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NOTE ON AN ADJACENCY MATRIX OF A GRAPH G

ROHIT M. PATNE 1 AND GAJANAN R. AVACHAR

ABSTRACT. Let G = (V (G), E(G)) be a finite undirected graph with no loops
or multiple edges with a vertex set V (G) and an edge set E(G). In this paper,
we have considered the statement of the lemma in [4]. We have given some
new results on the largest eigenvalue of an adjacency matrix of a graph G.

1. INTRODUCTION

Let G = (V (G), E(G)) be a finite undirected graph with no loops or multiple
edges with a vertex set V (G) = {v1, · · · , vn} and an edge set E(G) such that
|E(G)| = m. We denote an edge which connects the vertex vi and vj by eij =

vivj = (vi, vj). Let A(G) = [aij] denote an adjacency matrix of a graph G. Let
ρ1(G), · · · , ρn(G) be the eigenvalues of A(G) such that ρn(G) ≤ · · · ≤ ρ1(G). The
spectral radius, ρ(G) of a graph G corresponding to an adjacency matrix A(G)
is the largest eigenvalues of A(G). Here ρ(G) = ρ1(G).

Let L(G) = [aij] denote a Laplacian matrix of a graph G. Let λ1(G), · · · , λn(G)
be the eigenvalues of L(G) such that λn(G) ≤ · · · ≤ λ1(G). The spectral radius,
λ1(G) of a graph G corresponding to a Laplacian matrix L(G) is the largest
eigenvalues of L(G).

If we compare the proof of Lemma 2.1 given in [4] with example, then we can
observe that the proof of lemma 2.1 given in [4] need modification.
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In this paper, we have checked the lemma 2.1 given in [4] by using example.
We have given some results on an eigenvalues of A(G). For spectral radius, ρ(G)
of a graph G (see [1–8].)

2. SOME RESULTS ON LARGEST EIGENVALUE OF AN ADJACENCY MATRIX OF A

GRAPH G

In 1988, Hong Yuan shown that the spectral radius

(2.1) ρ(G) ≤
√
2m− n+ 1

with equality if and only if G is isomorphic to K1,n−1 or Kn ( see [1]). From this
results one can show that if G is a simple planar graph with n ≥ 3 vertices and
m edges then ρ(G) ≤

√
5n− 11. If G is a connected graph with n vertices then

n∑
i=2

ρ2i (G) ≥ n− 1.

We can also find the another upperbound of ρ(G) given as follows:

Lemma 2.1. Let G = (V (G), E(G)) be a connected graph with n vertices and m
edges. Let vertex set V (G) = {v1, · · · , vn} . Let di is the degree of vertex vi. Let
δ1 = min{di : vi ∈ V (G)}. Let δ2 = max{di : vi ∈ V (G)}. If X = (x1, · · · , xn)t

be an eigenvector of A(G) corresponding to an eigenvalue ρ(G) such that ||x|| = 1

Then

ρ(G) ≤

√√√√2m− (n− 1)
n∑
i=1

x2vi ,

where xvi = min{|xj| : (vi, vj) /∈ E(G)}.

Proof. Let G = (V (G), E(G)) be a connected graph with n vertices and m edges.
Let vertex set V (G) = {v1, · · · , vn} . Let di is the degree of vertex vi. Let δ1 =

min{di : vi ∈ V (G)}. Let A(G) be an adjacency matrix of G. Let Ai(G) denote
ith row of A(G) which is corresponding to a vertex vi. Let Svi(A(G)) denotes
ith row sum of A(G). Therefore Svi(A(G)) = di. Let X = (x1, · · · , xn)t be an
eigenvector of A(G) corresponding to an eigenvalue ρ(G) such that ||x|| = 1 i.e

x21 + · · ·+ x2n = 1 .

