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IMPULSIVE FRACTIONAL DIFFERENCE EQUATION ON hZ
M. MEGANATHAN! AND G. BRITTO ANTONY XAVIER

ABSTRACT. In this paper, we analyze the classical difference equation with im-
pulse

Vim+1)h = Umh + g(mh, vmp), m € No,m # mj, h >0
(0.1) Vim,+1)n = 0(mj + 1)h +cj,m =my,j € Ny

v(0) = 7;
where U(, 41)n = Um;n + (M + Vmn), 0 < mg,my < <mg < <my <
mjq1 < ...,1 <mjy1—mj,c;isaconstant and t = a+(m;+1)h are the impulse
points. Since fractional calculus holds the memory effects for o« # 1 and this
features can be more easily understood from the sum equation where the kernel
function provides coefficients of memory effects. Much more important, many
techniques from ordinary differential equations can be applied. And we also
generalize the equation (0.1) for the fractional order and obtain more results
on discrete fractional case.

1. INTRODUCTION

Fractional calculus, usually determined as fractional order calculus, it is
grown from L’Hospital and Leibniz when they have raised a question in the
year 1695. It is developed for any order in fractional calculus and has been
interesting to scientists and mathematicians for having many applications. The

major aim for this results is, they found so many results on derivatives and
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integrals which has many real world phenomena, one can refer [1,3,4,7,8,11-
14,21,22,25,30].

In 1989, Miller and Ross [20] initiated the process to develop the theory for
fractional finite differences. Further developments took place in 2007 and 2012
when the authors [2,6] put forth several results and a discrete transform method
for fractional order difference equation. In the year 2009, Laplace transform
is an important concept to find the solution of fractional order equations in
the field of stability and chaos [9, 10, 15-19,31]. For recent developments of
fractional difference operators one can refer [24]- [29].

2. BASIC RESULTS

Here, we given some of the basic definitions of difference operator and some
basic results which will be use further.

Definition 2.1. For v(t), t € [0,00), and h > 0, we define

Ao(t) = v(t + hli - v(t)7
and also defined as
th(t) _ U(t) _ Z(t _ h) )

The shifting operators o4, (t) = t+h and py,(t) = t —h are defined for forward
and backward difference operator on hZ.

Definition 2.2. For the real valued functions v(t) and w(t), we defined as
w(t) — w(t —mh) = th(t —rh),me Z*
r=1

and also

A o(t) = hi v(t+rh).

T

Il
=}

Definition 2.3. [5] For h > 0 and the real value o, we define

t(a) — ha F(% + 1) )
h N(f+1-a)
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Definition 2.4. Let v be defined on co-domain R and 0 < «. The finite h—sum is
defined by

o (t—a)/h—a
Arou(t) = % S ((t—a)/h— s — 1) Du(a + sh).

Property 2.1. For the function v(t), we have
(D) Ap(t — )\ = (—a)(t —s—h)\*.
(i) A,;Z‘th_ahcAﬁ:av(t) =o(t) —v(a),0 < a < 1.
(iii) The relation between the Caputo and RL sum:
AR (1) = AR, (v(t) —v(a))

(2.1) = Af () + v(a)m

—a|(t—a)/h+a
((t —a)/h — )| 0"

Proof.
(i) From the definition of A, taking difference with respect to s,

Apey(t — )\ =[(t —s = h)\ = (t — )\ /h
t
h
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([ For0<a<1l,m=1,
Apan-an” Bhav(t) = At an i Anv(t) = Ajg Apu(t) = v(t) — v(a).
(iii) From Caputo equation, we have
CAGau(t) = Ay ATu()
= Aha(v(t) = v(a))

= Afe®) + Ty (= a)/h =) (a)fise

s=0

which completes the proof. g

Corollary 2.1. For the function v, we have

CA(ll:(ﬂ)(t) = A?:a(”(t) - U(CL)) = A{f:av(t) + %(t - a)ia + U(a)'

Proof. Taking h = 1 in (2.1), we get the proof. O
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Definition 2.5. (Fractional Integration) The fractional integration of v(t) is de-
fined by

