

Advances in Mathematics: Scientific Journal 9 (2020), no.3, 1197-1203

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.3.44 Spec. Issue on RDESTM-2020

CARTESIAN PRODUCT ON FUZZY IDEALS OF A TERNARY Γ -SEMIGROUP

Y. BHARGAVI¹, T. ESWARLAL, AND S. RAGAMAYI

ABSTRACT. In this paper, we introduce and study the concept of cartesian product of fuzzy set of a ternary Γ -semigroup and we characterize fuzzy ternary Γ -semigroup, fuzzy left(resp. right, latral) ideal and fuzzy bi-ideal of a ternary Γ -semigroup in terms of cartesian product of fuzzy ternary Γ -semigroup, fuzzy left(resp. right, latral) ideal and fuzzy bi-ideal respectively.

1. Introduction

Los, J. [10] showed that any ternary semigroup however may be embedded in an ordinary semigroup in such a way that the operation in ternary semi groups is an (ternary) extension of the (binary) operation of the containing semigroup. Kim, J. [9], Lyapin, E.S. [11] and Sioson, F.M. [15] have also studied the properties of ternary semi groups. Sen, M.K. [14] defined the concepts of Γ -semigroup. It is known that Γ -semigroup is a generalization of semigroup. Many classical notions of semigroups have been extended to Γ -semigroups.

Zadeh, L.A. [17] introduced the study of fuzzy set in 1965. Mathematically a fuzzy set on a set U is a mapping μ into [0,1] of real numbers; for p in U, $\mu(p)$ is called the membership of p belonging to U. Further, Vague sets are introduced which are extension of fuzzy sets. Later, Bhargavi, Y. and Eswarlal, T. [1–7] introduced and studied vague sets on Γ -semirings. After that, Ragamayi, S.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 08A72, 20N25, 03E72.

Key words and phrases. ternary Γ-semigroup, fuzzy ternary Γ-semigroup, fuzzy left(right, lateral) ideal, fuzzy bi-ideal.

[12, 13] studied vague sets on Γ -nearrings.Ersoy, B.A., Tepecik, A. and Demir, I. [8] studied cartesian product of fuzzy prime ideals of rings. Sujit Kumar Surdar and Sarbani Goswamy [16] studied cartesian product of fuzzy prime and fuzzy semiprime ideals of semigroups. In this paper, we introduce and study the concept of cartesian product of fuzzy set of a ternary Γ -semigroup and we characterize fuzzy ternary Γ -semigroup, fuzzy left(resp. right, latral) ideal and fuzzy bi-ideal of a ternary Γ -semigroup in terms of cartesian product of fuzzy ternary Γ -semigroup, fuzzy left(resp. right, latral) ideal and fuzzy bi-ideal respectively.

2. Preliminaries

In this section we recall some of the fundamental concepts and definitions, which are necessary for this paper.

Notations: Throughout this article, we use the following notations.

- 1) **T** Γ **SG** stands for Ternary Γ -Semigroup
- 2) RI stands for right ideal.
- 3) LI stands for left ideal.
- 4) LAI stands for latral ideal.
- 5) BI stand for fuzzy bi-ideal.
- 6) **FS** stands for fuzzy set.
- 7) **FRI** stands for fuzzy right ideal.
- 8) **FLI** stands for fuzzy left ideal.
- 9) **FLAI** stand for fuzzy latral ideal.
- 10) FI stand for fuzzy ideal.
- 11) FBI stands for fuzzy bi-ideal.

Definition 2.1. A T Γ SG is an algebraic structure $(E,\Gamma,.)$ such that $E\neq\emptyset$ and $: E\times\Gamma\times E\times\Gamma\times E\to E$ is a ternary operation satisfying the following associative law

$$(a\alpha b\beta c)\gamma d\delta e = a\alpha (b\beta c\gamma d)\delta e = a\alpha b\beta (c\gamma d\delta e),$$

 $\forall e, f, c, d, e \in E; \alpha, \beta, \gamma, \delta \in \Gamma.$

Definition 2.2. A non-empty subset F of a $T\Gamma SG$ E is called

(i) $T\Gamma SG$ of E if $F\Gamma F\Gamma F \subseteq F$.

- (ii) **LI**(resp. **RI**, **LAI**) of E if $E\Gamma E\Gamma F \subseteq F$, $(F\Gamma E\Gamma E \subseteq F, E\Gamma F\Gamma E \subseteq E)$.
- (iii) **BI** of E if $F\Gamma E\Gamma F\Gamma E\Gamma F\subseteq F$.

