

Advances in Mathematics: Scientific Journal 9 (2020), no.3, 1129-1139

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.3.38 Spec. Issue on RDESTM-2020

THE STEADY-STATE ANALYSIS OF FINITE WAITING SPACE QUEUING SYSTEM OF MULTIPLE PARALLEL CHANNELS IN SERIES WITH BALKING AND RENEGING CONNECTED TO MULTIPLE PARALLEL NON-SERIAL SERVERS WITH BALKING AND RENEGING

MEENU GUPTA¹, MAN SINGH, AND DEEPAK GUPTA

ABSTRACT. We design a queuing model comprised of M serial service channels connected to N non-serial service channels both characterized with balking as well as reneging due to long queue. We introduce multiple parallel servers in serial as well as non-serial channels. The difference-differential equations for this model are formulated and the steady-state solutions for various cases are obtained. Here, the input process is Poisson and depends upon the queue size in serial and non-serial channels. The service time distribution is exponential and the service discipline follows SIRO-rule instead of FIFO-rule. Waiting space is finite.

1. Introduction

It is being realized to obtain steady-state solutions for the network of queuing process having reneging and balking, as the impatient customers play the important role in present society. In [1] the author introduced the network of queues with customers of different kinds. The notion of impatient customers was introduced by [2] in the steady-state analysis of serial queuing processes with impatient customers. The author in [3] constructed the queuing models with serial and non-serial structure and obtained the steady-state solutions and

¹corresponding author

Key words and phrases. Probability, Mean service rate, Service phase, Multiple Parallel channel, Operator, Reneging, Balking, Steady-state equation, Steady-state solution.

numerical solutions for mean queue length. In [4] the steady-state solutions for queuing model having multiple parallel channels in series with impatient customers was analyzed. Authors in [5] and [6] introduced the concept of multiple parallel channels in series connected to non-serial channels with balking, reneging and feedback. In present model, we introduce multiple parallel serial channels connected to multiple parallel non-serial channels and obtained steady state solutions.

2. FORMULATION OF MODEL

The Queuing model analyzed here consists of Q_i ($i=1,2,3,\ldots,M$) serial service phases where each service phase Q_i has c_i identical parallel service facilities with respective servers S_i , Poisson input rates λ_i , queue size n_i and mean service rate μ_i connected to Q_{1j} ($j=1,2,3,\ldots,N$) non-serial service phases where each service phase Q_{1j} has d_j identical parallel service facilities with respective servers S_{1j} , Poisson input rates λ_{1j} , queue size m_j and mean service rate μ_{1j} respectively. Due to Balking the Poisson input rates would be $\frac{\lambda_i}{n_i+1}$ and $\frac{\lambda_{1j}}{m_j+1}$. After the completion of service at Q_i , the customer either leaves the system with probability p_i or joins the next phase with probability $q_{in_{i+1}} = \frac{q_i}{n_{i+1}+1}$; such that $p_i + \frac{q_i}{n_{i+1}+1} = 1$; $(i=1,2,\ldots,M-1)$. After completion of service at Q_M , the customer either leaves the system with probability p_M or joins any of the Q_{1j} with probability $\frac{q_{Mj}}{m_j+1}$ such that $p_M + \sum_{i=1}^N \frac{q_{Mj}}{m_j+1} = 1$.

