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A DEFINITION OF DIRAC DELTA FUNCTIONS
A. R. MURUGAN!, C. G. MOORTHY, AND C. T. RAMASAMY

ABSTRACT. Physicists used to avoid the theory of generalized functions devel-
oped by Sobolev and the theory of distributions developed by Schwartz. A
simplified mathematical definition for the Dirac delta functions is proposed in
this article. This rigourous definition will be acceptable to physicists, because
it depends only on elementary concepts, and not on functional analysis. For
example, the usual one dimensional Dirac delta function with mass at the ori-
gin is identified as the collection of all real valued functions f on the real line
having the property f(b) — f(a) = 1 whenever a < 0 < b.

1. INTRODUCTION

One has to understand unbounded linear operators on an inner product space
to study quantum mechanics. One has to know about the Dirac delta function,
while he studies quantum mechanics. The concept of the Kronecker delta func-
tion for the discrete case was generalized to a concept of a delta function for
the continuous case by Dirac [2]. This is now known as the Dirac delta func-
tion. Dirac [2] called this function as an improper function, because it is not
a classical function, and he listed a set of properties of this special improper
function §. The definition given by him for § was also an improper one to math-
ematicians. S. L. Sobolev [6,7] proposed a definition. L. Schwartz [5] refined
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this definition. These two definitions for the Dirac delta function is universally
accepted in the world of mathematicians. The definitions of Dirac and Schwartz
are given in terms of integrations. Schwartz specifies classes of functions for
which integrations are considered when they are multiplied by the Dirac delta
function. Specifications of classes fix Dirac delta functions, mathematically. To
understand this proper definition of Schwartz for the Dirac delta function, one
should understand the concept of continuous linear functionals on locally con-
vex topological vector spaces in terms of inductive limit, in addition to classical
calculus. It seems that learning all these functional analysis concepts, directly
or indirectly, is a heavy work to the students of physics who study quantum me-
chanics. The following are stated in section 1.5.2 in the text book [3] of D. J.
Griffths : “In the mathematical literature, it is known as a generalized function,
or distribution. It is, if you like, the limit of a sequence of functions, such as - - - ”.
It looks like a general comment. But, this statement is an indirect declaration on
sufficiency of an improper definition of the Dirac delta function to go through
the course. A definition which can be included in such text books is proposed
in this article. It may be considered that there are articles which try to provide
new definitions for the Dirac delta function (for example, see [1]). Dirac defines
an improper extended real valued function § on the real line R! as an improper
function having the following major property: TO f(x)d(z)dz = f(0), for any
continuous real valued function f on the real lineojolzl. Dirac (section 75, in [2])
also considered three dimensional improper delta function §3 on R®, which was
defined by the relation §3((x,y,2)) = d(x) d(y) d(z), ¥(z,y,2) € R3, when §
is the one dimensional improper delta function defined on R!. The definition
proposed in this article agrees with this relation. Excellent works done by S. L.
Sobolev and L. Schwartz are not sufficient to universally satisfy the following

relation mentioned in the book [3] in section 1.5.3: V.(%) = 47°(r). Here §°
represents the three dimensional improper Dirac delta fugction, r = ri+yj+zk,
= unit vector for r, and r? = 22 + y? + 22 in [3]. This property is a motivation
to the definition presented in this article. Another motivation for this definition
is based on a simple theorem on integration by parts for multivariables.
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2. DIRAC CLOSED SURFACES

The definition for Dirac closed surfaces is presented in this section. This con-
cept is introduced only for a convenient way of introducing the improper Dirac
delta function.

Let v : [a,b] — R? be a continuous function such that y(a) = v(b) and ~ is one
- to - one on (a, b). It is called a closed curve. Let us call it positively oriented, if
~ determines only two regions, and the bounded region lies in the left side of ~,
when t of () transverses from a to b. A function f: {v(t):a <t <b} — R'is
said to be Riemann integrable, if f o is a Riemann integrable function on [a, b].
Let v : [a,b] — R? be a positively oriented closed curve in R? such that

(a) the set v is the boundary of the bounded open region D determined by
s

(b) D U~ is a countable union of closed rectangles whose sides are parallel
to the axes (say x-axis and y-axis), and the interior of these rectangles
are pairwise disjoint; and

(c) the line integrals for Riemann integrable real valued functions on « can
be defined over ~.

Let us call such closed curves as Dirac closed curves.