Definition 2.3. A mapping from a non empty set to an interval [0, 1] is called **FS**.

Definition 2.4. Let $\mu: U \to [0,1]$ be any **FS**. Then the set $\{\mu(p)/p \in U\}$ is called the image of μ and is denoted by $Im(\mu)$. For $t \in [0,1]$, $\mu_t = \{p \in U/\mu(p) \ge t\}$ is called a level subset of μ .

Definition 2.5. A FS μ of a T Γ SG E is said to be FT Γ SG if for all $e, f, g \in E$; $\alpha, \beta \in \Gamma$, $\mu(e\alpha f\beta g) \ge \min\{\mu(e), \mu(f), \mu(g)\}$.

Definition 2.6. A **FS** μ of a **T** Γ **SG** E is said to be **FLI** (resp. **FRI**, **FLAI**) ideal of E if for all $e, f, g \in E$; $\alpha, \beta \in \Gamma$, $\mu(e\alpha f\beta g) \geq \mu(g)$ (resp. $\mu(e\alpha f\beta g) \geq \mu(e)$, $\mu(e\alpha f\beta g) \geq \mu(f)$). If μ is **FLI**, **FRI** and **FLAI** of E, then μ is called **FI** of E.

Definition 2.7. A FS μ of a T Γ SG E is said to be FBI of E if forall $e, f, g, x, y \in E$; $\alpha, \beta, \gamma, \delta \in \Gamma$, $\mu(e\alpha x\beta f\gamma y\delta g) \ge \min\{\mu(e), \mu(f), \mu(g)\}$.

3. Cartesian Product on Fuzzy Ideals and Fuzzy Bi-ideals of a Ternary $\Gamma ext{-Semigroup}$

In this section, we introduce and study the concept of cartesian product of **FS** of a **T** Γ **SG**. Throughout this section, E stands for a **T** Γ **SG** unless otherwise mentioned.

Let E_1 and E_2 be two T Γ SG. Then the cartesian product $E_1 \times E_2$ becomes a T Γ SG with the ternary composition $(E_1 \times E_2) \times \Gamma \times (E_1 \times E_2) \Gamma \times (E_1 \times E_2) \rightarrow E_1 \times E_2$ defined by

$$(e_1, f_1)\alpha(e_2, f_2)\beta(e_3, f_3) = (e_1\alpha e_2\beta e_3, f_1\alpha f_2\beta f_3),$$

$$\forall (e_1, f_1), (e_2, f_2), (e_3, f_3) \in E_1 \times E_2; \ \alpha, \beta \in \Gamma.$$

Definition 3.1. Let μ and ν be **FS** of E. Then the cartesian product of μ and ν is defined by $(\mu \times \nu)((e, f)) = \min\{\mu(e), \nu(f)\}, \ \forall \ (e, f) \in E \times E$.

Lemma 3.1. If μ and ν are **FS** of E, then $(\mu \times \nu)_t = \mu_t \times \nu_t$, where $t \in [0, 1]$.

Proof. Suppose
$$(e, f) \in \mu_t \times \nu_t \Leftrightarrow e \in \mu_t$$
 and $f \in \nu_t \Leftrightarrow \mu(e) \geq t$ and $\nu(f) \geq t$ $\Leftrightarrow \min\{\mu(e), \nu(f)\} \geq t \Leftrightarrow (e, f) \in (\mu \times \nu)_t$. Thus $(\mu \times \nu)_t = \mu_t \times \nu_t$.

Theorem 3.1. If μ and ν are **FT** Γ **SG** of E, then $\mu \times \nu$ is a **FT** Γ **SG** of $E \times E$.

Proof. Suppose μ and ν are **FT** Γ **SG** of E. Let $(e, f), (g, h), (i, j) \in E \times E; \ \alpha, \beta \in \Gamma$. Now,

```
\begin{split} (\mu \times \nu) &((e,f)\alpha(g,h)\beta(i,j)) \\ &= (\mu \times \nu) ((e\alpha g\beta i,f\alpha h\beta j)) \\ &= \min \{\mu(e\alpha g\beta i),\nu(f\alpha h\beta j)\} \\ &\geq \min \{\min \{\mu(e),\mu(g),\mu(i)\},\min \{\nu(f),\nu(h),\nu(j)\}\} \\ &= \min \{\min \{\mu(e),\nu(f)\},\min \{\mu(g),\nu(h)\},\min \{\mu(i),\nu(j)\}\} \\ &= \min \{(\mu \times \nu) ((e,f)),(\mu \times \nu) ((g,h)),(\mu \times \nu) ((i,j))\}. \end{split}
```

Thus $\mu \times \nu$ is a **FT** Γ **SG** of $E \times E$.