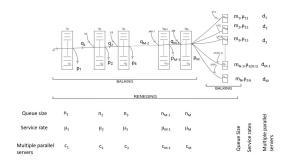


FIGURE 1. Diagrammatic Representation of the Queuing Model

3. NOTATIONS

$\tilde{n} = (n_1, n_2, \dots, n_M)$	$\tilde{m} = (m_1, m_2, \dots, m_N)$
$T_{i}(\tilde{n}) = (n_1, n_2,, n_i + 1,, n_M)$	
	$ 1,.,n_M angle$
$\delta_{(n-c)} = \begin{bmatrix} 0 & ; & n < c \\ 1 & ; & n \ge c \end{bmatrix}$	$\delta_{(m_j - d_j)} = \begin{bmatrix} 0 & ; & m_j < d_j \\ 1 & ; & m_j \ge d_j \end{bmatrix}$
$\mu_{1j m_j} = \left[\begin{array}{ccc} m_j \mu_{1j} & ; & m_j < d_j \\ d_j \mu_{1j} & ; & m_j \ge d_j \end{array} \right]$	$\lambda_{in_i} = \begin{bmatrix} \lambda_i & ; & n_i < c_i \\ \frac{\lambda_i}{n_i + 1} & ; & n_i \ge c_i \end{bmatrix}$
$q_{in_i} = \begin{bmatrix} q_i & ; & n_i < c_i \\ \frac{q_i}{n_i + 1} & ; & n_i \ge c_i \end{bmatrix}$	$r_{in_i} = \frac{\mu_i e^{\frac{-\mu_i T_{0i}}{n_i}}}{(1-e^{\frac{-\mu_i T_{0i}}{n_i}})}$; $i = 1, 2, \dots M$
$T_{i\cdot(\tilde{n})} = (n_1, n_2,, n_i - 1,, n_M)$	$T'_{M_i(\tilde{n})} = (n_1, n_2,, n_{i-1},, n_M + 1)$
$\mu_{1j m_j} = \left[\begin{array}{ccc} m_j \mu_{1j} & ; & m_j < d_j \\ d_j \mu_{1j} & ; & m_j \ge d_j \end{array} \right]$	$\lambda_{1jm_j} = \begin{bmatrix} \lambda_{1j} & ; & m_j < d_j \\ \frac{\lambda_{1j}}{m_j + 1} & ; & m_j \ge d_j \end{bmatrix}$
$R_{jm_{j}} = \frac{\frac{\mu_{1j} e^{\frac{-\mu_{1j} T_{0j}}{m_{j}}}}{\frac{\mu_{1j} T_{0j}}{m_{j}}}}; j = 1, 2, \dots, N$	Here r_{in_i} and R_{jm_j} are the average rates at which the customers renege after a wait of certain time T_{0i} and T_{0j} whenever there are n_i and m_j customers in the queues Q_i and Q_{1j} respectively

4. FORMULATION OF EQUATIONS

Define $P\left(n_1,n_2,n_3,\ldots,n_{M-1},n_M;\ m_1,m_2,m_3,\ldots,m_{N-1},m_N;t\right)$ as the probability that at time 't', there are n_i customers waiting in the Q_i service phase before the servers S_i , which may either leave the system after being serviced by the Q_i phase or join the next service phase; n_M customers waiting in the service channel Q_M , which may leave the system after being serviced by server S_M or join any of the queues Q_{1j} ; m_j customers waiting before the servers S_{1j} , which may leave the system after the completion of the service. The customer may balk or renege anywhere in serial as well as non-serial channels. We write difference differential equations as:

