

Advances in Mathematics: Scientific Journal 9 (2020), no.3, 1281-1291

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.3.52

NOTE ON AN ADJACENCY MATRIX OF A GRAPH G

ROHIT M. PATNE $^{\rm 1}$ AND GAJANAN R. AVACHAR

ABSTRACT. Let G=(V(G),E(G)) be a finite undirected graph with no loops or multiple edges with a vertex set V(G) and an edge set E(G). In this paper, we have considered the statement of the lemma in [4]. We have given some new results on the largest eigenvalue of an adjacency matrix of a graph G.

1. Introduction

Let G=(V(G),E(G)) be a finite undirected graph with no loops or multiple edges with a vertex set $V(G)=\{v_1,\cdots,v_n\}$ and an edge set E(G) such that |E(G)|=m. We denote an edge which connects the vertex v_i and v_j by $e_{ij}=v_iv_j=(v_i,v_j)$. Let $A(G)=[a_{ij}]$ denote an adjacency matrix of a graph G. Let $\rho_1(G),\cdots,\rho_n(G)$ be the eigenvalues of A(G) such that $\rho_n(G)\leq\cdots\leq\rho_1(G)$. The spectral radius, $\rho(G)$ of a graph G corresponding to an adjacency matrix A(G) is the largest eigenvalues of A(G). Here $\rho(G)=\rho_1(G)$.

Let $L(G) = [a_{ij}]$ denote a Laplacian matrix of a graph G. Let $\lambda_1(G), \dots, \lambda_n(G)$ be the eigenvalues of L(G) such that $\lambda_n(G) \leq \dots \leq \lambda_1(G)$. The spectral radius, $\lambda_1(G)$ of a graph G corresponding to a Laplacian matrix L(G) is the largest eigenvalues of L(G).

If we compare the proof of Lemma 2.1 given in [4] with example, then we can observe that the proof of lemma 2.1 given in [4] need modification.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C62, 68R10.

Key words and phrases. Graph, Adjacency matrix, Spectra of graph, Largest eigenvalue of graph.

In this paper, we have checked the lemma 2.1 given in [4] by using example. We have given some results on an eigenvalues of A(G). For spectral radius, $\rho(G)$ of a graph G (see [1–8].)

2. Some results on largest eigenvalue of an adjacency matrix of a graph ${\cal G}$

In 1988, Hong Yuan shown that the spectral radius

$$\rho(G) \le \sqrt{2m - n + 1}$$

with equality if and only if G is isomorphic to $K_{1,n-1}$ or K_n (see [1]). From this results one can show that if G is a simple planar graph with $n \geq 3$ vertices and m edges then $\rho(G) \leq \sqrt{5n-11}$. If G is a connected graph with n vertices then $\sum\limits_{i=2}^{n} \rho_i^2(G) \geq n-1$.

We can also find the another upperbound of $\rho(G)$ given as follows:

Lemma 2.1. Let G = (V(G), E(G)) be a connected graph with n vertices and m edges. Let vertex set $V(G) = \{v_1, \dots, v_n\}$. Let d_i is the degree of vertex v_i . Let $\delta_1 = \min\{d_i : v_i \in V(G)\}$. Let $\delta_2 = \max\{d_i : v_i \in V(G)\}$. If $X = (x_1, \dots, x_n)^t$ be an eigenvector of A(G) corresponding to an eigenvalue $\rho(G)$ such that ||x|| = 1 Then

$$\rho(G) \le \sqrt{2m - (n-1)\sum_{i=1}^{n} x_{v_i}^2},$$

where $x_{v_i} = \min\{|x_j| : (v_i, v_j) \notin E(G)\}.$

Proof. Let G=(V(G),E(G)) be a connected graph with n vertices and m edges. Let vertex set $V(G)=\{v_1,\cdots,v_n\}$. Let d_i is the degree of vertex v_i . Let $\delta_1=\min\{d_i:v_i\in V(G)\}$. Let A(G) be an adjacency matrix of G. Let $A_i(G)$ denote i^{th} row of A(G) which is corresponding to a vertex v_i . Let $S_{v_i}(A(G))$ denotes i^{th} row sum of A(G). Therefore $S_{v_i}(A(G))=d_i$. Let $X=(x_1,\cdots,x_n)^t$ be an eigenvector of A(G) corresponding to an eigenvalue $\rho(G)$ such that ||x||=1 i.e

$$x_1^2 + \dots + x_n^2 = 1.$$

Therefore

$$(2.2) A(G)X = \rho(G)X$$

Here x_i denote an eigencomponent of X correspond to a vertex v_i . Let for the vertex v_i , $x_{v_i} = \min\{|x_j| : (v_i, v_j) \notin E(G)\}$.