(@) (t—a)/h—a
Ca . h” o
/v(s)ds = A, %.0() = ’lllirtl) Ta) E ((t —a)/h — s — 1)@ Dy(a+ sh).
t:a s=0

Definition 2.6. (Fractional h : a Integration) The fractional h : a integration of
a function v(t) : a + Nh — R for 0 < « is defined as below: for the function v(t)
such that A, %v(t) = w(t), then w(t) is called as h : a integration of v(t) and it is

()
denoted as [ v(t).

h:a
(@) ()
Remark 2.1. For the function v(t), we have }llm% [ o) = [ v(s)ds.
“Yha t:a

Example 1. Let v(t) = 2", h =1,a = 0, = 2. Then
(2)
(i) [2t=2t—20t—20te0+2+N,
1:0
MEREY

(3)
() [2t=2t—20-L 201 204 c0+3+N.
o 2! 1!

3. IMPULSIVE h—DIFFERENCE EQUATION

Note that v(,,;1), is a sequence for m = m; and m # m; piecewisely. For
example, it starts from m = 0, we get v, = Vm—1)n + 9((Mm — 1)h, v,_1)n) and
Umih = U(mi—1)h T+ g((m1 — 1)h,v(m1_1)h). We have Vimi+1)h = Umy+1)h T C1 for
mh = (my + 1)h, obtained by the above relationship at the impulse point.

We obtain the h—summation form, for the h—difference equation (0.1),

Vimsyh = v(0) + Y g(kh, vgn), m € No,m # mj, h > 0
3.1 k=0

Vim;+1)h = U(m;+1)n + Cj,m =mj, j € Ny.
We modified the equation as follows,

m—1
Vi, = N+ Y g(kh, vps),
(3.2) k=0

mi
Vmy+1)h = 1+ Y g(kh, ven)
k=0
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(3.3) Vimi+1)h = Umi+1)h T+ C1,

for m € {0,1,...,m;}. In the similar manner, for m € {m; +1,m; + 2, ...

we seek that

= V(mi+1)h T Z k‘h Ukh

k=mi1+1
m—1
= Vpmi+1)h + C1 + Z (kh, vgp)
k=mi+1
mi m—1
=1 + C1 + Zg(k‘h, Ukh) -+ Z g(k’, Ukh)
k=0 k=mi1+1
m—1
=n+c+ Z g(kh,vgn),m € {my +1,my +2,...,my}
k=0
and
ma
(3.4 Dmarn =N+ 1+ > g(kh, v).
k=0

In generally, we obtain an equivalent sum equation as follows
(3.5)

( m—1
n—+ Z g(kh,vkh),me {0,1,2,...,m1}
k=0

m—1
1 +c+ Z g(kh,Ukh),m S {ml + 1,m1 —+ 2, ...,mg}
k=

Umh = m—1
77+Zcz+29(khvkh)me{mz+1mz+2 Mg}
z:l k=0

m—1

n—l—Zcz—F Zg(kh vrn),m € {my +1,my +2,..}, N = o0

\ =1 =
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In this research article, we use (3.5), since it holds the memory effects for o # 1.

4. CONCEPTS OF IMPULSIVE FRACTIONAL DIFFERENCE EQUATIONS
Let us take the difference equation
(4.1) hCAL v(t) = g(t + ah,v(t + ah)), z(a) = xo,
it can be rewritten as follows

h*AY. ,(v(t) —v(a)) = g(t + ah,v(t + ah))
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ie v(t) — v(a)— A%t + ah, v(t + ah))

ho
1 (t—a)/h—a
o(t) :U(G)er S ((t—a)/h—s— 1) Vg(a+ah+ sh,v(a+ah+ sh))
(4.2)
o(t) = v(a)
1 (t—a)/h—c F((t_a)/h_3>
) Z MG —a)fh—s+1—q)fl@Tahtshulatahsh).

