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WEYL FRACTIONAL INTEGRAL AND MULTI-INDEX
DZRBASHJAN-GELFOND-LEONTIEV (D-G-L) DIFFERENTIATION AND
INTEGRATION WITH MULTI-INDEX MITTAG-LEFFLER FUNCTION
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ABSTRACT. The objective of this paper is first to explore linkage that prevails
between the Weyl fractional integral and multi-index Dzrbashjan-Gelfond-
Leontiev (D-G-L) differentiation and integration with multi-index Mittag-Leffler
function. Later, certain striking special cases are attained. The findings of the
paper may find application in several fractional differential and integral prob-
lems where the D-G-L operators and the multi-index Mittag-Leffler functions
are involved.

1. INTRODUCTION AND PRELIMINARIES

Fractional calculus is the area of mathematical analysis that attends to study,
inquiry, applications of derivatives and integrals with respect to arbitrary order.
Recently, the subject has gain much attention and is being broadly utilized in
almost every domain of ordinary fractional calculus, g-transform analysis, solu-
tions of the g-differential and g-integral equations to say the least.

Kiryakova [4,5,6] introduced the multi-index Mittag-Leffler (M-L) function.
Also, the multi-index D-G-L differentiation and integration, which is generated
by the multi-index M-L function are presented and examined by Kiryakova [7].
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Let n>1 be an integer, 6;,--- ,d, > 0and oy, - - - , 0, be arbitrary real numbers
then the multi-index Mittag-Leffler function is
oo l‘m
(1.1 ; Omx™ = —.
G Z mzzo Hj:l [(oj + 5_j)

For n=1, the equation (1.1) is the classical Mittag-Leffler function i1y (o) () and

for % =a>0,0= />0, (1.1) reduces to Mittag-Leffler function F, s(x) owing
to Wiman 1905 and Agarwal 1953.

Let Agr = {|ly| < R} be a disk and ¢(y) is an analytic function in it and
d; > 0,0, € R(i = 1,--- ,n) be parameters which are arbitrary, then the con-

gruity:

= amy™ — Dg(y) = Dis)(e09W): La() = Lis).009(v),

m=0
defined by
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are titled as the multi-index D-G-L differentiations and integrations respectively
which are spawned from multi-index M-L functions.

When n=1, the operators given by equation (1.2) and (1.3) reduces to the
D-G-L differentiation and integration, studied by Kiryakova [7], Dimovski and
Kiryakova [1,2]:
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The Weyl fractional integral operator [3] for Re(a) > 0 is given by

(1.4) Wegy) = ﬁ / (e =) g(2)de.
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Lemma 1.1. [5,6] The following relations holds true for multi-index Mittag-Leffler

function for A # 0:

(1.5) l)((Si):(Ui)F(L
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The lemma can be verified by using (1.1), (1.2) and (1.3).

2. MAIN RESULT

In this segment, we bring forth the following relations that exist between Weyl
fractional integral and Multi-index Dzrbashjan-Gelfond-Leontiev (D-G-L) opera-

tors for Differentiation and Integration with multi-index Mittag-Leffler function.

Theorem 2.1. Let Wg(y) be the Weyl fractional integral operator (1.4) and let
a>0,0;>0,0; € R(i=1,--- ,n),\ #0, then there holds the formula

—J1+%

=Y

(2.1)

Proof. By virtue of (1.4) and (1.5), we have
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Swapping the integration and summation order and then assessing with help of
beta function formula,

(m—1)
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Corollary 2.1. For a > 0,0; > 0,0, € R(i =1,--- ,n),\ # 0 and let 5— = q, then
1

(2.1) reduces to
<WﬁpﬂkmDﬂmau¢Mm@”ﬂﬂ>@)

—o01+«a

)

1
F Ay~ ) — )
(ot ko on =) 0 ) umnﬂﬂmw—éj

Corollary 2.2. For a > 0,0 > 0,0 € R,A\ # 0 and let n = 1,
holds the formula

1
— = «, 01 = o there
01

(Wi‘ [z“Da,gFa,,,(Az“)D (y) =y 7 [Fa,a(ky*“) - ﬁ] :

Theorem 2.2. Let Wg(y) be the Weyl fractional integral operator (1.4) and let
a>0,0;>0,0; € R(i=1,--- ,n),\ #0, then there holds the formula

(Wf [Z_Q_UIZF( L) oAz 0 )])(y)
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Proof. By virtue of (1.4) and (1.6), we have

o = (Wj [z‘“‘”lvaF(é)v(Ui)()\z_“l)})(y)
1 /°° e 1S AR 1
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Now the integral is split into two integrals and we interchange the sequence of
summation and integration in first integral and then evaluate using beta func-
tion formula, we obtain:
1 — Ay 1
¢ = —yigl Z my ; my n
A f— (o1 + ) + 57) Hj:Q I'(o; + 57) I'(o1 + ) Hj:Q I'(0;)
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Corollary 2.3. For a > 0,6 > 0,0 € R,A# 0 andlet n = 1, 5- = 8,01 = o there
holds the formula:

(Wi‘ [z—a—aLa,Ume(Az-ﬁ)]) W) = 57" [Frea™) = 55
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