Let $Y(v_i)$ denote the vector obtained from X by replacing x_j with 0 if $(v_i, v_j) \notin E(G)$. From i^{th} equation of (2.2), we have

$$A_i(G)Y(v_i) = A_i(G)X = \rho(G)X = \rho(G)x_i.$$

Hence by the Cauchy-Schwartz inequality

(2.3)
$$\rho^2(G)x_i^2 = |A_i(G)Y(v_i)|^2 \le |A_i(G)|^2||Y(v_i)|^2.$$

We know that $|A_i(G)|^2 = \sum_{i=1}^n a_{ij}^2 = d_i$.

We know that $x_1^2 + \cdots + x_n^2 = 1$. Therefore

$$\sum_{(v_i v_j) \in E(G)} x_j^2 + \sum_{(v_i v_j) \notin E(G)} x_j^2 = 1$$

$$\sum_{(v_i v_j) \in E(G)} x_j^2 = 1 - \sum_{(v_i v_j) \notin E(G)} x_j^2$$

$$|Y(v_i)|^2 = \sum_{(v_i v_j) \in E(G)} x_j^2 = 1 - \sum_{(v_i v_j) \notin E(G)} x_j^2.$$

From equation (2.3), we have

$$\rho^{2}(G)x_{i}^{2} \leq d_{i}(1 - \sum_{(v_{i}v_{j}) \notin E(G)} x_{j}^{2}).$$

Taking sum on both side over all vertices of a graph G, we have

$$\sum_{i=1}^{n} \rho^{2}(G)x_{i}^{2} \leq \sum_{i=1}^{n} \left(d_{i}\left(1 - \sum_{(v_{i}v_{j}) \notin E(G)} x_{j}^{2}\right)\right).$$

$$\rho^{2}(G)\left(\sum_{i=1}^{n} x_{i}^{2}\right) \leq 2m - \left(\sum_{i=1}^{n} d_{i} \sum_{(v_{i}v_{j}) \notin E(G)} x_{j}^{2}\right)\right).$$

(2.4)
$$\rho^{2}(G) \leq 2m - (\sum_{i=1}^{n} d_{i} \sum_{(v_{i}v_{j}) \notin E(G)} x_{j}^{2})).$$

1284

Let

$$\sum_{i=1}^{n} d_{i} \left(\sum_{(v_{i}v_{j})\notin E(G)} x_{j}^{2}\right) = \sum_{i=1}^{n} d_{i} \left(x_{i}^{2} + \sum_{(v_{i}v_{j})\notin E(G), i\neq j} x_{j}^{2}\right)$$

$$= \sum_{i=1}^{n} d_{i} x_{i}^{2} + \sum_{i=1}^{n} \left(d_{i} \sum_{(v_{i}v_{j})\notin E(G), i\neq j} x_{j}^{2}\right)$$

$$\geq \sum_{i=1}^{n} d_{i} x_{i}^{2} + \sum_{i=1}^{n} \left(\sum_{(v_{i}v_{j})\notin E(G), i\neq j} x_{j}^{2}\right)$$

$$\geq \sum_{i=1}^{n} d_{i} x_{i}^{2} + \sum_{i=1}^{n} \left(\sum_{(v_{i}v_{j})\notin E(G), i\neq j} x_{v_{i}}^{2}\right)$$

$$\geq \sum_{i=1}^{n} d_{i} x_{i}^{2} + \sum_{i=1}^{n} \left(\left(n - (d_{i} + 1)\right)x_{v_{i}}^{2}\right)$$

$$\geq \sum_{i=1}^{n} d_{i} x_{v_{i}}^{2} + \sum_{i=1}^{n} \left(\left(n - (d_{i} + 1)\right)x_{v_{i}}^{2}\right)$$

$$\geq \sum_{i=1}^{n} \left[d_{i} + \left(n - (d_{i} + 1)\right)\right]x_{v_{i}}^{2}$$

$$\geq (n - 1) \sum_{i=1}^{n} x_{v_{i}}^{2}.$$

Therefore

$$\sum_{i=1}^{n} d_i \left(\sum_{(v_i v_j) \notin E(G)} x_j^2 \right) \ge (n-1) \sum_{i=1}^{n} x_{v_i}^2,$$