Theorem 3.2. If μ and ν are **FLI** (resp. **FRLI**, **FLAI**) of E, then $\mu \times \nu$ is a **FLI** (resp. **FRI**, **FLAI**) of $E \times E$.

Proof. Suppose μ and ν are **FRI** of E. Let $(e, f), (g, h), (i, j) \in E \times E$; $\alpha, \beta \in \Gamma$. Now,

```
(\mu \times \nu)((e, f)\alpha(g, h)\beta(i, j))
= (\mu \times \nu)((e\alpha g\beta i, f\alpha h\beta j))
= \min\{\mu(e\alpha g\beta i), \nu(f\alpha h\beta j)\}
\geq \min\{\mu(i), \nu(j)\} = (\mu \times \nu)((i, j)).
```

Thus $\mu \times \nu$ is a **FLI** of $E \times E$. Similarly, we prove for **FRI** and **FLAI**.

Theorem 3.3. If μ and ν are **FBI** of E, then $\mu \times \nu$ is a **FBI** of $E \times E$.

Proof. Suppose μ and ν are **FBI** of E. Let $(e, f), (g, h), (i, j), (k, l), (m, n) \in E \times E$; $\alpha, \beta, \gamma, \delta \in \Gamma$. Now,

```
(\mu \times \nu)((e, f)\alpha(g, h)\beta(i, j)\gamma(k, l)\delta(m, n))
= (\mu \times \nu)((e\alpha g\beta i\gamma k\delta m, f\alpha h\beta j\gamma l\delta n))
= \min\{\mu(e\alpha g\beta i\gamma k\delta m), \nu(f\alpha h\beta j\gamma l\delta n)\}
\geq \min\{\min\{\mu(e), \mu(i), \mu(m)\}, \min\{\nu(f), \nu(j), \nu(n)\}\}
= \min\{\min\{\mu(e), \nu(f)\}, \min\{\mu(i), \nu(j)\}, \min\{\mu(m), \nu(n)\}\}
= \min\{(\mu \times \nu)((e, f)), (\mu \times \nu)((i, j)), (\mu \times \nu)((m, n))\}.
```

Thus $\mu \times \nu$ is a **FBI** of $E \times E$.

Theorem 3.4. Let μ and ν are **FT** Γ **SG** of E, then $\mu \times \nu$ is a **FT** Γ **SG** of $E \times E$ if and only if the level set $(\mu \times \nu)_t$, where $t \in [0, 1]$ is a ternary sub Γ -semigroup of $E \times E$.

Proof. Suppose $\mu \times \nu$ is a **FT** Γ **SG** of $E \times E$. Let $(e, f), (g, h), (i, j) \in (\mu \times \nu)_t$; $\alpha, \beta \in \Gamma$. Then

$$(\mu \times \nu)((e, f)) \ge t, \ (\mu \times \nu)((g, h)) \ge t$$

and

$$(\mu \times \nu)((i,j)) \ge t.$$

Now,

$$(\mu \times \nu)((e, f)\alpha(g, h)\beta(i, j))$$

$$\geq \min\{(\mu \times \nu)(e, f)), (\mu \times \nu)(g, h)), (\mu \times \nu)((i, j))\} \geq t.$$

That implies $(e, f)\alpha(g, h)\beta(i, j) \in (\mu \times \nu)_t$. Thus $(\mu \times \nu)_t$ is a ternary sub Γ -semigroup of $E \times E$.

Conversely, suppose that $(\mu \times \nu)_t$ is a ternary sub Γ -semigroup of $E \times E$.

Let $(e, f), (g, h), (i, j) \in E \times E$; $\alpha, \beta \in \Gamma$. Let $(\mu \times \nu)((e, f)) = t_1$, $(\mu \times \nu)((g, h)) = t_2$ and $(\mu \times \nu)((i, j)) = t_3$, where $t_1, t_2, t_3 \in [0, 1]$ with $t_3 \leq t_2 \leq t_1$. Next put $t = \min\{t_1, t_2, t_3\}$. Then $(e, f), (g, h), (i, j) \in (\mu \times \nu)_t$. So,

$$(e, f)\alpha(g, h)\beta(i, j) \in (\mu \times \nu)_t.$$

That implies $(\mu \times \nu)((e, f)\alpha(g, h)\beta(i, j)) \ge t = \min\{(\mu \times \nu)(e, f)), (\mu \times \nu)(g, h)\}, (\mu \times \nu)((i, j))\}$. Thus $\mu \times \nu$ is a **FT** Γ **SG** of $E \times E$.

