) A sequence {an} in A is said to be Cauchy sequence if for all and t > 0 and
p, q > 0, limn→∞M(an+p+q, an+p, an, t) = 1 and
limn→∞N(an+p+q, an+p, an, t) = 1.

(2) A sequence {an} inX is said to be convergent to a point a ∈ A if for all t > 0

and p > 0, limn→∞M(an+p, an, a, t) = 1 and limn→∞N(an+p, an, a, t) = 0.

Remark 3.1. Let (A,M,N, ∗, ◦) be an intuitionistic fuzzy D−metric space, a ∈ A
and α ∈ (0,∞).
Let

B̃(a, α, t) = {b ∈ A :M(a, b, b, t) > 1− α,N(a, b, c, t) < α} ,

B(a, α, t) = {b ∈ B̃(a, α, t) :M(a, b, c, t) > 1− α,N(a, b, c, t) < α, ∀c ∈ B̃(a, α, t)}

B̂(a, α, t) = {{a} ∪ b ∈ A : sup
c∈A

M(a, b, c, t) > 1− α, sup
c∈A

N(a, b, c, t) < α} .

Remark 3.2. (i) It is clear that B(a, α, t) ⊂ B̃(a, α, t) ,

(ii) If 0 < α1 < α2 then B̃(a, α1, t) ⊂ B̃(a, α2, t), B(a, α1, t) ⊆ B̃(a, α2, t).
By B(a, α, t) we mean a set in A is given by B(a, α, t) = {b ∈ B̃(a, α, t) :

if b, c ∈ B̃(a, α, t)} . Then

M(a, b, c, t) > 1− α,N(a, b, c, t) < α}

= {b, c ∈ A :M(a, b, c, t) > 1− α,N(a, b, c, t) < α}

It is clear that B(a, α, t) ⊆ B(a, α, t).
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Theorem 3.1. Let (A,M,N, ∗, ◦) be an intuitionistic fuzzy D−metric space. Then
for a fixed a ∈ A, the balls B̃(a, α, t) and B(a, α, t) are the sets in A given by,

B̃(a, α, t) = (
a− αt
1− α

,
a+ αt

1− α
), B(a, α, t) = (

a− αt
2(1− α)

,
a+ αt

2(1− α)
) .

Proof. Let a, b, c ∈ A be arbitrary. Let α > 0 be fixed. Then

B̃(a, α, t) = {b ∈ A : (M(a, b, b, t) > 1− α,N(a, b, b, t) < α)}

= {b ∈ A : (M(a, b, b, t) > 1− α)}

= {b ∈ A : |a− b| < αt

1− α
}

B̃(a, α, t) = (a− αt

1− α
,
a+ αt

1− α
) .

Again,

B(a, α, t) = {b ∈ B̃(a, α, t) :M(a, b, c, t) > 1− α,N(a, b, c, t) < α, ∀c ∈ B̃(a, α, t)}

= {b ∈ B̃(a, α, t) :M(a, b, c, t) > 1α, ∀c ∈ B̃(a, α, t)}(3.1)

B(a, α, t) = {b ∈ B̃(a, α, t) :Max{|a− b|, |b− a|, |c− a| < αt

1− α
}} .

This relation (3.1) implies that the set B(a, α, t) contain all the points b, c ∈ A
for which one has

(3.2) |a− b| < αt

1− α
, |a− c| < αt

(1− α)
with |b− c| < αt

1− α
.

In order to hold inequalities in (3.2) we must have,

|a− b|+ |a− c| < αt

1− α
,

since

|b− c| ≤ |b− a|+ |a− c| .

Therefore if we take

|a− b| < αt

2(1− α)
,

and

|a− c| < αt

2(1− α)
,
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then the inequalities in (3.2) are satisfied . Thus we have

B(a, α, t) = {b ∈ B̃(a, α, t) : |a− b| < αt

2(1− α)
}

B(a, α, t) = (a− αt

2(1− α)
, a+

αt

2(1− α)
) .

�

Theorem 3.2. Every ball B(a, α, t), a ∈ A,α > 0, is an open set in A. (ie.) it
contains a ball of each of its points

Proof. Let a ∈ A be arbitrary and α > 0. Consider the ball B(a, α, t) in A and
supposed that x ∈ B(a, α, t). We will show that there is an α̃ > 0, α̃ > α such
that B(x, α̃, t) ⊆ B(a, α, t). Since x ∈ B(a, α, t) there is number α1 > 0 such
that M(a, x, x, t) > 1 − α and N(a, x, x, t) < α1 and α1 < α. We may choose an
arbitrary ε > 0 such that B̃(a, α1 + , t) ⊆ B(a, α, t) which is possible in view of
α1 < α. Since B̃(a, α1 + , t) is open ,there is an open ball B̃(x, α̃, t), α̃ < 0 such
that B̃(x, α̃, t) ⊆ B̃(a, α1 + ε, t) ⊆ B(a, α, t). Again B(x, α̃, t) ⊆ B̃(x, α̃, t). Hence
B(x, α̃, t) ⊆ B(x, α̃, t).

Thus proves that B(a, α, t) is an open in A. �

4. CONCLUSION

Last three decades were very productive for the fuzzy mathematics and the
recent literature has observed the fuzzy application in almost every direction
of mathematics. In this paper a general analysis has been done open balls in
intuitionistic fuzzyD−metric space. In future from this concept can be to extend
in various spaces.
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