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NOTE ON AN ADJACENCY MATRIX OF A GRAPH ¢
ROHIT M. PATNE ! AND GAJANAN R. AVACHAR

ABSTRACT. Let G = (V(G), E(G)) be a finite undirected graph with no loops
or multiple edges with a vertex set V(G) and an edge set F(G). In this paper,
we have considered the statement of the lemma in [4]. We have given some
new results on the largest eigenvalue of an adjacency matrix of a graph G.

1. INTRODUCTION

Let G = (V(G), E(G)) be a finite undirected graph with no loops or multiple
edges with a vertex set V(G) = {v,---,v,} and an edge set F(G) such that
|E(G)| = m. We denote an edge which connects the vertex v; and v; by e;; =
vv; = (v;,v;). Let A(G) = [a;;] denote an adjacency matrix of a graph G. Let
p1(G), -+, pu(G) be the eigenvalues of A(G) such that p,,(G) < --- < py(G). The
spectral radius, p(G) of a graph G corresponding to an adjacency matrix A(G)
is the largest eigenvalues of A(G). Here p(G) = p1(G).

Let L(G) = [a;;] denote a Laplacian matrix of a graph G. Let A\{(G),--- , A, (G)
be the eigenvalues of L(G) such that \,(G) < --- < \{(G). The spectral radius,
A (G) of a graph G corresponding to a Laplacian matrix L(G) is the largest
eigenvalues of L(G).

If we compare the proof of Lemma 2.1 given in [4] with example, then we can
observe that the proof of lemma 2.1 given in [4] need modification.
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In this paper, we have checked the lemma 2.1 given in [4] by using example.
We have given some results on an eigenvalues of A(G). For spectral radius, p(G)
of a graph G (see [1-8].)

2. SOME RESULTS ON LARGEST EIGENVALUE OF AN ADJACENCY MATRIX OF A
GRAPH (G

In 1988, Hong Yuan shown that the spectral radius
(2.1) p(G) <V2m—n+1

with equality if and only if G is isomorphic to K ,,_; or K,, ( see [1]). From this
results one can show that if G is a simple planar graph with n > 3 vertices and
m edges then p(G) < v/bn — 11. If G is a connected graph with n vertices then

sz( )>n—1

We can also find the another upperbound of p(G) given as follows:

Lemma 2.1. Let G = (V(G), E(G)) be a connected graph with n vertices and m
edges. Let vertex set V(G) = {vy,--- ,v,} . Let d; is the degree of vertex v;. Let
01 = min{d; : v; € V(G)}. Let o = max{d; : v; € V(G)}. If X = (x1,--- ,x,)"
be an eigenvector of A(G) corresponding to an eigenvalue p(G) such that ||z|| =1
Then

p(G)<J (n—1 va,

where z,, = min{|z;| : (v;,v;) ¢ E(G)}.

Proof Let G = (V(G), E(G)) be a connected graph with n vertices and m edges.
Let vertex set V(G) = {vy, -+ ,v,} . Let d; is the degree of vertex v;. Let §; =
min{d; : v; € V(G)}. Let A(G) be an adjacency matrix of G. Let A;(G) denote
t row of A(G) which is corresponding to a vertex v;. Let S,,(A(G)) denotes
th row sum of A(G). Therefore S, (A(G)) = d;. Let X = (z1,--- ,x,)" be an
eigenvector of A(G) corresponding to an eigenvalue p(G) such that ||z|| = 1 i.e

3;%4_..._‘_3;721:1,
Therefore

(2.2) AG)X = p(G)X
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Here x; denote an eigencomponent of X correspond to a vertex v;.

Let for the vertex v;, z,, = min{|z;| : (v;,v;) ¢ E(G)}.

Let Y (v;) denote the vector obtained from X by replacing z; with 0 if (v;,v;) ¢
E(G). From i'" equation of (2.2), we have

A(G)Y (v;) = Ai(G)X = p(G)X = p(G)z; .
Hence by the Cauchy-Schwartz inequality
(2.3) p*(G)z = [A(G)Y (03)|* < |A(G)PIY (v) .