Therefore

(2.2) A(G)X = ρ(G)X
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Here xi denote an eigencomponent of X correspond to a vertex vi.
Let for the vertex vi, xvi = min{|xj| : (vi, vj) /∈ E(G)}.
Let Y (vi) denote the vector obtained from X by replacing xj with 0 if (vi, vj) /∈
E(G). From ith equation of (2.2), we have

Ai(G)Y (vi) = Ai(G)X = ρ(G)X = ρ(G)xi .

Hence by the Cauchy-Schwartz inequality

(2.3) ρ2(G)x2i = |Ai(G)Y (vi)|2 ≤ |Ai(G)|2||Y (vi)|2 .

We know that |Ai(G)|2 =
n∑
j=1

a2ij = di.

We know that x21 + · · ·+ x2n = 1.Therefore∑
(vivj)∈E(G)

x2j +
∑

(vivj)/∈E(G)

x2j = 1

∑
(vivj)∈E(G)

x2j = 1−
∑

(vivj)/∈E(G)

x2j

|Y (vi)|2 =
∑

(vivj)∈E(G)

x2j = 1−
∑

(vivj)/∈E(G)

x2j .

From equation (2.3), we have

ρ2(G)x2i ≤ di(1−
∑

(vivj)/∈E(G)

x2j).

Taking sum on both side over all vertices of a graph G, we have

n∑
i=1

ρ2(G)x2i ≤
n∑
i=1

(di(1−
∑

(vivj)/∈E(G)

x2j)).

ρ2(G)(
n∑
i=1

x2i ) ≤ 2m− (
n∑
i=1

di
∑

(vivj)/∈E(G)

x2j)).

(2.4) ρ2(G) ≤ 2m− (
n∑
i=1

di
∑

(vivj)/∈E(G)

x2j)).
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Let
n∑
i=1

di(
∑

(vivj)/∈E(G)

x2j) =
n∑
i=1

di(x
2
i +

∑
(vivj)/∈E(G),i 6=j

x2j)

=
n∑
i=1

dix
2
i +

n∑
i=1

(di
∑

(vivj)/∈E(G),i 6=j

x2j)

≥
n∑
i=1

dix
2
i +

n∑
i=1

(
∑

(vivj)/∈E(G),i 6=j

x2j)

≥
n∑
i=1

dix
2
i +

n∑
i=1

(
∑

(vivj)/∈E(G),i 6=j

x2vi)

≥
n∑
i=1

dix
2
i +

n∑
i=1

((n− (di + 1))x2vi)

≥
n∑
i=1

dix
2
vi
+

n∑
i=1

((n− (di + 1))x2vi)

≥
n∑
i=1

[di + (n− (di + 1))]x2vi

≥ (n− 1)
n∑
i=1

x2vi .

Therefore
n∑
i=1

di(
∑

(vivj)/∈E(G)

x2j) ≥ (n− 1)
n∑
i=1

x2vi ,

(2.5) −
n∑
i=1

di(
∑

(vivj)/∈E(G)

x2j) ≤ −(n− 1)
n∑
i=1

x2vi .

Put (2.5) in (2.4), we get

ρ2(G) ≤ 2m− (n− 1)
n∑
i=1

x2vi ,

ρ2(G) ≤ 2m− (n− 1)
n∑
i=1

x2vi ,

where xvi = min{|xj| : (vi, vj) /∈ E(G)}.
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Therefore,

ρ(G) ≤

√√√√2m− (n− 1)
n∑
i=1

x2vi .

�

Remark 2.1. If
n∑
i=1

x2vi = 1, we get the equation (2.1), one can observe that

ρ(G) ≤
√
2m− n+ 1 ≤

√√√√2m− (n− 1)
n∑
i=1

x2vi .

Lemma 2.2. Let G = (V (G), E(G)) be a connected graph with n vertices and m
edges. Let vertex set V (G) = {v1, · · · , vn} . Let di is the degree of vertex vi. Let
δ1 = min{di : vi ∈ V (G)}. Let δ2 = max{di : vi ∈ V (G)}. Then

ρ(G) ≤

√√√√δ2

n∑
i=1

(
∑

(vivj)∈E(G)

x2j) .

