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SSP STRUCTURE OF COPIES OF CYCLES

R. MARY JEYA JOTHI1 AND R. REVATHI

ABSTRACT. A graph G is Super Strongly Perfect (SSP ) if every induced sub
graph H of G possesses a minimal dominating set that meets all the maximal
cliques of H. The structure of super strongly perfect graphs have been in-
vestigated by some classes of graphs like complete graphs, complete bipartite
graphs, trees etc., In this paper, web graphs are analysed by SSP . Also, it is
found the cardinality of minimal dominating set, number of maximal cliques,
colouring number and regularity of web graphs.

1. INTRODUCTION

Here, graphs are finite and simple. A set M ⊆ V (G) is called a dominating
set if each vertex in V −M is connected to at least one vertex in M . A set N ⊆ V

is said to be a minimal dominating set if N − {u} is not a dominating set for any
u ∈ N .

2. OVERVIEW OF THE PAPER

It has been investigated SSP graph’s structure in cycle based graphs, like
circulant graphs, wheel graphs, etc., [1, 2]. In this paper, it is discussed the
concentric copies of cyclic graphs like web graphs.
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2.1. Super Strongly Perfect Graph (SSPG). A graph, if every induced sub-
graph H of G contains a minimal dominating set which covers all the maximal
cliques of H then G is SSP . SSPG and non−SSPG are given in figures 1 and 2.

Illustration 1.

FIGURE 1. SSPG

Illustration 2.

FIGURE 2. Non-SSPG

Theorem 2.1. If G has a cycle odd length atleast five as an induced subgraph, then
G is non −SSP .

Theorem 2.2. If a graph G has atleast one Kn, n = 2, 3, ..., then G is n− colourable
iff it is SSP .
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3. WEB GRAPH

A Web graph Wn,r is a graph consisting of r concentric copies of the cycle
graph Cn with corresponding vertices connected by spokes. It has nr vertices
and n(2r − 1) edges [3]. Web graph, W3,3 is illustrated in figure 3.

Illustration 3.

FIGURE 3. W3,3

Theorem 3.1. Every web graph W3,r, r ∈ N is SSP .

Proof. Consider a web graph W3,r, r ∈ N .
⇒ The selection of a vertex from each induced subgraph C3 will intersect all K3.
⇒ G is SSPG. �

Theorem 3.2. Every web graph Wn,r, r ∈ N, n ≥ 4, n is even, is SSP .

Proof. Consider a web graph Wn,r, r ∈ N, n ≥ 4, n is even.
⇒ G is bipartite.
⇒ G is SSPG. �

Theorem 3.3. Every web graph Wn,r, r ∈ N, n ≥ 5, n is odd, is non-SSP.

Proof. Consider a web graph Wn,r, r ∈ N, n ≥ 5, n is odd.
⇒ As n is odd, G is non- SSPG (theorem 2.1). �

Proposition 3.1. Consider a web graph W3,r, r ∈ N.

(1) It contains rK3.
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(2) It induces a minimal dominating set of r elements.
(3) It has colourability 3.
(4) W3,r is r + 1 regular if r = 1, 2.
(5) W3,r is non-regular if r ≥ 3.

Proof.

(1) Consider a web graph W3,r, r ∈ N .
⇒ G consists of r concentric copies of C3 which is K3.
⇒ G has r maximal cliques K3.

(2) Consider a web graph W3,r, r ∈ N .
⇒ G consists of r concentric copies of C3.
⇒ From each copy of C3, select one vertex to meet C3.
Since G has r copies of C3, the proof is done.

(3) Consider a web graph W3,r, r ∈ N .
By part (1), G contains rK3, the proof is done (theorem 2.2).

(4) Consider a web graph W3,r, r ∈ N, r = 1, r = 2.
Case (1)
If r = 1, then G is a cycle graph C3 which is 2− regular.
⇒ G is 2− regular.
⇒ G is r + 1 regular.
Case (2)
If r = 2, then each vertex of G has third degree.
⇒ G is 3− regular.
⇒ G is r + 1 regular.
⇒ in both cases, G is r + 1 regular.

(5) Consider a web graph W3,r, r ∈ N, r ≥ 3.
⇒ In G, the vertices of the inner and outer cycle C3 have third degree
and all the remaining vertices have fourth degree.
⇒ G is non-regular.

�

This proposition is demonstrated below.



SSP STRUCTURE OF COPIES OF CYCLES 1319

FIGURE 4. W3,4

Here,

(1) W3,4 contains 4 maximal cliques K3.
(2) W3,4 inducess a minimal dominating set of 4 elements.
(3) W3,4 is 3− colourable.
(4) W3,4 is non-regular.

Proposition 3.2. Consider a web graph Wn,r, r ∈ N, n ≥ 4, n is even.

(1) It contains n times (2r − 1) maximal cliques K2.
(2) It contains a minimal dominating set of nr

2
elements.

(3) It has colourability 2.
(4) It is r + 1− regular if r = 1, 2.
(5) It is non-regular if r ≥ 3.

Proof.

(1) Consider a web graph Wn,r, r ∈ N, n ≥ 4 and n is even.
⇒ As G has r copies of Cn, there exist nr edges (cycle Cn has n edges).
Since the corresponding vertices of the cycle are connected by the spokes,
there exist n(r − 1) edges.
⇒ G has nr + n(r − 1) = nr + nr − n = 2nr − n = n(2r − 1) maximal
cliques, each of which is a K2.
Hence the proof.

(2) Consider a web graph Wn,r, r ∈ N, n ≥ 4 and n is even.
⇒ G has nr vertices which is bipartite.
⇒ G has a minimal dominating set of nr

2
elements.
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(3) Consider a web graph Wn,r, r ∈ N, n ≥ 4 and n is even.
By part (1), G contains rK2, the proof is done (theorem 2.2).

(4) Consider a web graph Wn,r, r ∈ N, n ≥ 4 and n is even, r = 1, 2.
Case (1) If r = 1, then G is an even cycle graph Cn which is 2-regular.
⇒ G is 2- regular.
⇒ G is r + 1 regular.
Case (2) If r = 2, each vertex of G has degree 3. ⇒ G is 3 regular.
⇒ G is r + 1 regular.
Hence in both cases, G is r + 1 regular.

(5) Consider a web graph Wn,r, r ∈ N, n ≥ 4 and n is even, r ≥ 3.
⇒ In G, the vertex of the inner and outer cycle Cn have third degree and
all the remaining vertices have fouth degree.
⇒ G is non-regular.

�

This proposition is demonstrated in figure 5. In this graph,

FIGURE 5. W4,3

(1) W4,3 contains 20 maximal cliques K4.
(2) W4,3 contains a minimal dominating set of 6 vertices.
(3) W4,3 is 2-colourable.
(4) W4,3 is non-regular.
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4. CONCLUSION

The cyclic structure of web graphs are analysed here, using super strongly
perfect graph’s structure. Also, the SSP parameters of web graphs are given.
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