Let us consider that a = 0, for extending the concepts for the difference equa-
tions with impulsive

(1eC A u(t) = g(t + ah,o(t + ah)),
tea+h—ah+ Nh,t#a+mjh+h—ah

(4.3) - ,
Vim+1)h = Vim;+1)n + Cj,t = a+ (m; +1)h —ah,j € Ny
(Vo =1

or

(

v(t+h) =1y

1 (t—a)/h+1—a T((t — h 1—
+=— ((t=a)/h+ s) (ah + sh,v(a + ah + sh))

@) 4 D((t-a)fh—st2—a)

Uimj+1)h = V(m;+1)h T Cj, t=a+ mjh,j €N

Vo = 1.
\

Since v(y, 1y, solves the equation A, v(t) = g(t+ ah, v(t + ah)) with all of the
past known information v(a),v(a + h),...,v(a + m;h). In the above cases (3.5),
(4.1)-(4.3), we take each sum on the interval from a + (m; + 1)h to a + m;41h.

The following lemma proves the solution of fractional difference Cauchy prob-
lem for the fractional sum equation.
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Lemma 4.1. For the real valued function v(t) is a solution of

) Z ((t" —a)/h— s — 1)@ Vg(a + sh+ ah,v(a+ sh+ ah))
s=1-a
1 (t—a)/h—a
+ _F(Oz) ((t—a)/h—s—1)*Vg(a+ sh+ ah,v(a+ sh+ ah)),
s=1l-«

t € a+ h+ Nh, iff v(t) is also a solution of h*“ A% v(t) = g(t + ah,v(t + ah)),
t€ea+h—ah,0<a<l,forthe constraints

(t*—a)/h—a
v(a):v(t*)—ﬁ Z ((t* —a)/h—s—1)*"Yg(a+sh+ah,v(a+sh+ah)).

Proof. By (4.2) and taking

(t*—a)/h—a
1
vo = v(a) = U(t*)_m > ((t"—a)/h—s—1)"Vg(atsh+ah,v(a+sh+ah)).
s=1l—a«
in (4.2), we get the proof. O

Lemma 4.2. For the function v(t) is a solution of (4.4) iff v(t) is a solution of

vo +hT A gt 4 ah,v(t 4+ ah)),

v0+cl+h AL gt + ah,v(t 4+ ah)),

4.4) v(t) = vo + Ecz + h A gt + ah,v(t + ah)),

7,7

\ =1

Proof. Fort € {a+ h,...,a+myh}, we have

(t—a)/h—«
1
v(t) = v + (o) ((t—a)/h —s—1)*Yg(a+ sh+ ah,v(a+ sh+ ah))
a
s=1l—«
and
(4.5) Vimy+1)h = Vo + " Ape , ng(t +ah,v(t 4 ah))

t:a+(m1+1)h.
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By using Lemma 4.1 and (4.5), for ¢ € {a+ (m1+ 1)h,a+ (m1 +2)h...,a+mah},

U(t) = VU(my+1)h —h” Ah :a+h— ahg(t + O_/h, U(t T Ozh)) t=a+(m1+1)h

+hT A gt ah v(t 4 ah))
=vg+c1+h AL g (4 ah,vu(t + ah)).

Fort € {a+ (my + 1)h,...,a + my1h}, we get

v(t) = vy + ZC‘ +hT A e gt ah,u(t 4 ah))

=1

Fort € {a + (myy1 + 1)h, ...,a + myi2h}, which yields

U(t) = Umpq1+1)h —h” Ah :a+h— ahg(t + Oéh, U(t + ah))

t=a+(mg+1+1)h
+hT A gt ah,v(t 4 ah))

= Ckt1 T Ulmy i +1)h —h” Ah :a+h— ahg(t + ah, U<t + ah)) t=at(mpp1+1)h
=a M1

+hT A e gt ah,v(t 4 ah))

k+1

= o+ D ci+ AL gt + aho(t+ ah)).
=1

By mathematical induction, we get the proof. 0

5. CONCLUSION

The impulsive difference equation given in (0.1) exists for a« # 1, in this
research work we studied and analysed (0.1) by using h-difference operators.
Also, we found the solutions for the impulsive difference equations to the frac-
tional sum.
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