(2.5)
$$-\sum_{i=1}^{n} d_i \left(\sum_{(v_i v_j) \notin E(G)} x_j^2 \right) \le -(n-1) \sum_{i=1}^{n} x_{v_i}^2.$$

Put (2.5) in (2.4), we get

$$\rho^2(G) \le 2m - (n-1) \sum_{i=1}^n x_{v_i}^2$$

$$\rho^2(G) \le 2m - (n-1) \sum_{i=1}^n x_{v_i}^2,$$

where $x_{v_i} = \min\{|x_j| : (v_i, v_j) \notin E(G)\}.$

Therefore,

$$\rho(G) \le \sqrt{2m - (n-1)\sum_{i=1}^{n} x_{v_i}^2}.$$

Remark 2.1. If $\sum_{i=1}^{n} x_{v_i}^2 = 1$, we get the equation (2.1), one can observe that

$$\rho(G) \le \sqrt{2m-n+1} \le \sqrt{2m-(n-1)\sum_{i=1}^{n} x_{v_i}^2}.$$

Lemma 2.2. Let G = (V(G), E(G)) be a connected graph with n vertices and m edges. Let vertex set $V(G) = \{v_1, \dots, v_n\}$. Let d_i is the degree of vertex v_i . Let $\delta_1 = \min\{d_i : v_i \in V(G)\}$. Let $\delta_2 = \max\{d_i : v_i \in V(G)\}$. Then

$$\rho(G) \le \sqrt{\delta_2 \sum_{i=1}^n \left(\sum_{(v_i v_j) \in E(G)} x_j^2\right)}.$$

Proof. Let G=(V(G),E(G)) be a connected simple graph with n vertices and m edges. Let vertex set $V(G)=\{v_1,\cdots,v_n\}$. Let d_i is the degree of vertex v_i . Let $\delta_1=\min\{d_i:v_i\in V(G)\}$. Let A(G) be an adjacency matrix of G. Let $A_i(G)$ denote i^{th} row of A(G) which is corresponding to a vertex v_i . Let $S_{v_i}(A(G))$ denotes i^{th} rowsum of A(G). Therefore $S_{v_i}(A(G))=d_i$. Let $X=(x_1,\cdots,x_n)^t$ be an eigenvector of A(G) corresponding to an eigenvalue $\rho(G)$ such that ||x||=1 i.e

$$x_1^2 + \dots + x_n^2 = 1 \, .$$

Therefore

$$A(G)X = \rho(G)X.$$

Here x_i denote an eigencomponent of X correspond to a vertex v_i . Let $Y(v_i)$ denote the vector obtained from X by replacing x_j with 0 if $(v_i, v_j) \notin E(G)$. From i^{th} equation of (2.6), we have

$$A_i(G)Y(v_i) = A_i(G)X = \rho(G)X = \rho(G)x_i.$$

Hence by the Cauchy-Schwartz inequality

(2.7)
$$\rho^2(G)x_i^2 = |A_i(G)Y(v_i)|^2 \le |A_i(G)|^2||Y(v_i)|^2.$$

We know that $|A_i(G)|^2 = \sum_{i=1}^n a_{ij}^2 = d_i$. We know that $x_1^2 + \cdots + x_n^2 = 1$. Therefore

$$\sum_{(v_i v_j) \in E(G)} x_j^2 + \sum_{(v_i v_j) \notin E(G)} x_j^2 = 1.$$

$$\sum_{(v_i v_j) \in E(G)} x_j^2 = 1 - \sum_{(v_i v_j) \notin E(G)} x_j^2.$$

$$|Y(v_i)|^2 = \sum_{(v_i v_j) \in E(G)} x_j^2 = 1 - \sum_{(v_i v_j) \notin E(G)} x_j^2.$$

From equation (2.7), we have

$$\rho^2(G)x_i^2 \le d_i(1 - \sum_{(v_i v_j) \notin E(G)} x_j^2).$$

Taking sum on both side over all vertices of a graph G, we have

$$\sum_{i=1}^{n} \rho^{2}(G)x_{i}^{2} \leq \sum_{i=1}^{n} (d_{i}(1 - \sum_{(v_{i}v_{j})\notin E(G)} x_{j}^{2})).$$

$$\rho^{2}(G)(\sum_{i=1}^{n} x_{i}^{2}) \leq 2m - (\sum_{i=1}^{n} d_{i} \sum_{(v_{i}v_{j})\notin E(G)} x_{j}^{2})).$$

$$\rho^{2}(G) \leq 2m - (\sum_{i=1}^{n} d_{i} \sum_{(v_{i}v_{j})\notin E(G)} x_{j}^{2})).$$