Theorem 3.5. Let μ and ν are **FLI**(resp. **FRI**, **FLAI**) ideals of E, then $\mu \times \nu$ is a **FLI**(resp. **FRI**, **FLAI**) ideal of $E \times E$ if and only if the level set $(\mu \times \nu)_t$, where $t \in [0, 1]$ is a **LI**(resp. **RI**, **LAI**) ideal of $E \times E$.

Proof. Suppose $\mu \times \nu$ is a **FLI** of $E \times E$. Let $(e,f), (g,h) \in E \times E$; $(i,j) \in (\mu \times \nu)_t$; $\alpha, \beta \in \Gamma$. Then, $(\mu \times \nu)((i,j)) \geq t$. Now, $(\mu \times \nu)((e,f)\alpha(g,h)\beta(i,j)) \geq (\mu \times \nu)((i,j)) \geq t$. That implies $(e,f)\alpha(g,h)\beta(i,j) \in (\mu \times \nu)_t$. Thus $(\mu \times \nu)_t$ is a **LI** of $E \times E$.

Conversely, suppose that $(\mu \times \nu)_t$ is a LI of $E \times E$.

Let $(e, f), (g, h), (i, j) \in E \times E$; $\alpha, \beta \in \Gamma$ and let $(\mu \times \nu)((e, f)) = t_1$, $(\mu \times \nu)((g, h)) = t_2$ and $(\mu \times \nu)((i, j)) = t_3$, where $t_1, t_2, t_3 \in [0, 1]$ with $t_3 \leq t_2 \leq t_1$. Next, put $t = \min\{t_1, t_2, t_3\}$. Then $(e, f), (g, h), (i, j) \in (\mu \times \nu)_t$. So,

$$(e, f)\alpha(g, h)\beta(i, j) \in (\mu \times \nu)_t.$$

That implies $(\mu \times \nu)((e, f)\alpha(g, h)\beta(i, j)) \ge t = (\mu \times \nu)((i, j))$. Thus $\mu \times \nu$ is a **FLI** of $E \times E$.

Similarly, we can prove for FRI and FLAI.

Theorem 3.6. Let μ and ν are **FBI** of E, then $\mu \times \nu$ is a **FBI** of $E \times E$ if and only if the level set $(\mu \times \nu)_t$, where $t \in [0,1]$ is a **BI** of $E \times E$.

Proof. Suppose $\mu \times \nu$ is a **FBI** of $E \times E$. Let $(e, f), (g, h), (i, j) \in (\mu \times \nu)_t$; $(k, l), (m, n) \in E \times E$; $\alpha, \beta, \gamma, \delta \in \Gamma$. Then, $(\mu \times \nu)((e, f)) \geq t$, $(\mu \times \nu)((g, h)) \geq t$ and $(\mu \times \nu)((i, j)) \geq t$. Now,

$$(\mu \times \nu)((e, f)\alpha(k, l)\beta(g, h)\gamma(m, n)\delta(i, j))$$

$$\geq \min\{(\mu \times \nu)((e, f)), (\mu \times \nu)((g, h)), (\mu \times \nu)((i, j))\} \geq t.$$

That implies $(e, f)\alpha(k, l)\beta(g, h)\gamma(m, n)\delta(i, j) \in (\mu \times \nu)_t$. Thus $(\mu \times \nu)_t$ is a **BI** of $E \times E$.

Conversely suppose that $(\mu \times \nu)_t$ is a **BI** of $E \times E$.

