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A DEFINITION OF DIRAC DELTA FUNCTIONS

A. R. MURUGAN1, C. G. MOORTHY, AND C. T. RAMASAMY

ABSTRACT. Physicists used to avoid the theory of generalized functions devel-
oped by Sobolev and the theory of distributions developed by Schwartz. A
simplified mathematical definition for the Dirac delta functions is proposed in
this article. This rigourous definition will be acceptable to physicists, because
it depends only on elementary concepts, and not on functional analysis. For
example, the usual one dimensional Dirac delta function with mass at the ori-
gin is identified as the collection of all real valued functions f on the real line
having the property f(b)− f(a) = 1 whenever a < 0 < b.

1. INTRODUCTION

One has to understand unbounded linear operators on an inner product space
to study quantum mechanics. One has to know about the Dirac delta function,
while he studies quantum mechanics. The concept of the Kronecker delta func-
tion for the discrete case was generalized to a concept of a delta function for
the continuous case by Dirac [2]. This is now known as the Dirac delta func-
tion. Dirac [2] called this function as an improper function, because it is not
a classical function, and he listed a set of properties of this special improper
function δ. The definition given by him for δ was also an improper one to math-
ematicians. S. L. Sobolev [6,7] proposed a definition. L. Schwartz [5] refined
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this definition. These two definitions for the Dirac delta function is universally
accepted in the world of mathematicians. The definitions of Dirac and Schwartz
are given in terms of integrations. Schwartz specifies classes of functions for
which integrations are considered when they are multiplied by the Dirac delta
function. Specifications of classes fix Dirac delta functions, mathematically. To
understand this proper definition of Schwartz for the Dirac delta function, one
should understand the concept of continuous linear functionals on locally con-
vex topological vector spaces in terms of inductive limit, in addition to classical
calculus. It seems that learning all these functional analysis concepts, directly
or indirectly, is a heavy work to the students of physics who study quantum me-
chanics. The following are stated in section 1.5.2 in the text book [3] of D. J.
Griffths : “In the mathematical literature, it is known as a generalized function,
or distribution. It is, if you like, the limit of a sequence of functions, such as · · · ”.
It looks like a general comment. But, this statement is an indirect declaration on
sufficiency of an improper definition of the Dirac delta function to go through
the course. A definition which can be included in such text books is proposed
in this article. It may be considered that there are articles which try to provide
new definitions for the Dirac delta function (for example, see [1]). Dirac defines
an improper extended real valued function δ on the real line R1 as an improper

function having the following major property:
+∞∫
−∞

f(x)δ(x)dx = f(0), for any

continuous real valued function f on the real line R1. Dirac (section 75, in [2])
also considered three dimensional improper delta function δ3 on R3, which was
defined by the relation δ3((x, y, z)) = δ(x) δ(y) δ(z), ∀(x, y, z) ∈ R3, when δ

is the one dimensional improper delta function defined on R1. The definition
proposed in this article agrees with this relation. Excellent works done by S. L.
Sobolev and L. Schwartz are not sufficient to universally satisfy the following

relation mentioned in the book [3] in section 1.5.3: ∇.( r̂
r2

) = 4πδ3(r). Here δ3

represents the three dimensional improper Dirac delta function, r = xi+yj+zk,
r̂ = unit vector for r, and r2 = x2 + y2 + z2 in [3]. This property is a motivation
to the definition presented in this article. Another motivation for this definition
is based on a simple theorem on integration by parts for multivariables.
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2. DIRAC CLOSED SURFACES

The definition for Dirac closed surfaces is presented in this section. This con-
cept is introduced only for a convenient way of introducing the improper Dirac
delta function.

Let γ : [a, b]→ R2 be a continuous function such that γ(a) = γ(b) and γ is one
- to - one on (a, b). It is called a closed curve. Let us call it positively oriented, if
γ determines only two regions, and the bounded region lies in the left side of γ,
when t of γ(t) transverses from a to b. A function f: {γ(t) : a ≤ t ≤ b} → R1 is
said to be Riemann integrable, if f ◦ γ is a Riemann integrable function on [a, b].
Let γ : [a, b]→ R2 be a positively oriented closed curve in R2 such that

(a) the set γ is the boundary of the bounded open region D determined by
γ;

(b) D ∪ γ is a countable union of closed rectangles whose sides are parallel
to the axes (say x-axis and y-axis), and the interior of these rectangles
are pairwise disjoint; and

(c) the line integrals for Riemann integrable real valued functions on γ can
be defined over γ.

Let us call such closed curves as Dirac closed curves.