Proof. Let G = (V (G), E(G)) be a connected simple graph with n vertices and
m edges. Let vertex set V (G) = {v1, · · · , vn} . Let di is the degree of vertex vi.
Let δ1 = min{di : vi ∈ V (G)}. Let A(G) be an adjacency matrix of G. Let Ai(G)
denote ith row of A(G) which is corresponding to a vertex vi. Let Svi(A(G))
denotes ith rowsum of A(G). Therefore Svi(A(G)) = di. Let X = (x1, · · · , xn)t be
an eigenvector of A(G) corresponding to an eigenvalue ρ(G) such that ||x|| = 1

i.e

x21 + · · ·+ x2n = 1 .

Therefore

(2.6) A(G)X = ρ(G)X .

Here xi denote an eigencomponent of X correspond to a vertex vi. Let Y (vi)

denote the vector obtained from X by replacing xj with 0 if (vi, vj) /∈ E(G).
From ith equation of (2.6), we have

Ai(G)Y (vi) = Ai(G)X = ρ(G)X = ρ(G)xi .

Hence by the Cauchy-Schwartz inequality

(2.7) ρ2(G)x2i = |Ai(G)Y (vi)|2 ≤ |Ai(G)|2||Y (vi)|2 .
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We know that |Ai(G)|2 =
n∑
j=1

a2ij = di. We know that x21 + · · ·+ x2n = 1. Therefore∑
(vivj)∈E(G)

x2j +
∑

(vivj)/∈E(G)

x2j = 1.

∑
(vivj)∈E(G)

x2j = 1−
∑

(vivj)/∈E(G)

x2j .

|Y (vi)|2 =
∑

(vivj)∈E(G)

x2j = 1−
∑

(vivj)/∈E(G)

x2j .

From equation (2.7), we have

ρ2(G)x2i ≤ di(1−
∑

(vivj)/∈E(G)

x2j).

Taking sum on both side over all vertices of a graph G, we have
n∑
i=1

ρ2(G)x2i ≤
n∑
i=1

(di(1−
∑

(vivj)/∈E(G)

x2j)).

ρ2(G)(
n∑
i=1

x2i ) ≤ 2m− (
n∑
i=1

di
∑

(vivj)/∈E(G)

x2j)).

ρ2(G) ≤ 2m− (
n∑
i=1

di
∑

(vivj)/∈E(G)

x2j)).

We know that
n∑
i=1

(di

n∑
j=1

x2j) =
n∑
i=1

(di
∑

(vivj)∈E(G)

x2j) +
n∑
i=1

(di
∑

(vivj)/∈E(G)

x2j).

n∑
i=1

(di
∑

(vivj)/∈E(G)

x2j) =
n∑
i=1

(di

n∑
j=1

x2j)−
n∑
i=1

(di
∑

(vivj)∈E(G)

x2j).

≥
n∑
i=1

di −
n∑
i=1

(δ2
∑

(vivj)∈E(G)

x2j)

≥ 2m−
n∑
i=1

(δ2
∑

(vivj)∈E(G)

x2j)

(2.8) −
n∑
i=1

(di
∑

(vivj)/∈E(G)

x2j) ≤ −(2m−
n∑
i=1

(δ2
∑

(vivj)∈E(G)

x2j))
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From (2.4) and (2.8), we have

ρ2(G) ≤ 2m− (2m−
n∑
i=1

(δ2
∑

(vivj)∈E(G)

x2j))

≤ δ2

n∑
i=1

(
∑

(vivj)∈E(G)

x2j) .

Hence

ρ(G) ≤

√√√√δ2(
n∑
i=1

(
∑

(vivj)∈E(G)

x2j)) .