We know that |A4;(G)|? = 21 aj; = d;.
iz

We know that z7 + - - - 4+ 22 = 1.Therefore

Z .TJ2«+ Z x?:1

(viv;)EE(G) (vivj))EE(G)
2 2
Z ry=1- Z Tj
(viv;)EE(Q) (v5v;)EE(G)
Yl = 3 ai=1- 3 4
(v;v;)EE(G) (viv)EE(G)

From equation (2.3), we have

PG <di(1— Y ).

(vivj)EE(G)

Taking sum on both side over all vertices of a graph G, we have

Y@ < Y- Y ).
PO ) < am=Od Y a),

=1 () E(G)

(2.4) pQ(G)§2m—(Zdi > ).



1284 R. M. PATNE AND G. R. AVACHAR

Sodi( > ) = D diai+ > 1)

i=1 (U,L’U])¢E(G) =1 (’UZ’U])¢E(G),’L75_]

- Yatiye Y 4
=1 i=1

(vivg) ¢ E(G),i#]

Satid( Y

=1 (vivj)¢E(G),i#]

Zd:)j +Z Z z2)

=1 (viv;)EB(G),iA]

D diwt+ Y ((n—(di+1))x7)
D diwg + Y (0= (di+ 1)a?)

n

> ldi+ (n = (d; + 1))

=1

(n—1) z”: s
i=1

v

Vv

Y

v

v

v

Therefore

Zdi( Z ) > (n—1) va,

=1 (v;)¢E(G)

2.5) a Y

=1 (v;)¢E(G)

Put (2.5) in (2.4), we get

| /\

—(n—1) Zx

PG <2m—(n-1) a2
=1

P(G) < 2m (=) Y

where z,, = min{|z;| : (v;,v;) ¢ E(G)}.
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Therefore,

p(G) < J2m(n1)2x%

Remark 2.1. If 3~ x7 = 1, we get the equation (2.1), one can observe that

i=1

p(G) < 2mn+1<J (n—1) ZxQ

E(G )) be a connected graph with n vertices and m
{v1,--+ ,v,} . Let d; is the degree of vertex v;. Let
et 6y = max{d v; € V(G)}. Then

P(G)SJ%Z( Z x3).

Lemma 2.2. Let G = (V(G),
edges. Let vertex set V(G) =
(51 = mln{dl ;€ V(G)}

=1 (Ui’l)]')EE(G)

Proof. Let G = (V(G), E(G)) be a connected simple graph with n vertices and
m edges. Let vertex set V(G) = {vy,--- ,v,} . Let d; is the degree of vertex v;.
Let 9 = min{d; : v; € V(G)}. Let A(G) be an adjacency matrix of G. Let A;(G)
denote " row of A(G) which is corresponding to a vertex v;. Let S,,(A(G))
denotes i*" rowsum of A(G). Therefore S, (A(G)) = d;. Let X = (z1,--- ,z,)" be
an eigenvector of A(G) corresponding to an eigenvalue p(G) such that |[z|| = 1

i.e

e 4ri=1
Therefore
(2.6) AG)X =p(G)X.

Here z; denote an eigencomponent of X correspond to a vertex v;. Let Y (v;)
denote the vector obtained from X by replacing z; with 0 if (v;,v;) ¢ E(G).
From i*" equation of (2.6), we have

Al(G)Y (v;) = Ai(G)X = p(G)X = p(G); .
Hence by the Cauchy-Schwartz inequality
(2.7) pH(G)} = |A(G)Y (vi)]* < [A(G)PIY (wi)]*.
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We know that |A;(G)|* = 3 af; = d;. We know that 27 + - - - + z} = 1. Therefore
j=1
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> ode Y a-n
(viv;)EE(G) (viv;)EE(G)
2 2
N ETED D
(viv;)EE(G) (viv;)EE(G)
Yo = Y -1 Y
(viv;)€E(G) (viv;)EE(G)
From equation (2.7), we have
P@l <di(l— ) af)
(viv;)EE(G)
Taking sum on both side over all vertices of a graph G, we have
S A < - Y ).
i=1 i=1 (vivy)¢E(G)
PG ) < 2m=0 d Y @)
i=1 =1 (v;v;)¢E(G)
PG < 2m—D d DY 1)
=1 (vv;)¢E(G)
We know that
DUDBEAIEED I DEEAED I DL
=1 j=1 =1 (v0))€E(Q) =1 (00 £E(G)
D Y @) = )y d) =) di Y, ).
i=1  (vv;)¢E(G) =1 j=1 =1 (v0;)€E(G)
= IED D CID DI
i=1 =1 (vv,)€B(G)
> Y Y )
=1 (vivy)EE(G)
e® Y Y s -en-Ye Y )
=1 (’U“}j)%E(G) =1 (U,"Uj)EE(G)
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From (2.4) and (2.8), we have