Lemma 2.1. Let f : Ω − {p} → R1 be a continuous real valued function, where
Ω is a nonempty simply connected open subset of R2 and p ∈ Ω. Suppose that the
line integral

∫
∂R

f = c, a constant, for every positively oriented boundary ∂R of a

closed rectangular subset R in Ω, for which the sides are parallel to the axes and
for which p is in the interior of R. Then for every closed rectangular region R1 in
Ω, with positively oriented boundary ∂R1, for which the sides are parallel to the
axes, and for which p is not in R1, it is true that

∫
∂R1

f = 0.

Proof. Consider two rectangles R and R1 in Ω, for which the sides are parallel to
the axes, and such that R1∩R is a side of R1 as well as a side of R. Suppose p is in
the interior of R such that p is not in R1. If R2 = R∪R1 and ∂R2 is the positively

oriented boundary of R2, then
∫
∂R

f = c =

∫
∂R2

f =

∫
∂R

f +

∫
∂R1

f = c +

∫
∂R1

f . Thus∫
∂R1

f = 0. �
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Lemma 2.2. Let f, Ω, p and c be as in the previous lemma 2.1. Let γ be a Dirac
closed curve in Ω such that the bounded open region enclosed by γ contains p. Then
the value of the line integral

∫
γ

f is also c.

Proof. Apply the previous lemma 2.1 and the property (b) given in the definition
for Dirac closed curves, along with the continuity of f in Ω− {p}. �

The curves in the plane R2 are considered as 1-dimensional surfaces. One
may refer to the book [4] for the definition of (n − 1)-dimensional positively
oriented sufaces in the n-dimensional space Rn, for n ≥ 2. One can now define
(n − 1)-dimensional Dirac closed surfaces in Rn with an understanding that
closed surfaces have zero oriented boundaries. See the book [4] for the meaning
of zero oriented boundaries defined through integration.

3. DIRAC DELTA FUNCTIONS

Definition 3.1. Let n ≥ 2. Let p = (p1, p2, · · · , pn) ∈ Rn. Let c ∈ R1. Let cδn(p)
denote the collection of all functions f on Rn such that f is Riemann integrable over
(n−1)-dimensional Dirac closed surfaces and such that the surface integral

∫
S

f = c

for every (n − 1)-dimensional Dirac closed surface S for which p is in the bounded
open region determined by S; or equivalently (in view of the Lemma 2.2 for the case
Rn), for every (n− 1)-dimensional positively oriented closed rectangular surface S
of the form
n
∪
j=1
{(z1, z2, · · · , zj−1, xj, zj+1, · · · , zn) : ak ≤ zk ≤ bk ∀ k 6= j, and xj = aj or bj},

when ai < pi < bi, ∀ i = 1, 2, · · · , n. Let us write 1δn(p) as δn(p). Let the collection
δn(p) be called the n-dimensional improper Dirac delta function at p.

Let us consider cδn(p) as a “scalar multiple” of δn(p); a multiple of the scalar c.
For any open set U containing p in Rn and for any continuous real valued function
f on U, the Dirac integral for fcδn(p), or, for cδn(p)f , over U is denoted by

∫
U

fcδn(p)

and defined as the number cf(p). For the constant function f = 1,
∫
U

cδn(p) = c. If f

is a Riemann (Lebesgue) integrable function f on an open set U containing p in Rn,
let us define

∫
U

(f + cδn(p)) as the number c+
∫
U

f(x)dx, where
∫
U

f(x)dx is the usual

Riemann (Lebesgue) integral.
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Definition 3.2. For n = 1, let p ∈ R1 and c ∈ R1. Let cδ1(p) be the collection
of all real valued functions f on R1 such that whenever a < p < b, it is true
that f(b) − f(a) = c. The collection 1δ1(p) is denoted by δ1(p). δ1(p) is called the
one dimensional improper Dirac delta function. For any open set U containing p
in R1, and for any continuous real valued function f on U, the Dirac integral for
fcδ1(p), or, for cδ1(p)f over U is denoted by

∫
U

fcδ1(p) and defined as the number

cf(p). For the constant function f = 1,
∫
U

cδ1(p) = c. Similarly, if in addition f is a

Riemann (Lebesgue) integrable function, let us define
∫
U

(f + cδ1(p)) as the number

c+
∫
U

f(x)dx.

Define H1(p) : R1 → R1 by

H1(p)(x) =

0 if x < p

1 if x ≥ p
.

Then the Heaviside function H1(p) ∈ δ1(p) and cH1(p) ∈ cδ1(p), when (cH1(p))(x) =

c(H1(p)(x)), ∀x ∈ R1. Moreover, the function g : R1 → R1 defined by

g(x) =

e if x < p

e+ 1 if x ≥ p

is also in δ1(p), for any e ∈ R1. Define Hn(p) : Rn → R1 by

Hn(p)(x1, x2, · · · , xn) =

0 if xi < pi for some i

1 if xi ≥ pi for all i
,

when p = (p1, p2, · · · , pn). Then Hn(p) = H1(p)H1(p) · · ·H1(p) ∈ δn(p), when the
product has n factors.