�

In 1997, Hong Yuan shown that if G be a simple graph with n vertices and
X = (x1, · · · , xn)t be an eigenvector corresponding to an eigenvalue ρ(G) such

that ||x|| = 1 then ρ(G) ≤
n∑
i=1

dix
2
i , see [2].

3. NOTE ON AN ADJACENCY MATRIX

In this section, we have considered the statement of the lemma 2.1 and its
proof which is given in [4] for completion of this article.

Lemma 3.1. [4] Let G be a connected graph with vertex set V (G) = {v1, · · · , vn}
and di be the degree of vertex vi, i = 1, · · · , n. Then

(3.1) ρ(G) ≤ max
(vi,vj)∈E(G)

√
didj ,

where E(G) is the edge set of G. Moreover, the equality in (3.1) holds if and only
if G is a regular or bipartite semiregular graph.

Remark 3.1. In [4], it is given in the proof that X be a Perron vector of G, where
xi corresponds to the vertex vi. Let xs = max

vi∈V (G)
xi and xt = max

(vi,vs)∈E(G)
xi. From

A(G)X = ρ(G)X, we have

(3.2) ρ(G)xs =
∑

vi∈NG(vs)

xi ≤
∑

vi∈NG(vs)

xt = dsxt ,

(3.3) ρ(G)xt =
∑

vi∈NG(vt)

xi ≤
∑

vi∈NG(vt)

xt = dtxs ,
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where NG(S) denotes the neighbors in G of S. Hence

ρ(G)2xsxt ≤ dsdtxsxt

ρ(G) ≤
√
dsdt .

3.1. Verification proof by an example. In this subsection, we claim that equa-
tion (3.2) and (3.3) not correct step in general. The proof of this statement is
given as follows:

Proof. Suppose if possible equation (3.2) is correct.
Let G = (V (G), E(G)) be a graph with V (G) = {v1, v2, · · · , v10} and
E(G) = {(v1, v2), (v1, v3), (v1, v4), (v1, v5), (v5, v6), (v7, v6), (v7, v8), (v7, v9), (v7, v10)}.
The adjacency matrix A(G) of G is given by

A(G) =



0 1 1 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0


The largest eigenvalue of the matrix A(G) is ρ(G) = 2.1987. An eigenvector X
corresponding to an eigenvalue ρ(G) is given by

X =
[
−0.0000 −0.2988 −0.2988 −0.2988 −0.5481 −0.0000 −0.6570 0 0 0

]
.

Let xs = max
vi∈V (G)

xi = 0 ( which is corresponding to vertices v8, v9,v10). In G,

we have (v7, v8), (v7, v9), (v7, v10) ∈ E(G). Hence xt = max
(vi,vs)∈E(G)

xi = −0.6570

(which is corresponding to a vertex v7). From equation (3.2), we have

(3.4) ρ(G)xs =
∑

vi∈NG(vs)

xi ≤
∑

vi∈NG(vs)

xt = dsxt .

Put the value of xs, xt, ρ(G), ds in equation (3.4), we get

(2.1987)0 =
∑

vi∈NG(vs)

xi ≤
∑

vi∈NG(vs)

xt = x7 = dsxt = (1)(−0.6570) .
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Therefore 0 ≤ −0.6570, which is not possible. Hence the equation (3.2), given
in proof of lemma 2.1 in [4] do not hold in general. �

3.2. New result.

Lemma 3.2. [3] Let G be a connected graph with vertex set V (G) = {v1, · · · , vn}
such that |V (G)| = n. Let A(G) be an adjacency matrix of G.Let P be any polyno-
mial and Svi(P (A(G))) be a rowsums of P (A(G)) corresponding to the vertex vi.
Then

minSvi(P (A(G))) ≤ P (ρ(G)) ≤ maxSvi(P (A(G))) .

Moreover, equality holds if and only if the rowsums of P (A(G)) are all equal.