PG < m—m=Y Y a)

< 522( Z x3) .

1=1 (Ui’Uj)EE(G)

Hence

n

p(G) < 52(2( Z %))

=1 (vjv;)eE(G)
U

In 1997, Hong Yuan shown that if G be a simple graph with n vertices and
X = (z1,--- ,x,)" be an eigenvector corresponding to an eigenvalue p(G) such

that ||z|| = 1 then p(G) < i d;z?, see [2].
i=1

3. NOTE ON AN ADJACENCY MATRIX

In this section, we have considered the statement of the lemma 2.1 and its
proof which is given in [4] for completion of this article.

Lemma 3.1. [4] Let G be a connected graph with vertex set V(G) = {vy, -+ ,v,}

and d; be the degree of vertex v;, i = 1,--- ,n. Then
3.1 G) < did;
(3.1 p(G) < (o %V did,

where E(G) is the edge set of G. Moreover, the equality in (3.1) holds if and only
if G is a regular or bipartite semiregular graph.

Remark 3.1. In [4], it is given in the proof that X be a Perron vector of GG, where
x; corresponds to the vertex v;. Let r, = max z; and r; = max x;. From

v, €V(Q) (vi,vs)EE(Q)
A(G)X = p(G)X, we have

(3.2) ,O(G)l"s = Z x; < Z xp = dgxy,
v; ENg (vs) v;ENG (vs)
(3.3) p(G)x, = Z T < Z Ty = dyxs

UZ'ENG(’Ut) viGNg(Ut)
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where N¢(S) denotes the neighbors in G of S. Hence
p(G)rgr, < dydyrgr,

P(G) < Vdd;.

3.1. Verification proof by an example. In this subsection, we claim that equa-
tion (3.2) and (3.3) not correct step in general. The proof of this statement is
given as follows:

Proof. Suppose if possible equation (3.2) is correct.

Let G = (V(G),E(G)) be a graph with V(G) = {vy,ve, -+ ,v0} and
E(G) - {(Uh U2)7 (UIJ U3)7 (Ula U4)7 (U17 U5)7 (U57 U6)7 (U77 U6)7 (U77 08)7 (U77 U9)7 (U77 UlO)}'
The adjacency matrix A(G) of G is given by

—_

O O O O O = === O
S O O O O o o o
o O O O O o o O

S O O O O O o o o

SO O O O R O O o o -

O O O = O = O o O O

= = = O = O OO O O O

S O O = O O O o o o

o O O = O O O o o o
o O = O O O o o o

(a]
(a]
[aw]

The largest eigenvalue of the matrix A(G) is p(G) = 2.1987. An eigenvector X
corresponding to an eigenvalue p(G) is given by

—~

X = [—0.0000 —0.2988 —0.2988 —0.2988 —0.5481 —0.0000 —0.6570 0 0 O] .

Let x, = Uirg‘%é : x; = 0 ( which is corresponding to vertices vg, vg,v19). In G,
we have (v7,vg), (v7,v9), (v7,v10) € E(G). Hence z; = (U“ggeeué(@ x; = —0.6570
(which is corresponding to a vertex v7). From equation (3.2), we have
(3.4) p(Gas = Z z; < Z T, = dgy .

v;€ENG(vs) viENG (vs)

Put the value of =, x;, p(G), ds in equation (3.4), we get

(21987)0= > < Y a =7 =da; = (1)(-0.6570).

