Advances in Mathematics: Scientific Journal 9 (2020), no.3, 1129-1139
ABV BTt AL ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/ams;j.9.3.38 Spec. Issue on RDESTM-2020

THE STEADY-STATE ANALYSIS OF FINITE WAITING SPACE QUEUING
SYSTEM OF MULTIPLE PARALLEL CHANNELS IN SERIES
WITH BALKING AND RENEGING CONNECTED TO MULTIPLE PARALLEL
NON-SERIAL SERVERS WITH BALKING AND RENEGING

MEENU GUPTA!, MAN SINGH, AND DEEPAK GUPTA

ABSTRACT. We design a queuing model comprised of M serial service channels
connected to N non-serial service channels both characterized with balking as
well as reneging due to long queue. We introduce multiple parallel servers in
serial as well as non-serial channels. The difference-differential equations for
this model are formulated and the steady-state solutions for various cases are
obtained. Here, the input process is Poisson and depends upon the queue size
in serial and non-serial channels. The service time distribution is exponential
and the service discipline follows SIRO-rule instead of FIFO-rule. Waiting space
is finite.

1. INTRODUCTION

It is being realized to obtain steady-state solutions for the network of queu-
ing process having reneging and balking, as the impatient customers play the
important role in present society. In [1] the author introduced the network of
queues with customers of different kinds. The notion of impatient customers
was introduced by [2] in the steady-state analysis of serial queuing processes
with impatient customers. The author in [3] constructed the queuing models
with serial and non-serial structure and obtained the steady-state solutions and
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numerical solutions for mean queue length. In [4] the steady-state solutions
for queuing model having multiple parallel channels in series with impatient
customers was analyzed. Authors in [5] and [6] introduced the concept of mul-
tiple parallel channels in series connected to non-serial channels with balking,
reneging and feedback. In present model, we introduce multiple parallel serial
channels connected to multiple parallel non-serial channels and obtained steady
-state solutions.

2. FORMULATION OF MODEL

The Queuing model analyzed here consists of Q; (i =1,2,3,..., M) serial
service phases where each service phase (); has ¢; identical parallel service facil-
ities with respective servers S;, Poisson input rates )\;, queue size n; and mean
service rate j; connected to @1; (j =1,2,3,..., N) non-serial service phases
where each service phase ();; has d; identical parallel service facilities with re-
spective servers S;, Poisson input rates \;;, queue size m,; and mean service

i

rate y;,; respectively. Due to Balking the Poisson input rates would be and

—ﬁ. After the completion of service at ();, the customer either leaves the sys-
m .
J

tem with probability p;or joins the next phase with probability g;,,,, = %;
i1
such that p; + % =1;(i=1,2,...,M — 1). After completion of service at
Ni41

Q.s, the customer either leaves the system with probability p,, or joins any of
N

. e qnr qmj
the Q,; with probabili J__ such that E J_ —
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FIGURE 1. Diagrammatic Representation of the Queuing Model
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3. NOTATIONS
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1, ,TLM)
Sino) 0 ; n<ec ) = 0 ; my<d
1 ;5 n>c T 1 5 my>d;
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T.(ay=(n1, M2, ., n3-1, ., nay) T-/Mz-(ﬁ) = (ny,n2, ., Ni—1, .,y + 1)
| myy mj < d, N Ay my<d;
P T Gy s my > d YT e my > d
T
Ry, = H eulg)j ; j = |Here ry, and R;,, are the average
(1—e ™ ) rates at which the customers renege
1,2,...,N after a wait of certain time 7,; and
Ty; whenever there are n; and m; cus-
tomers in the queues (); and (),; re-
spectively

4. FORMULATION OF EQUATIONS

Define P (ny,n2,ns,...,na—1,Nar; My,mams, ..., my_1,my;t) as the proba-
bility that at time ’t’, there are n; customers waiting in the (); service phase
before the servers S;, which may either leave the system after being serviced
by the @; phase or join the next service phase; n,, customers waiting in the
service channel ),;, which may leave the system after being serviced by server
Sy or join any of the queues ()y;; m; customers waiting before the servers S,
which may leave the system after the completion of the service. The customer
may balk or renege anywhere in serial as well as non-serial channels. We write
difference differential equations as:
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M—
Z Qi(ns 11— 1),U'L(nl+1)p<T i,i+1 - (n) m, t)
N
(4.2) Z Mnp+ 1) im0 P(na, na, oo onar + 1, T (m) 5 ¢)
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4.1. Steady-state equations. Equating the time derivatives to zero in the equa-
tions (4.1) and (4.2) we have:

M N M
Z )\mL + Z /\1j mj + Z 0 (nl) (:uini + 5ni_cirini)
i=1 j=1 i=1

j=1
M
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M N
= > NPT (), 70) + > Ay, 1) P, T (1)
i=1 j=1
M-1
+ Qitnosr—1) Wi+ P(Tei i1 . (R) 1)
i=1
N
4.4) + Z P (nar+1) 0 (my+1) P (11, o, o may + 1, T (1))
j=1

M N
r Z n; + Z m; | = K
i=1 =1

4.2. Case 1. Steady- State Equations- (For n;<c; and m; < d;): The equations
(4.3) and (4.4) reduces to

[ZA +Z)\1]+Z(5n,nl,u1+25m] ) (mpaj) | P(n, m)
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N
(4.5) + 3 par(nag + D P(na,na, ooy + 1,75 ()

4.2.1. Steady-State Solutions for n;<c; and m; < d;.

ri = ron i (][50 [ (52
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where py; = u + du 1CYM*1;041 = o, =N+ Qo103 k=2,3,..., M —1.
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4.3. Case 2. Steady-State Equations (For n; > ¢; and m; > d; )
The equations (4.3) and (4.4) reduce to:

M N N
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N
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4.3.1. Steady-State Solution (for n; > ¢; and m; > d,).
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m2
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Here , it is mentioned that the customers leave the system at constant rate
as long as there is a line provided that the customers are served in the order in
which they arrive. Putting R;,,, = R; j = 1,2,... N in equations (4.5),(4.7) and
(4.8) and r;,, = r; in equations (4.7) and (4.8), the steady-state solutions (4.6)

and (4.9) reduce to
1 (/\3‘|'Q20él2)n3
Iﬁ 25}

nk+1 ;

P (i, )

— P (5.0) [L(Al) ] [; (AQZ?%) e

_ o o
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1 { (A2 + ,UMC]M2pM) } ’ 1 ()\1M + HMQMNPM)mN .
i I@ (f12) my H1N ’

for Case 1 and

P (a,m) = P (0,0) al A2 (crpn +11) + aqunon |
7 ’ (crpn +11) (Copa +12)
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2 n3

A3 [T (cipi +13) + cagqoprocrs

=1

ﬁ (Cz,uz + Tz)

M-—1 M
A TT (eaps +73) + epr—1qr—1piar—100 1
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for Case 2.
Here, P (n,m;t) = 0; if any of the arguments is negative. We obtain P (f) O)
K K M N
from the normalizing condition »  » P (n,7m) = land Y n, + > m; = K
=0 m=0 =1 =1

and with the restrictions that the traffic intensity of each service channel of the
system is less than unity.
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