Lemma 3.3. Let G be a connected graph with vertex set V (G) = {v1, · · · , vn} and
di be the degree of vertex vi, i = 1, · · · , n. Let ρ(G) be a largest eigenvalue of an
adjacency matrix A(G). Let x = (x1, · · · , xn)t be an eigenvector corresponding to
an eigenvalue ρ(G). Then

ρ(G) ≤ max
(vi,vj)∈E(G)

√
didj ,

where E(G) is the edge set of G.

Proof. Let G be a connected graph with vertex set V (G) = {v1, · · · , vn} and di
be the degree of vertex vi, i = 1, · · · , n. Let ρ(G) be a largest eigenvalue of an
adjacency matrix A(G). Let x = (x1, · · · , xn)t be an eigenvector corresponding
to an eigenvalue ρ(G). Let Ni = {vα : (vi, vα) ∈ E(G)}.

Let Svi(A
k(G)) is the number of walks of length k in G which begin at vi.

Therefore Svi(A(G)) is di.

Svi(A
2(G)) = di +

∑
|Ni ∩Nj|

Svi(A
2(G)) =

∑
(vi,vj)∈E(G)

dj .

Let dk = max{dj : (vi, vj) ∈ E(G)}. Therefore we have

Svi(A
2(G)) =

∑
(vi,vj)∈E(G)

dj ≤
∑

(vi,vj)∈E(G)

dk = didk .
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By using lemma 3.2, we have

ρ2(G) ≤ max
vi∈V (G)

Svi(A
2(G))

ρ2(G) ≤ max{didj : (vi, vj) ∈ E(G)}

ρ(G) ≤ max
(vi,vj)∈E(G)

√
didj .

�

Lemma 3.4. Let G be a connected graph with vertex set V (G) = {v1, · · · , vn} and
di be the degree of vertex vi, i = 1, · · · , n. Let ρ(G) be a largest eigenvalue of an
adjacency matrix A(G). Let x = (x1, · · · , xn)t be an eigenvector corresponding to
an eigenvalue ρ(G). Let for a vertex vi ∈ V (G), dk = max{dj : (vi, vj) ∈ E(G)}
and dα = max{dj : (vi, vj) ∈ E(G)} be second maximum degree among all degree
of vertices adjacent to vi, hence dα ≤ dk

Then

ρ(G) ≤ max
(vi,vα)∈E(G),(vi,vk)∈E(G)

√
(di − 1)dα + dk ,

where E(G) is the edge set of G.

Proof. Let G be a connected graph with vertex set V (G) = {v1, · · · , vn} and di
be the degree of vertex vi, i = 1, · · · , n. Let ρ(G) be a largest eigenvalue of an
adjacency matrix A(G). Let x = (x1, · · · , xn)t be an eigenvector corresponding
to an eigenvalue ρ(G). Let Ni = {vα : (vi, vα) ∈ E(G)}.

Let Svi(A
k(G)) is the number of walks of length k in G which begin at vi.

Therefore Svi(A(G)) is di.

Svi(A
2(G)) = di +

∑
|Ni ∩Nj|.

Svi(A
2(G)) =

∑
(vi,vj)∈E(G)

dj .

Let dk = max{dj : (vi, vj) ∈ E(G)}. Therefore we have

Svi(A
2(G)) =

∑
(vi,vj)∈E(G)

dj = (
∑

(vi,vj)∈E(G)

dj) + dk

≤ (
∑

(vi,vj)∈E(G)

dα) + dk = (di − 1)dα + dk .
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By using lemma 3.2, we have

ρ2(G) ≤ max
vi∈V (G)

Svi(A
2(G))

ρ2(G) ≤ max{(di − 1)dα + dk : (vi, vj) ∈ E(G)}

ρ(G) ≤ max
(vi,vα)∈E(G),(vi,vk)∈E(G)

√
(di − 1)dα + dk .

�
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