$$\begin{split} \frac{d}{dt}P(\tilde{n},\tilde{m},t) &= -\left[\sum_{i=1}^{M} \lambda_{in_{i}} + \sum_{j=1}^{N} \lambda_{1jm_{j}} + \sum_{i=1}^{M} \delta\left(n_{i}\right)\left(\mu_{in_{i}} + \delta_{n_{i}-c_{i}}r_{in_{i}}\right) \right] \\ &+ \sum_{j=1}^{N} \delta\left(m_{j}\right)\left(\mu_{1jm_{j}} + \delta_{m_{j}-d_{j}}R_{jm_{j}}\right) \\ &+ \sum_{i=1}^{M} \lambda_{i(n_{i}-1)}P(T_{i}\cdot(\tilde{n}),\tilde{m};t) \\ &+ \sum_{j=1}^{N} \lambda_{1j(m_{j}-1)}P(\tilde{n},T_{j}\cdot(\tilde{m});t) \\ &+ \sum_{j=1}^{M} \delta_{n_{i}-c_{i}}(r_{i(n_{i}+1)})P(T_{i}\cdot(\tilde{n}),\tilde{m};t) \\ &+ \sum_{i=1}^{M} q_{i(n_{i}+1)}\mu_{i(n_{i}+1)}P(T_{i}\cdot(\tilde{n}),\tilde{m};t) \\ &+ \sum_{i=1}^{M} p_{i}\mu_{i(n_{i}+1)}P(T_{i}\cdot(\tilde{n}),\tilde{m};t) \\ &+ \sum_{j=1}^{N} \mu_{M(n_{M}+1)}q_{Mj(m_{j}+1)}P(n_{1},n_{2},\ldots,n_{M}+1,T_{j}\cdot(\tilde{m});t) \\ &+ \sum_{j=1}^{N} \left(\mu_{1j(m_{j}+1)} + \delta_{m_{j}-d_{j}}R_{j(m_{j}+1)}\right)P(\tilde{n},T_{\cdot j}\cdot(\tilde{m});t) \\ &\text{for } \left(\sum_{i=1}^{M} n_{i} + \sum_{j=1}^{N} m_{j}\right) < K; \text{ and} \\ &\frac{d}{dt}P(\tilde{n},\tilde{m};t) &= -\left[\sum_{i=1}^{M} \delta\left(n_{i}\right)\left(\mu_{1j\,m_{j}} + \delta_{n_{i}-c_{i}}r_{in_{i}}\right) \\ &+ \sum_{j=1}^{N} \delta\left(m_{j}\right)\left(\mu_{1j\,m_{j}} + \delta_{m_{j}-d_{j}}R_{jm_{j}}\right)\right]P(\tilde{n},\tilde{m};t) \\ &+ \sum_{i=1}^{M} \lambda_{i(n_{i}-1)}P(T_{i}\cdot(\tilde{n}),\tilde{m};t) + \sum_{j=1}^{N} \lambda_{1j\,(m_{j}-1)}P(\tilde{n},T_{j}\cdot(\tilde{m});t) \end{split}$$

$$+ \sum_{i=1}^{M-1} q_{i(n_{i+1}-1)} \mu_{i(n_{i}+1)} P(T_{\cdot i, i+1} \cdot (\tilde{n}), \tilde{m}; t)$$

$$+ \sum_{j=1}^{N} \mu_{M(n_{M}+1)} q_{Mj(m_{j}+1)} P(n_{1}, n_{2}, \dots, n_{M}+1, T_{j} \cdot (\tilde{m}); t)$$

$$\text{for } \left(\sum_{i=1}^{M} n_{i} + \sum_{j=1}^{N} m_{j} \right) = K.$$

4.1. **Steady-state equations.** Equating the time derivatives to zero in the equations (4.1) and (4.2) we have:

$$\begin{split} & \left[\sum_{i=1}^{M} \lambda_{in_{i}} + \sum_{j=1}^{N} \lambda_{1j \, m_{j}} + \sum_{i=1}^{M} \delta \left(n_{i} \right) \left(\mu_{in_{i}} + \delta_{n_{i}-c_{i}} r_{in_{i}} \right) \right. \\ & \left. + \sum_{j=1}^{N} \delta \left(m_{j} \right) \left(\mu_{1j \, m_{j}} + \delta_{m_{j}-d_{j}} R_{jm_{j}} \right) \right] P(\tilde{n}, \tilde{m}) \\ & = \left. \sum_{i=1}^{M} \lambda_{i(n_{i}-1)} P(T_{i} \cdot (\tilde{n}) \cdot, \tilde{m}) \right. \\ & \left. + \sum_{j=1}^{N} \lambda_{1j \, (m_{j}-1)} P(\tilde{n}, T_{j} \cdot (\tilde{m})) + \sum_{i=1}^{M} \delta_{n_{i}-c_{i}} r_{i(n_{i}+1)} P(T_{\cdot i} \cdot (\tilde{n}) \cdot, \tilde{m}) \right. \\ & \left. + \sum_{j=1}^{M-1} q_{i(n_{i+1}-1)} \mu_{i(n_{i}+1)} P(T_{\cdot i} \cdot i, i+1 \cdot (\tilde{n}) \cdot, \tilde{m}) + \sum_{i=1}^{M} p_{i} \mu_{i(n_{i}+1)} P(T_{\cdot i} \cdot (\tilde{n}) \cdot, \tilde{m}) \right. \\ & \left. + \sum_{j=1}^{N} \mu_{M(n_{M}+1)} q_{Mj(m_{j}+1)} P(n_{1}, n_{2}, \dots, n_{M} + 1, T_{j} \cdot (\tilde{m})) \right. \\ & \left. \left. + \sum_{j=1}^{N} \left(\mu_{1j \, (m_{j}+1)} + \delta_{m_{j}-d_{j}} R_{jm_{j}+1} \right) P(\tilde{n}, T_{\cdot j} \cdot (\tilde{m})) \right. \right. \\ & \left. \left. \left. \left. \left(\sum_{i=1}^{M} \delta \left(n_{i} \right) \left(\mu_{in_{i}} + \delta_{n_{i}-c_{i}} r_{in_{i}} \right) + \sum_{j=1}^{N} \delta \left(m_{j} \right) \left(\mu_{1j \, m_{j}} + \delta_{m_{j}-d_{j}} R_{jm_{j}} \right) \right. \right] P(\tilde{n}, \tilde{m}) \right. \end{split}$$