We know that

$$\sum_{i=1}^{n} (d_{i} \sum_{j=1}^{n} x_{j}^{2}) = \sum_{i=1}^{n} (d_{i} \sum_{(v_{i}v_{j}) \in E(G)} x_{j}^{2}) + \sum_{i=1}^{n} (d_{i} \sum_{(v_{i}v_{j}) \notin E(G)} x_{j}^{2}).$$

$$\sum_{i=1}^{n} (d_{i} \sum_{(v_{i}v_{j}) \notin E(G)} x_{j}^{2}) = \sum_{i=1}^{n} (d_{i} \sum_{j=1}^{n} x_{j}^{2}) - \sum_{i=1}^{n} (d_{i} \sum_{(v_{i}v_{j}) \in E(G)} x_{j}^{2}).$$

$$\geq \sum_{i=1}^{n} d_{i} - \sum_{i=1}^{n} (\delta_{2} \sum_{(v_{i}v_{j}) \in E(G)} x_{j}^{2})$$

$$\geq 2m - \sum_{i=1}^{n} (\delta_{2} \sum_{(v_{i}v_{j}) \in E(G)} x_{j}^{2})$$

$$(2.8) \qquad -\sum_{i=1}^{n} (d_{i} \sum_{(v_{i}v_{j}) \notin E(G)} x_{j}^{2}) \leq -(2m - \sum_{i=1}^{n} (\delta_{2} \sum_{(v_{i}v_{j}) \in E(G)} x_{j}^{2}))$$

From (2.4) and (2.8), we have

$$\rho^{2}(G) \leq 2m - (2m - \sum_{i=1}^{n} (\delta_{2} \sum_{(v_{i}v_{j}) \in E(G)} x_{j}^{2}))$$

$$\leq \delta_{2} \sum_{i=1}^{n} (\sum_{(v_{i}v_{j}) \in E(G)} x_{j}^{2}).$$

Hence

$$\rho(G) \le \sqrt{\delta_2(\sum_{i=1}^n (\sum_{(v_i v_j) \in E(G)} x_j^2))}.$$

In 1997, Hong Yuan shown that if G be a simple graph with n vertices and $X=(x_1,\cdots,x_n)^t$ be an eigenvector corresponding to an eigenvalue $\rho(G)$ such that ||x||=1 then $\rho(G)\leq \sum_{i=1}^n d_ix_i^2$, see [2].

3. Note on an adjacency matrix

In this section, we have considered the statement of the lemma 2.1 and its proof which is given in [4] for completion of this article.

Lemma 3.1. [4] Let G be a connected graph with vertex set $V(G) = \{v_1, \dots, v_n\}$ and d_i be the degree of vertex v_i , $i = 1, \dots, n$. Then

(3.1)
$$\rho(G) \le \max_{(v_i, v_j) \in E(G)} \sqrt{d_i d_j},$$

where E(G) is the edge set of G. Moreover, the equality in (3.1) holds if and only if G is a regular or bipartite semiregular graph.

Remark 3.1. In [4], it is given in the proof that X be a Perron vector of G, where x_i corresponds to the vertex v_i . Let $x_s = \max_{v_i \in V(G)} x_i$ and $x_t = \max_{(v_i, v_s) \in E(G)} x_i$. From $A(G)X = \rho(G)X$, we have

(3.2)
$$\rho(G)x_s = \sum_{v_i \in N_G(v_s)} x_i \le \sum_{v_i \in N_G(v_s)} x_t = d_s x_t,$$

(3.3)
$$\rho(G)x_t = \sum_{v_i \in N_G(v_t)} x_i \le \sum_{v_i \in N_G(v_t)} x_t = d_t x_s,$$

where $N_G(S)$ denotes the neighbors in G of S. Hence

$$\rho(G)^2 x_s x_t \leq d_s d_t x_s x_t$$
$$\rho(G) \leq \sqrt{d_s d_t}.$$

3.1. **Verification proof by an example.** In this subsection, we claim that equation (3.2) and (3.3) not correct step in general. The proof of this statement is given as follows:

Proof. Suppose if possible equation (3.2) is correct.