Lemma 2.1. Let f : Q — {p} — R' be a continuous real valued function, where
Q) is a nonempty simply connected open subset of R* and p € ). Suppose that the
line integral [ f = ¢, a constant, for every positively oriented boundary dR of a

closed rectan?fllar subset R in €), for which the sides are parallel to the axes and
for which p is in the interior of R. Then for every closed rectangular region R; in
Q, with positively oriented boundary OR;, for which the sides are parallel to the
axes, and for which p is not in Ry, it is true that [ f = 0.
OR1

Proof. Consider two rectangles R and R; in €2, for which the sides are parallel to
the axes, and such that RN R is a side of R; as well as a side of R. Suppose p is in
the interior of R such that p is not in R;. If R, = RU R; and R, is the positively

orientedboundaryong,then/f:c:/f:/f+/f:c+/f. Thus
OR

OR> OR OR1 ORy

/f=0 O

ORq
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Lemma 2.2. Let f, ), p and c be as in the previous lemma 2.1. Let -y be a Dirac
closed curve in €2 such that the bounded open region enclosed by ~ contains p. Then
the value of the line integral [ f is also c.

Y
Proof. Apply the previous lemma 2.1 and the property (b) given in the definition
for Dirac closed curves, along with the continuity of f in Q — {p}. d

The curves in the plane R? are considered as 1-dimensional surfaces. One
may refer to the book [4] for the definition of (n — 1)-dimensional positively
oriented sufaces in the n-dimensional space R", for n > 2. One can now define
(n — 1)-dimensional Dirac closed surfaces in R™ with an understanding that
closed surfaces have zero oriented boundaries. See the book [4] for the meaning
of zero oriented boundaries defined through integration.

3. DIRAC DELTA FUNCTIONS

Definition 3.1. Let n > 2. Let p = (p1,p2,--- ,pn) € R™ Let ¢ € R'. Let COn(p)
denote the collection of all functions f on R"™ such that f is Riemann integrable over
(n—1)-dimensional Dirac closed surfaces and such that the surface integral [ f = ¢

for every (n — 1)-dimensional Dirac closed surface S for which p is in the bf)unded
open region determined by S; or equivalently (in view of the Lemma 2.2 for the case
R™), for every (n — 1)-dimensional positively oriented closed rectangular surface S
of the form

g .
jL_Jl{(Zl,ZQ, S i1, Ty 21, s ) A < 2 < b Yk # j, and x; = aj or bj},

when a; < p; <b;,Vi=1,2,--- ,n. Let us write 10, as d,(). Let the collection
dn(p) De called the n-dimensional improper Dirac delta function at p.

Let us consider cdn,) as a “scalar multiple” of d,,), a multiple of the scalar c.
For any open set U containing p in R" and for any continuous real valued function
fon U, the Dirac integral for fcdy, or, for cd,y) f, over U is denoted by [ fcdy )

U

and defined as the number cf(p). For the constant function f =1, [ c0,) = . Iff
U

is a Riemann (Lebesgue) integrable function f on an open set U containing p in R",
let us define [(f + cdy,()) as the number ¢+ [ f(x)dx, where [ f(z)dx is the usual
U U

U
Riemann (Lebesgue) integral.
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Definition 3.2. For n = 1, let p € R' and ¢ € R'. Let cd,(,) be the collection

of all real valued functions f on R' such that whenever a < p < b, it is true

that f(b) — f(a) = c. The collection 101, is denoted by &(,). 01y is called the

one dimensional improper Dirac delta function. For any open set U containing p

in R', and for any continuous real valued function f on U, the Dirac integral for

febip, or for cdyy f over U is denoted by [ fcdy, and defined as the number
U

cf(p). For the constant function f =1, [ ¢by(,) = c. Similarly, if in addition f is a
U

Riemann (Lebesgue) integrable function, let us define [(f + cd1(,)) as the number
U

c+ [ f(x)dz.
U
Define Hy(, : R' — R' by

0 ifz<p
Hip)(z) = . .
1 ifz>p

Then the Heaviside function Hy,) € 01() and cHyg)y € cdi(p), when (cHyp)(x) =
c(Hip)(z)), Vo € R'. Moreover, the function g : R' — R' defined by

e ife<p
g(x) = ,
e+1 ifzx>p

is also in 0y(y), for any e € R'. Define H,,) : R" — R' by

0 ifx; <p; for some i

Hn (371,1'2,"‘ 7$n) =
) 1 ifx; >p; foralli

when p = (p1,p2, -+ ,pn). Then Hyp)y = HipyHip) - Hip) € Onp), when the
product has n factors.