$$= \sum_{i=1}^{M} \lambda_{i(n_{i}-1)} P(T_{i}.(\tilde{n}), \tilde{m}) + \sum_{j=1}^{N} \lambda_{1j} (m_{j}-1) P(\tilde{n}, T_{j}.(\tilde{m}))$$

$$+ \sum_{i=1}^{M-1} q_{i(n_{i+1}-1)} \mu_{i(n_{i}+1)} P(T_{i,i+1}.(\tilde{n}), \tilde{m})$$

$$+ \sum_{j=1}^{N} \mu_{M(n_{M}+1)} q_{Mj(m_{j}+1)} P(n_{1}, n_{2}, ., n_{M} + 1, T_{j}.(\tilde{m}))$$

$$\text{for } \left(\sum_{i=1}^{M} n_{i} + \sum_{j=1}^{N} m_{j}\right) = K.$$

4.2. **Case 1.** Steady- State Equations- (For $n_i < c_i$ and $m_j < d_j$): The equations (4.3) and (4.4) reduces to

$$\begin{split} & \left[\sum_{i=1}^{M} \lambda_{i} + \sum_{j=1}^{N} \lambda_{1j} + \sum_{i=1}^{M} \delta(n_{i}) n_{i} \mu_{i} + \sum_{j=1}^{N} \delta(m_{j}) \left(m_{j} \mu_{1j} \right) \right] P(\tilde{n}, \tilde{m}) \\ &= \left[\sum_{i=1}^{M} \lambda_{i} P(T_{i} \cdot (\tilde{n}), \tilde{m}) + \sum_{j=1}^{N} \lambda_{1j} P(\tilde{n}, T_{j} \cdot (\tilde{m})) \right] \\ & + \sum_{i=1}^{M-1} q_{i} \mu_{i} (n_{i} + 1) P(T_{\cdot i}, i+1 \cdot (\tilde{n}), \tilde{m}) \\ & + \sum_{i=1}^{M} p_{i} \mu_{i} (n_{i} + 1) P(T_{\cdot i}, \tilde{n}), \tilde{m}) \\ & + \sum_{j=1}^{N} \mu_{M} (n_{M} + 1) q_{Mj} P(n_{1}, n_{2}, \dots, n_{M} + 1, T_{j} \cdot (\tilde{m})) \\ & + \sum_{j=1}^{N} \left((m_{j} + 1) \mu_{1j} \right) P(\tilde{n}, T_{\cdot j}, \tilde{m})) \\ & \text{for } \left(\sum_{i=1}^{M} n_{i} + \sum_{j=1}^{N} m_{j} \right) < K; \text{ and} \\ & \left[\sum_{i=1}^{M} \delta(n_{i}) n_{i} \mu_{i} + \sum_{j=1}^{N} \delta(m_{j}) \left(m_{j} \mu_{1j} \right) \right] P(\tilde{n}, \tilde{m}) \end{split}$$

$$= \sum_{i=1}^{M} \lambda_{i} P(T_{i}.(\tilde{n}), \tilde{m}) + \sum_{j=1}^{N} \lambda_{1j} P(\tilde{n}, T_{j}.(\tilde{m}))$$

$$+ \sum_{i=1}^{M-1} q_{i} \mu_{i}(n_{i}+1) P(T_{i,i+1}.(\tilde{n}), \tilde{m})$$

$$+ \sum_{j=1}^{N} \mu_{M}(n_{M}+1) q_{Mj} P(n_{1}, n_{2}, \dots, n_{M}+1, T_{j}.(\tilde{m}))$$
for $\left(\sum_{i=1}^{M} n_{i} + \sum_{j=1}^{N} m_{j}\right) = K$.