Let G = (V(G), E(G)) be a graph with $V(G) = \{v_1, v_2, \dots, v_{10}\}$ and $E(G) = \{(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_1, v_5), (v_5, v_6), (v_7, v_6), (v_7, v_8), (v_7, v_9), (v_7, v_{10})\}$. The adjacency matrix A(G) of G is given by

$$A(G) = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

The largest eigenvalue of the matrix A(G) is $\rho(G)=2.1987$. An eigenvector X corresponding to an eigenvalue $\rho(G)$ is given by

$$X = \begin{bmatrix} -0.0000 & -0.2988 & -0.2988 & -0.2988 & -0.5481 & -0.0000 & -0.6570 & 0 & 0 \end{bmatrix}.$$

Let $x_s = \max_{v_i \in V(G)} x_i = 0$ (which is corresponding to vertices v_8 , v_9 , v_{10}). In G, we have $(v_7, v_8), (v_7, v_9), (v_7, v_{10}) \in E(G)$. Hence $x_t = \max_{(v_i, v_s) \in E(G)} x_i = -0.6570$ (which is corresponding to a vertex v_7). From equation (3.2), we have

(3.4)
$$\rho(G)x_s = \sum_{v_i \in N_G(v_s)} x_i \le \sum_{v_i \in N_G(v_s)} x_t = d_s x_t.$$

Put the value of x_s , x_t , $\rho(G)$, d_s in equation (3.4), we get

$$(2.1987)0 = \sum_{v_i \in N_G(v_s)} x_i \le \sum_{v_i \in N_G(v_s)} x_t = x_7 = d_s x_t = (1)(-0.6570).$$

Therefore $0 \le -0.6570$, which is not possible. Hence the equation (3.2), given in proof of lemma 2.1 in [4] do not hold in general.

3.2. New result.

Lemma 3.2. [3] Let G be a connected graph with vertex set $V(G) = \{v_1, \dots, v_n\}$ such that |V(G)| = n. Let A(G) be an adjacency matrix of G.Let P be any polynomial and $S_{v_i}(P(A(G)))$ be a rowsums of P(A(G)) corresponding to the vertex v_i . Then

$$\min S_{v_i}(P(A(G))) \le P(\rho(G)) \le \max S_{v_i}(P(A(G))).$$

Moreover, equality holds if and only if the rowsums of P(A(G)) are all equal.

Lemma 3.3. Let G be a connected graph with vertex set $V(G) = \{v_1, \dots, v_n\}$ and d_i be the degree of vertex v_i , $i = 1, \dots, n$. Let $\rho(G)$ be a largest eigenvalue of an adjacency matrix A(G). Let $x = (x_1, \dots, x_n)^t$ be an eigenvector corresponding to an eigenvalue $\rho(G)$. Then

$$\rho(G) \le \max_{(v_i, v_j) \in E(G)} \sqrt{d_i d_j} \,,$$

where E(G) is the edge set of G.

Proof. Let G be a connected graph with vertex set $V(G) = \{v_1, \dots, v_n\}$ and d_i be the degree of vertex v_i , $i = 1, \dots, n$. Let $\rho(G)$ be a largest eigenvalue of an adjacency matrix A(G). Let $x = (x_1, \dots, x_n)^t$ be an eigenvector corresponding to an eigenvalue $\rho(G)$. Let $N_i = \{v_\alpha : (v_i, v_\alpha) \in E(G)\}$.

Let $S_{v_i}(A^k(G))$ is the number of walks of length k in G which begin at v_i . Therefore $S_{v_i}(A(G))$ is d_i .

$$S_{v_i}(A^2(G)) = d_i + \sum_{i=1}^{n} |N_i \cap N_j|$$

 $S_{v_i}(A^2(G)) = \sum_{(v_i, v_j) \in E(G)} d_j.$

Let $d_k = \max\{d_j : (v_i, v_j) \in E(G)\}$. Therefore we have

$$S_{v_i}(A^2(G)) = \sum_{(v_i, v_j) \in E(G)} d_j \le \sum_{(v_i, v_j) \in E(G)} d_k = d_i d_k.$$