’UZ'ENg(vS) Uq;ENg(’US)
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Therefore 0 < —0.6570, which is not possible. Hence the equation (3.2), given
in proof of lemma 2.1 in [4] do not hold in general. O

3.2. New result.

Lemma 3.2. [3] Let G be a connected graph with vertex set V(G) = {vy,- -+ ,v,}
such that |V (G)| = n. Let A(G) be an adjacency matrix of G.Let P be any polyno-
mial and S,,(P(A(G))) be a rowsums of P(A(G)) corresponding to the vertex v;.
Then

min S, (P(A(G)) < P(p(G)) < max S, (P(A(G))).

Moreover, equality holds if and only if the rowsums of P(A(G)) are all equal.

Lemma 3.3. Let G be a connected graph with vertex set V(G) = {vy,--- ,v,} and
d; be the degree of vertex v, i = 1,--- ,n. Let p(G) be a largest eigenvalue of an
adjacency matrix A(G). Let x = (x1,--- ,x,)" be an eigenvector corresponding to

an eigenvalue p(G). Then

G) < max d;d;
PlG) < (03,0, EE(G) !

where E(G) is the edge set of G.

Proof. Let G be a connected graph with vertex set V(G) = {vy,--- ,v,} and d;
be the degree of vertex v;, i = 1,--- ,n. Let p(G) be a largest eigenvalue of an
adjacency matrix A(G). Let x = (zy,--- ,x,)" be an eigenvector corresponding
to an eigenvalue p(G). Let N; = {v, : (v;,v,) € E(G)}.

Let S,,(A*(G)) is the number of walks of length k in G which begin at ;.
Therefore S,, (A(G)) is d;.

Su(A(G)) = di+ Y [N:N N
S, (AXG) = Y 4y

(viywi )EE(G)

Let dj, = max{d; : (v;,v;) € E(G)}. Therefore we have

S (A2(G) = Y &< Y dp=didy.

(Ui,’l}]‘)EE(G) (’Ui,Uj)GE(G)
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By using lemma 3.2, we have

(@) < S, (A%(G
P(6) < max S.(4%(G))
P*(G) < max{did; : (v;,v;) € E(G)}
G) < did; .
G) < max did;
O
Lemma 3.4. Let G be a connected graph with vertex set V(G) = {vy,--- ,v,} and
d; be the degree of vertex v;, i = 1,--- ,n. Let p(G) be a largest eigenvalue of an
adjacency matrix A(G). Let x = (x1,--- ,x,)" be an eigenvector corresponding to

an eigenvalue p(G). Let for a vertex v; € V(G), d, = max{d; : (v;,v;) € E(G)}
and d, = max{d; : (v;,v;) € E(G)} be second maximum degree among all degree
of vertices adjacent to v;, hence d,, < dj,

Then

G) < max d; — 1)d, + dj,
p< ) (vi,0a)EE(G),(vi,v ) EE(G) \/( ) k

where E(G) is the edge set of G.

Proof Let G be a connected graph with vertex set V(G) = {vq,--- ,v,} and d;
be the degree of vertex v;, i = 1,--- ,n. Let p(G) be a largest eigenvalue of an
adjacency matrix A(G). Let x = (z1,--- ,2,)" be an eigenvector corresponding
to an eigenvalue p(G). Let N; = {v, : (v;,v,) € E(G)}.

Let S, (A*(G)) is the number of walks of length k in G which begin at v;.
Therefore S,, (A(G)) is d;.

Su(A%(G) = di+ ) |NinNj|.
Su(AX@) = > d;.

(vivi)EE(G)
Let d, = max{d; : (v;,v;) € E(G)}. Therefore we have
S (AXG) = > di=( > d)+dy
(vi,05)€E(G) (vi,v;)€E(G)

(> da)+di=(di— 1)do + dy.

(7)1' ,Uj )EE(G)

IN
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By using lemma 3.2, we have

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

p(G) < Uigl%)svl( (@)

P(G) < max{(d; — 1)do +dj = (v;,v)) € B(G)}
max V(d; — 1)dy + dy .

(viwa)EE(Q),(vi,vor)EE(G)

=
)
A
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