4.2.1. Steady-State Solutions for $n_i < c_i$ and $m_j < d_j$.

$$P(\tilde{n}, \tilde{m}) = P(\tilde{0}, \tilde{0}) \left[\frac{1}{|n_{1}|} \left(\frac{\lambda_{1}}{\mu_{1}} \right)^{n_{1}} \right] \left[\frac{1}{|n_{2}|} \left(\frac{\lambda_{2} + q_{1}\alpha_{1}'}{\mu_{2}} \right)^{n_{2}} \right] \left[\frac{1}{|n_{3}|} \left(\frac{\lambda_{3} + q_{2}\alpha_{2}'}{\mu_{3}} \right)^{n_{3}} \right]$$

$$\dots \left[\frac{1}{|n_{M}|} \left(\frac{\lambda_{M} + q_{M-1}\alpha_{M-1}'}{\mu_{M}} \right)^{n_{M}} \right] \left[\frac{1}{|m_{1}|} \left\{ \frac{(\lambda_{11} + \mu_{M}q_{M1}\rho_{M})}{(\mu_{11})} \right\}^{m_{1}} \right]$$

$$(4.6) \qquad \left[\frac{1}{|m_{2}|} \left\{ \frac{(\lambda_{12} + \mu_{M}q_{M2}\rho_{M})}{(\mu_{12})} \right\}^{m_{2}} \right] \dots \left[\frac{1}{|m_{N}|} \left\{ \frac{(\lambda_{1N} + \mu_{M}q_{MN}\rho_{M})}{(\mu_{1N})} \right\}^{m_{N}} \right]$$

$$\text{where } \rho_{M} = \frac{\lambda_{M} + q_{M-1}\alpha_{M-1}'}{(\mu_{M})}; \alpha_{1}' = \lambda_{1}; \alpha_{k}' = \lambda_{k} + q_{k-1}\alpha_{k-1}'; k = 2, 3, \dots, M-1.$$

4.3. **Case 2.** Steady-State Equations (For $n_i \ge c_i$ and $m_j \ge d_j$) The equations (4.3) and (4.4) reduce to:

$$\left[\sum_{i=1}^{M} \frac{\lambda_{i}}{n_{i}+1} + \sum_{j=1}^{N} \frac{\lambda_{1j}}{m_{j}+1} + \sum_{i=1}^{M} (c_{i}\mu_{i} + r_{in_{i}}) + \sum_{j=1}^{N} (d_{j}\mu_{1j} + R_{jm_{j}})\right] P(\tilde{n}, \tilde{m})
= \sum_{i=1}^{M} \frac{\lambda_{i}}{n_{i}} P(T_{i}.(\tilde{n}), \tilde{m}) + \sum_{j=1}^{N} \frac{\lambda_{1j}}{m_{j}} P(\tilde{n}, T_{j}.(\tilde{m})) + \sum_{i=1}^{M} r_{i(n_{i}+1)} P(T_{i}.(\tilde{n}), \tilde{m})
+ \sum_{i=1}^{M-1} \frac{q_{i}}{n_{i+1}} \mu_{i} c_{i} P(T_{i}._{i,i+1}.(\tilde{n}), \tilde{m}) + \sum_{i=1}^{M} p_{i} \mu_{i} c_{i} P(T_{i}._{i}(\tilde{n}), \tilde{m})
+ \sum_{j=1}^{N} \mu_{M} c_{M} \frac{q_{Mj}}{m_{j}} P(n_{1}, n_{2}, \dots, n_{M} + 1, T_{j}.(\tilde{m}))$$