By using lemma 3.2, we have

$$\rho^{2}(G) \leq \max_{v_{i} \in V(G)} S_{v_{i}}(A^{2}(G))$$

$$\rho^{2}(G) \leq \max\{d_{i}d_{j} : (v_{i}, v_{j}) \in E(G)\}$$

$$\rho(G) \leq \max_{(v_{i}, v_{j}) \in E(G)} \sqrt{d_{i}d_{j}}.$$

Lemma 3.4. Let G be a connected graph with vertex set $V(G) = \{v_1, \dots, v_n\}$ and d_i be the degree of vertex v_i , $i = 1, \dots, n$. Let $\rho(G)$ be a largest eigenvalue of an adjacency matrix A(G). Let $x = (x_1, \dots, x_n)^t$ be an eigenvector corresponding to an eigenvalue $\rho(G)$. Let for a vertex $v_i \in V(G)$, $d_k = \max\{d_j : (v_i, v_j) \in E(G)\}$ and $d_\alpha = \max\{d_j : (v_i, v_j) \in E(G)\}$ be second maximum degree among all degree of vertices adjacent to v_i , hence $d_\alpha \leq d_k$

Then

$$\rho(G) \le \max_{(v_i, v_\alpha) \in E(G), (v_i, v_k) \in E(G)} \sqrt{(d_i - 1)d_\alpha + d_k},$$

where E(G) is the edge set of G.

Proof. Let G be a connected graph with vertex set $V(G) = \{v_1, \dots, v_n\}$ and d_i be the degree of vertex v_i , $i = 1, \dots, n$. Let $\rho(G)$ be a largest eigenvalue of an adjacency matrix A(G). Let $x = (x_1, \dots, x_n)^t$ be an eigenvector corresponding to an eigenvalue $\rho(G)$. Let $N_i = \{v_\alpha : (v_i, v_\alpha) \in E(G)\}$.

Let $S_{v_i}(A^k(G))$ is the number of walks of length k in G which begin at v_i . Therefore $S_{v_i}(A(G))$ is d_i .

$$S_{v_i}(A^2(G)) = d_i + \sum_{i=1}^{n} |N_i \cap N_j|.$$

 $S_{v_i}(A^2(G)) = \sum_{(v_i,v_j) \in E(G)} d_j.$

Let $d_k = \max\{d_i : (v_i, v_j) \in E(G)\}$. Therefore we have

$$S_{v_i}(A^2(G)) = \sum_{(v_i, v_j) \in E(G)} d_j = (\sum_{(v_i, v_j) \in E(G)} d_j) + d_k$$

$$\leq (\sum_{(v_i, v_j) \in E(G)} d_\alpha) + d_k = (d_i - 1)d_\alpha + d_k.$$

By using lemma 3.2, we have

$$\rho^{2}(G) \leq \max_{v_{i} \in V(G)} S_{v_{i}}(A^{2}(G))$$

$$\rho^{2}(G) \leq \max\{(d_{i} - 1)d_{\alpha} + d_{k} : (v_{i}, v_{j}) \in E(G)\}$$

$$\rho(G) \leq \max_{(v_{i}, v_{\alpha}) \in E(G), (v_{i}, v_{k}) \in E(G)} \sqrt{(d_{i} - 1)d_{\alpha} + d_{k}}.$$

REFERENCES

- [1] H. YUAN: A bound on the spectral radius of graphs, Linear Algebra and its applications, **108** (1988), 135–139.
- [2] H. Yuan: Upper bounds of the spectral radius of graphs in terms of genus, Journal of combinatorial theory, series B, 74 (1988), 153–159.
- [3] H. YUAN, S. JIN-LONG, K. FANG: A sharp upper bound of the spectral radius of graphs, Journal of combinatorial theory, series B, **81** (2001), 177–183.
- [4] A. BERMAN, Z. XIAO-DONG: On the spectral radius of graphs with cut vertices, Journal of combinatorial Theory, series B, **83** (2001), 233–240.
- [5] D. CVETKOVIC, M. DOOB, H. SACHS: Spectra of Graphs-Theory and Applications, 2nd ed, Academic Press, New York, 1982.
- [6] D. CVETKOVIC, P. ROWLINSON: *The largest eigenvalue of a graph: A survey*, Linear Multilinear Algebra, **28** (1990), 3–33.
- [7] F. HARARY: The Determinant of the Adjacency Matrix of a Graph, SIAM Review, 4 (1962), 202–210.
- [8] F. HARARY: Graph theory, Addison-Wesley Reading, Massachusetts, 1996.

DEPARTMENT OF MATHEMATICS
SSES AMRAVATI'S SCIENCE COLLEGE,
CONGRESS NAGAR, NAGPUR, INDIA-440012
E-mail address: iitg2010rohit@gmail.com

DEPARTMENT OF MATHEMATICS
SSES AMRAVATI'S SCIENCE COLLEGE
CONGRESS NAGAR, NAGPUR, INDIA-440012
E-mail address: gravachar@gmail.com