n
For a specific region U = [](a;, b;) satisfying a; < p; < b;, and for a continuous
=1

b;
function f : U — R', the Dirac integration [ foip,) = [ f(z1,22, -+ ,2,)010)
(ai,b;) a;
has the value f(x1,xo, -+, Ti_1,Piy Tix1, "+ ,Tp) fOr Ty, Loy« -+ | T 1, Tig1, " , Ty €
R'. Thus the iterated integral

bn bnfl b2 b1

/[ / [ ot [/[/ f(xlv Loy 737“)51(P1)dx1]51(?2)dx2] e ']61(Pn71)dxn*1]51(1>n)dxn

Gn An—1 az ai
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can be defined, and it is seen that it coincides with f(pi,ps,- -+ ,pn) = | [ On@)-
U

For the case n = 1, the definition depends on the treatment of considering ¢,
as a “derivative” of H,(,) and based on “integration by parts” (see [2]). For the

0" Hogy) ” What

Oxy Oxg -+ O,
is the required “integration by parts” for the general case? There are articles

which provide multidimensional integration by parts (for example, see [8, 9]).
The following obvious theorem 3.1 is sufficient for motivation in defining d,,(,).

general case 9, is considered as the “partial derivative

Theorem 3.1. Let f : [[[a;,b;] — R' and g : [][ai, b:] — R' be continuous func-
i=1 i=1
o f g
d
0x1 Oxy -+ Oxy, an 0x, 0xy ++- Oxy,

are Riemann integrable on [][a;, b;]. Here a; < b;, ¥ i. Then

tions for which exist and these derivatives

1=

bn bn—l b2 b1

1
o f
//'”//gaxl Doy axndffldl'g-..dxn—ldl'n

an An—1 az ai

= Z(_l)k(ZLZQ,mVzn)f(zb 29yttt Zn)g(21, 29y 7Zn)

bn bn—l bg bl

d"g
_/ / ...//fawl Doy axndxld:vg...dasn—ldxm

an Anp—1 a2 ai

when the sum is taken over all (z1, zo, - - - , 2,), when each z; is either a; or b;, and

when k(z1, 29, -+ , z,) is the number of z; which are equal to a;.

Corollary 3.1. For f, >, and k(z, 29, , 2,) given as in the Theorem 3.1, it is

true that
bn b1 by b

o f
// .“//axl T axndxldxg...da:n—ldxn

an An—1 az ai

- Z(_1>k(217227m7zn)f(217 22yttt 7211)‘

Corollary 3.2. Let f be given as in the theorem 3.3. Let x = (1,9, ,%,) and
¢ = (¢1,¢9,++ ,¢,) be such that x; # ¢;,V i. Let z; be x; or ¢;, for every i, and let
k(z1, 29, , z,) denote the number of z; which are equal to c;. Then

lim Z(_l)k(ZhZ%m7zn)f(217 225, Zn)

Tr—rC

n
(z; — ci)
=1

(2
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exists, when the sum is taken over all the possible (z1, 23, - - , z,), and this limit is
anf(ch Coy v 7Cn)’ When anf

is continuous at c.
Oxy Oxg + -+ Oz, 0xy Oxg « -+ Oxy,

equal to

4. CONCLUSIONS

The mathematicians may put additional conditions on the members of §,,),
according to their mathematical problems. For example, it may be assumed
that all members of 4, are differentiable (see [4]) almost everywhere, after
excluding p. So there is a problem in fixing and characterizing members of 6,,,).
However,the following simplified definition is sufficient to explain fundamental
problems in physics, because the integrals defined in the previous section helps
one to define integral transforms for the improper Dirac delta functions. Let
us call improper Dirac delta functions simply as Dirac delta functions, for the
following definition for physicists.

The n-dimensional Dirac delta function with mass at the origin can be defined
as the collection of all real valued mappings on R™ whose Riemann integral (so,
functions are integrable) value over any (n — 1)-dimensional positively oriented
rectangular closed surface having the origin inside the bounded region deter-
mined by the surface is one. The one dimensional Dirac delta function with
mass at the origin can be defined as the collection of all real valued functions f
on the real line R' having the property f(b) — f(a) = 1 whenever a < 0 < b.
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