$$\begin{split} &(4.7) &\qquad + \sum_{j=1}^{N} \left(d_{j} \mu_{1j} + R_{j(m_{j}+1)} \right) P(\tilde{n}, T_{\cdot j} \left(\tilde{m} \right)) \,; \\ &\text{for } \left(\sum_{i=1}^{M} n_{i} + \sum_{j=1}^{N} m_{j} \right) < K; \text{ and } \\ & \qquad \left[\sum_{i=1}^{M} \left(c_{i} \mu_{i} + r_{in_{i}} \right) + \sum_{j=1}^{N} \left(d_{j} \mu_{ij} + R_{jm_{j}} \right) \right] P(\tilde{n}, \tilde{m}) \\ &= \sum_{i=1}^{M} \frac{\lambda_{i}}{n_{i}} P(T_{i} \cdot (\tilde{n}), \tilde{m}) + \sum_{j=1}^{N} \frac{\lambda_{1j}}{m_{j}} P(\tilde{n}, T_{j} \cdot (\tilde{m})) + \sum_{i=1}^{M-1} \frac{q_{i}}{n_{i+1}} c_{i} \mu_{i} P(T_{\cdot i}, {}_{i+1} \cdot (\tilde{n}), \tilde{m}) \\ & \qquad \qquad + \sum_{j=1}^{N} c_{M} \mu_{M} \frac{q_{Mj}}{m_{j}} P(n_{1}, n_{2}, \dots, n_{M} + 1, T_{j} \cdot (\tilde{m})) \\ &\text{for } \left(\sum_{i=1}^{M} n_{i} + \sum_{i=1}^{N} m_{j} \right) = K \,. \end{split}$$

4.3.1. Steady-State Solution (for $n_i \ge c_i$ and $m_j \ge d_j$).

$$\begin{split} P\left(\tilde{n},\tilde{m}\right) &= P\left(\tilde{0},\tilde{0}\right) \left[\frac{1}{\left|n_{1}\right|} \left(\frac{(\lambda_{1})^{n_{1}}}{\prod_{i=1}^{n_{1}} \left(c_{1}\mu_{1} + r_{1i}\right)} \right) \right] \\ \left[\frac{1}{\left|n_{2}\right|} \left(\frac{\left\{\lambda_{2}\left(c_{1}\mu_{1} + r_{1(n_{1}+1)}\right) + c_{1}q_{1}\mu_{1}\alpha_{1}\right\}^{n_{2}}}{\prod_{i=1}^{n_{2}} \left(c_{2}\mu_{2} + r_{2i}\right) \left(c_{1}\mu_{1} + r_{1(n_{1}+1)}\right)^{n_{2}}} \right) \right] \\ \left[\frac{1}{\left|n_{3}\right|} \left(\frac{\left\{\lambda_{3}\prod_{i=1}^{2} \left(c_{i}\mu_{i} + r_{i(n_{i}+1)}\right) + c_{2}q_{2}\mu_{2}\alpha_{2}\right\}^{n_{3}}}{\prod_{i=1}^{n_{3}} \left(c_{3}\mu_{3} + r_{3i}\right) \prod_{i=1}^{2} \left(c_{i}\mu_{i} + r_{i(n_{i}+1)}\right)^{n_{3}}} \right) \right] \\ \left[\frac{1}{\left|n_{M}\right|} \left(\frac{\left\{\lambda_{M}\prod_{i=1}^{M-1} \left(c_{i}\mu_{i} + r_{i(n_{i}+1)}\right) + c_{M-1}q_{M-1}\mu_{M-1}\alpha_{M-1}\right\}^{n_{M}}}{\prod_{i=1}^{n_{M}} \left(c_{M}\mu_{M} + r_{Mi}\right) \prod_{i=1}^{M-1} \left(c_{i}\mu_{i} + r_{i(n_{i}+1)}\right)^{n_{M}}} \right) \right] . \end{split}$$