For a specific region U =
n∏
i=1

(ai, bi) satisfying ai < pi < bi, and for a continuous

function f : U → R1, the Dirac integration
∫

(ai,bi)

fδ1(pi) =
bi∫
ai

f(x1, x2, · · · , xn)δ1(pi)

has the value f(x1, x2, · · · , xi−1, pi, xi+1, · · · , xn) for x1, x2, · · · , xi−1, xi+1, · · · , xn ∈
R1. Thus the iterated integral

bn∫
an

[

bn−1∫
an−1

[· · · [
b2∫

a2

[

b1∫
a1

f(x1, x2, · · · , xn)δ1(p1)dx1]δ1(p2)dx2] · · · ]δ1(pn−1)dxn−1]δ1(pn)dxn
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can be defined, and it is seen that it coincides with f(p1, p2, · · · , pn) =
∫
U

f δn(p).

For the case n = 1, the definition depends on the treatment of considering δ1(p)
as a “derivative” of H1(p) and based on “integration by parts” (see [2]). For the

general case δn(p) is considered as the “partial derivative
∂nHn(p)

∂x1 ∂x2 · · · ∂xn
”. What

is the required “integration by parts” for the general case? There are articles
which provide multidimensional integration by parts (for example, see [8, 9]).
The following obvious theorem 3.1 is sufficient for motivation in defining δn(p).

Theorem 3.1. Let f :
n∏
i=1

[ai, bi] → R1 and g :
n∏
i=1

[ai, bi] → R1 be continuous func-

tions for which
∂nf

∂x1 ∂x2 · · · ∂xn
and

∂ng

∂x1 ∂x2 · · · ∂xn
exist and these derivatives

are Riemann integrable on
n∏
i=1

[ai, bi]. Here ai < bi, ∀ i. Then

bn∫
an

bn−1∫
an−1

· · ·
b2∫

a2

b1∫
a1

g
∂nf

∂x1 ∂x2 · · · ∂xn
dx1dx2 · · · dxn−1dxn

=
∑

(−1)k(z1,z2,··· ,zn)f(z1, z2, · · · , zn)g(z1, z2, · · · , zn)

−
bn∫

an

bn−1∫
an−1

· · ·
b2∫

a2

b1∫
a1

f
∂ng

∂x1 ∂x2 · · · ∂xn
dx1dx2 · · · dxn−1dxn,

when the sum is taken over all (z1, z2, · · · , zn), when each zi is either ai or bi, and
when k(z1, z2, · · · , zn) is the number of zi which are equal to ai.

Corollary 3.1. For f,
∑

, and k(z1, z2, · · · , zn) given as in the Theorem 3.1, it is
true that

bn∫
an

bn−1∫
an−1

· · ·
b2∫

a2

b1∫
a1

∂nf

∂x1 ∂x2 · · · ∂xn
dx1dx2 · · · dxn−1dxn

=
∑

(−1)k(z1,z2,··· ,zn)f(z1, z2, · · · , zn).

Corollary 3.2. Let f be given as in the theorem 3.3. Let x = (x1, x2, · · · , xn) and
c = (c1, c2, · · · , cn) be such that xi 6= ci,∀ i. Let zi be xi or ci, for every i, and let
k(z1, z2, · · · , zn) denote the number of zi which are equal to ci. Then

lim
x→c

∑
(−1)k(z1,z2,··· ,zn)f(z1, z2, · · · , zn)

n∏
i=1

(xi − ci)
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exists, when the sum is taken over all the possible (z1, z2, · · · , zn), and this limit is

equal to
∂nf(c1, c2, · · · , cn)

∂x1 ∂x2 · · · ∂xn
, when

∂nf

∂x1 ∂x2 · · · ∂xn
is continuous at c.

4. CONCLUSIONS

The mathematicians may put additional conditions on the members of δn(p),
according to their mathematical problems. For example, it may be assumed
that all members of δn(p) are differentiable (see [4]) almost everywhere, after
excluding p. So there is a problem in fixing and characterizing members of δn(p).
However,the following simplified definition is sufficient to explain fundamental
problems in physics, because the integrals defined in the previous section helps
one to define integral transforms for the improper Dirac delta functions. Let
us call improper Dirac delta functions simply as Dirac delta functions, for the
following definition for physicists.

The n-dimensional Dirac delta function with mass at the origin can be defined
as the collection of all real valued mappings on Rn whose Riemann integral (so,
functions are integrable) value over any (n− 1)-dimensional positively oriented
rectangular closed surface having the origin inside the bounded region deter-
mined by the surface is one. The one dimensional Dirac delta function with
mass at the origin can be defined as the collection of all real valued functions f
on the real line R1 having the property f(b)− f(a) = 1 whenever a < 0 < b.
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