Let $(e, f), (g, h), (i, j)(k, l), (m, n) \in E \times E; \ \alpha, \beta, \gamma, \delta \in \Gamma \ \text{and let} \ (\mu \times \nu)((e, f)) = t_1, \ (\mu \times \nu)((i, j)) = t_2 \ \text{and} \ (\mu \times \nu)((m, n)) = t_3, \ \text{where} \ t_1, t_2, t_3 \in [0, 1] \ \text{with} \ t_3 \le t_2 \le t_1. \ \text{Next, put} \ t = \min\{t_1, t_2, t_3\}. \ \text{Then} \ (e, f), (i, j), (m, n) \in (\mu \times \nu)_t. \ \text{So,} \ (e, f)\alpha(g, h)\beta(i, j)\gamma(k, l)\delta(m, n) \in (\mu \times \nu)_t. \ \text{That implies}$

$$(\mu \times \nu)((e, f)\alpha(g, h)\beta(i, j)\gamma(k, l)\delta(m, n))$$

$$\geq t = \min\{(\mu \times \nu)((e, f)), (\mu \times \nu)((i, j)), (\mu \times \nu)((m, n))\}.$$

Thus $\mu \times \nu$ is a **FBI** of $E \times E$.

REFERENCES

- [1] Y. BHARGAVI, T. ESWARLAL: *Fuzzy* Γ -Semirings, International Journal of Pure and Applied Mathematics, **98**(3) (2015), 339–349.
- [2] Y. Bhargavi, T. Eswarlal: *Vague* Γ-*Semirings*, Global Journal of Pure and Applied Mathematics, **11**(1) (2015) 117–127.
- [3] Y. Bhargavi, T. Eswarlal: *Application of vague set in medical diagnosis*, International Journal of Chemical Sciences, **14**(2) (2016), 842–846.
- [4] Y. BHARGAVI, T. ESWARLAL: *Vague magnified translation in* Γ -semirings, International Journal of Pure and Applied Mathematics, **106**(2) (2016), 453–460.
- [5] Y. BHARGAVI, T. ESWARLAL: Vague Semiprime Ideals of a Γ-Semirings, Afrika Matematika, **29**(3-4) (2018), 425–434.
- [6] Y. BHARGAVI: *Vague filters of a* Γ-*semiring*, International Journal of Mechanical and Production Engineering Research and Development, **8** (2018), 421–428.
- [7] Y. Bhargavi: A Study on Translational Invariant Vague Set of a Γ -Semiring, doi: 10.1007/s13370-020-00794-1.
- [8] B. A. ERSOY, A. TEPECIK, I. DEMIR: *Cartesian product on Fuzzy prime ideals*, Pakistan Journal of Applied Sciences, **2**(11) (2002), 1022–1024.

- [9] J. KIM: Fuzzy semi prime ideals in semi groups, Journal of Chungcheong Mathematical Society, **3**(22) (2009), 277–288.
- [10] J. Los: On extending of models I, Fund.Math., 42 (1955), 512–517.
- [11] E. S. LYAPIN: *Realization of ternary semi groups*, (Russian) Modern Algebra, Leningrad University, Leningrad, 1981.
- [12] S. RAGAMAYI, Y. BHARGAVI: Some Results On Homomorphism Of Vague Ideal Of A Gamma-Nearring, International Journal of Scientific and Technology and Research, 9(1) (2020), 3972–3975.
- [13] S. RAGAMAYI, Y. BHARGAVI: *A Study Of Vague Gamma-Nearrings*, International Journal of Scientific and Technology and Research, **9**(1) (2020), 3960–3963.
- [14] M. K. SEN: *On* Γ-*semigroup*, Proc. of InternationalConference on Algebra and its Applications, Decker Publication, 1981.
- [15] F. M. SIOSON: Ideal theory in ternary semi groups, Math. Japon., 10 (1965), 63–84.
- [16] S. KUMAR SARDAR, S. GOSWAMI: On cartesian product of Fuzzy prime and Fuzzy semiprime ideals of semigroups, Journal of Mathematics and Applications, **32** (2010), 63–66.
- [17] L. A. ZADEH: Fuzzy set, Information and Control, 8 (1965), 338-353.

DEPARTMENT OF MATHEMATICS
KONERU LAKSHMAIAH EDUCATION FOUNDATION
VADDESWARAM, GUNTUR,
ANDHRA PRADESH, INDIA-522502
E-mail address: yellabhargavi@gmail.com

DEPARTMENT OF MATHEMATICS
KONERU LAKSHMAIAH EDUCATION FOUNDATION
VADDESWARAM, GUNTUR,
ANDHRA PRADESH, INDIA-522502
E-mail address: eswarlal@kluniversity.in

DEPARTMENT OF MATHEMATICS
KONERU LAKSHMAIAH EDUCATION FOUNDATION
VADDESWARAM, GUNTUR,
ANDHRA PRADESH, INDIA-522502
E-mail address: sistla.raaga1230@gmail.com