$$\left[\frac{\left\{\lambda_{11} + c_{M}q_{M1}\mu_{M}\rho'_{M}\right\}^{m_{1}}}{\left|\underline{m_{1}}\prod_{j=1}^{m_{1}}\left(d_{1}\mu_{11} + R_{1j}\right)\right]}\left[\frac{\left\{\lambda_{12} + c_{M}q_{M2}\mu_{M}\rho'_{M}\right\}^{m_{2}}}{\left|\underline{m_{2}}\prod_{j=1}^{m_{2}}\left(d_{2}\mu_{12} + R_{2j}\right)\right|}\right].$$

$$\left[\frac{\left\{\lambda_{1N} + c_{M}q_{MN}\mu_{M}\rho'_{M}\right\}^{m_{N}}}{\left|\underline{m_{N}}\prod_{j=1}^{m_{N}}\left(d_{N}\mu_{1N} + R_{Nj}\right)\right|}\right].$$

$$\alpha_{1} = \frac{\lambda_{1}}{n_{1} + 1}$$

$$\rho'_{M} = \frac{\lambda_{M} \prod_{i=1}^{M-1} (c_{i}\mu_{i} + r_{i(n_{i}+1)}) + c_{M-1}\mu_{M-1}q_{M-1}\alpha_{M-1}}{\left[(c_{M}\mu_{M} + r_{M(n_{M}+1)}) \prod_{i=1}^{M-1} (c_{i}\mu_{i} + r_{i(n_{i}+1)}) \right] [n_{M} + 1]};$$

$$\alpha_{k} = \frac{\lambda_{k} \prod_{i=1}^{k-1} (c_{i}u_{i} + r_{i(n_{i}+1)}) + q_{k-1}\alpha_{k-1}u_{k-1}c_{k-1}}{n_{k} + 1};$$

for $k = 2, 3, \dots, M - 1$

Here , it is mentioned that the customers leave the system at constant rate as long as there is a line provided that the customers are served in the order in which they arrive. Putting $R_{jm_j}=R_j\ j=1,2,\ldots N$ in equations (4.5),(4.7) and (4.8) and $r_{in_i}=r_i$ in equations (4.7) and (4.8), the steady-state solutions (4.6) and (4.9) reduce to

$$\begin{split} &P\left(\tilde{n},\tilde{m}\right) \\ &= P\left(\tilde{0},\tilde{0}\right) \left[\frac{1}{\left|\underline{n_{1}}\right|} \left(\frac{\lambda_{1}}{\mu_{1}}\right)^{n_{1}}\right] \left[\frac{1}{\left|\underline{n_{2}}\right|} \left(\frac{\lambda_{2} + q_{1}\alpha_{1}^{'}}{\mu_{2}}\right)^{n_{2}}\right] \left[\frac{1}{\left|\underline{n_{3}}\right|} \left(\frac{\lambda_{3} + q_{2}\alpha_{2}^{'}}{\mu_{3}}\right)^{n_{3}}\right] \cdots \\ &\left[\frac{1}{\left|\underline{n_{M}}\right|} \left(\frac{\lambda_{M} + q_{M-1}\alpha_{M-1}^{'}}{\mu_{M}}\right)^{n_{M}}\right] \left[\frac{1}{\left|\underline{m_{1}}\right|} \left(\frac{\lambda_{11} + \mu_{M}q_{M1}\rho_{M}}{\mu_{11}}\right)^{m_{1}}\right] \\ &\left[\frac{1}{\left|\underline{m_{2}}\right|} \left\{\frac{(\lambda_{12} + \mu_{M}q_{M2}\rho_{M})}{(\mu_{12})}\right\}^{m_{2}}\right] \cdots \left[\frac{1}{\left|\underline{m_{N}}\right|} \left(\frac{\lambda_{1M} + \mu_{M}q_{MN}\rho_{M}}{\mu_{1N}}\right)^{m_{N}}\right]; \end{split}$$

for Case 1 and

$$P\left(\tilde{n}, \tilde{m}\right) = P\left(\tilde{0}, \tilde{0}\right) \left[\frac{\lambda_{1}}{\left(c_{1}\mu_{1} + r_{1}\right)}\right]^{n_{1}} \left[\frac{\lambda_{2}\left(c_{1}\mu_{1} + r_{1}\right) + c_{1}q_{1}\mu_{1}\alpha_{1}}{\left(c_{1}\mu_{1} + r_{1}\right)\left(c_{2}\mu_{2} + r_{2}\right)}\right]^{n_{2}}$$

$$\left[\frac{\lambda_{3} \prod_{i=1}^{2} (c_{i}\mu_{i} + r_{i}) + c_{2}q_{2}\mu_{2}\alpha_{2}}{\prod_{i=1}^{3} (c_{i}\mu_{i} + r_{i})}\right]^{n_{3}} \dots \left[\frac{\lambda_{M} \prod_{i=1}^{M-1} (c_{i}\mu_{i} + r_{i}) + c_{M-1}q_{M-1}\mu_{M-1}\alpha_{M-1}}{\prod_{i=1}^{M} (c_{i}\mu_{i} + r_{i})}\right]^{n_{M}} \left[\frac{1}{|\underline{m}_{1}|} \left(\frac{\lambda_{11} + c_{M}q_{M1}\mu_{M}\rho'_{M}}{(d_{1}\mu_{11} + R_{1})}\right)^{m_{1}}\right] \left[\frac{1}{|\underline{m}_{2}|} \left(\frac{\lambda_{12} + c_{M}q_{M2}\mu_{M}\rho'_{M}}{(d_{2}\mu_{12} + R_{2})}\right)^{m_{2}}\right] \dots \left[\frac{1}{|\underline{m}_{N}|} \left(\frac{\lambda_{1N} + c_{M}q_{MN}\mu_{M}\rho'_{M}}{(d_{N}\mu_{1N} + R_{N})}\right)^{m_{N}}\right];$$

for Case 2.

Here, $P\left(\tilde{n},\tilde{m};t\right)=0$; if any of the arguments is negative. We obtain $P\left(\tilde{0},\tilde{0}\right)$ from the normalizing condition $\sum\limits_{\tilde{n}=\tilde{0}}^{K}\sum\limits_{\tilde{m}=\tilde{0}}^{K}P\left(\tilde{n},\tilde{m}\right)=1$ and $\sum\limits_{i=1}^{M}n_{i}+\sum\limits_{l=1}^{N}m_{j}=K$ and with the restrictions that the traffic intensity of each service channel of the system is less than unity.

REFERENCES

- [1] F. P. KELLY: Network of queues with customers of different type, Journal of Applied Probability, **12**(3) (1975), 542 554.
- [2] M. SINGH: *Steady-state behavior of serial queuing processes with impatient customers*, Math Operations forsh, U.Statist. Ser. Statist., **15**(2) (1984), 289 298.
- [3] M. SINGH, U. SINGH: Network of serial and Non-serial queuing processes with impatient customers, JISSOR, 15(1-4) (1994), 81–96.
- [4] M. SINGH, A. AHUJA: The steady-state solution of multiple parallel channel in series with impatient customers, Intl. J. Mgmt. Syst., 11(2) (1995), 81–96.
- [5] M. GUPTA, M. SINGH, D. GUPTA: The steady-state solution of multiple parallel channels in series and non-serial servers both with balking and reneging due to long queue and some urgent message, Int.j.of Applied Engg. Research, 6(23) (2012), 2685–2694.
- [6] M. GUPTA, M. SINGH, D. GUPTA: Allocating Feedback Strategies in General Multichannel queuing problem with balking and reneging, Int.j. of Engg. and Scientific Research, 4(9) (2016), 42–57.

DEPARTMENT OF MATHEMATICS

DR. B.R. AMBEDKAR GOVT. COLLEGE, KAITHAL

Kaithal, Haryana, India

E-mail address: meenugupta0@gmail.com

DEPARTMENT OF MATHEMATICS AND STATISTICS

CH.CHARAN SINGH HARYANA AGRICULTURAL UNIVERSITY, HISAR

KAITHAL, HARYANA, INDIA

E-mail address: drmansingh742@gmail.com

DEPARTMENT OF MATHEMATICS

Maharishi Markandeshwar University, Mullana

Jagadhari, Haryana, India

E-mail address: guptadeepak2003@yahoo.co.in