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ON EXTENSION OF PRIME RADICAL IN 2-PRIMAL NEAR-RINGS

B. ELAVARASAN, K. PORSELVI 1, AND J. CATHERINE GRACE JOHN

ABSTRACT. In this paper, we study some characterizations of prime radical in
2-primal near-ring and introduce the notions of PN -Baer ideals and strongly
PN -Baer ideals in 2-primal near-ring. Some equivalent conditions are estab-
lished for PN -Baer ideal to be a strongly PN -Baer ideal.

1. PRELIMINARIES

Throughout this paper, N denotes a zero symmetric right near-ring and all
prime ideals are assumed to be proper in N . For any undefined concepts and
notations, we refer to Pilz [6]. Let PN denote the prime radical of N , for
any ideal L of N , P (L) denote the prime radical of L and N (N ) the set of
nilpotent elements of N . An ideal Pr of N is prime if for any ideals U, V of N ,

UV ⊆ Pr implies U ⊆ Pr or V ⊆ Pr. An ideal M of N is semiprime ideal if
for an ideal K of N , K2 ⊆ M implies K ⊆ M. An ideal J of N is completely
prime if for any u′, v′ ∈ N , u′v′ ∈ J implies either u′ ∈ J or v′ ∈ J. An ideal
J of N is completely semiprime if for any u ∈ N , u2 ∈ J implies u ∈ J. For
any non-empty subsets R, S of N , we denote the set {n ∈ N : nS ⊆ R} as
< R : S > . For every ideal Qi and K ⊆ N , < Qi : K > is maximal element
among {< Qi : Q1 > : Q1 ⊆ N , < Qi : Q1 >6= N } if and only if < Qi : K > 6=
N and < Qi : K >⊆< Qi : T > 6= N implies that < Qi : K >=< Qi : T >

for any subset T of N [3]. If < I1 : K1 > is the maximal element among
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{< I1 : K1 > : K1 ⊆ N , < I1 : K1 >6= N }, then there is c1 ∈ N with
c1 /∈< I1 : K1 > which implies c1k1 /∈ I1 and < I1 : K1 >⊆< I1 : k1 >6= N for
some k1 ∈ K1\I1. So < I1 : K1 >=< I1 : k1 > . If N has only one nilpotent
element 0, then N is reduced. If PN = N (N ), then N is called 2-primal,
see [1]. Clearly, every reduced near-ring is 2-primal, but 2-primal near-rings are
not necessarily to be reduced, see Example 1.1 of [4]. If N is 2-primal, then
PN is a completely semiprime ideal.

In [7], T. P. Speed has introduced the notion of Baer ideals in a commutative
baer ring and later in [5], C. Jayaram has generalized baer ideals to a commuta-
tive semiprime ring and investigated properties of baer rings, regular rings and
quasiregular rings by using baer ideals.

Following [5], an ideal J of N with PN ⊆ J is PN -Baer ideal if x ∈ J

implies < PN :< PN : x >>⊆ J. Also, an ideal J of N with PN ⊆ J is
strongly PN -Baer ideal if for any a1, b1, c1 ∈ N , < PN : a1 > ∩ < PN :

b1 >=< PN : c1 > and a1, b1 ∈ J imply c1 ∈ J. A subset M(6= φ) of N is a
multiplicative subset if 0 /∈ M and for a1, b1 ∈ M implies a1b1 ∈ M. Let D =

{c1 ∈ N : < PN : c1 >= PN }. Then PN ∩D = φ and D is a multiplicative
closed subset of N . For any multiplicative closed subset S of N , we define
O(S) = {c1 ∈ N |c1s ∈ PN for some s ∈ S}. For each multiplicative closed
subset S of N , O(S) is a PN -Baer ideal of N . An ideal J of N is an PN -
ideal if there exists a multiplicative subset M1 of N such that J = O(M1). Let I
and J be ideals of N with J ⊆ I, I is a J−ideal of N if I = O(M1) for some
multiplicative subset M1 of N . If N is 2−primal, then each minimal prime
ideal is PN -Baer ideal. Indeed, if c1 ∈ P1, where P1 is minimal prime, then, by
Theorem 3.5 of [4], < PN : c1 >* P1 which implies < PN :< PN : c1 >>⊆
P1, so P1 is PN -Baer ideal. Every PN −ideal is a strongly PN -Baer ideal, and
every strongly PN -Baer ideal of N is a PN -Baer ideal, see Lemma 2.2. For
any subset T of N , < PN : T > is a strongly PN -Baer ideal of N .

Clearly intersection of strongly PN -Baer ideals (resp., PN -Baer ideals) is
again a strongly PN -Baer ideal (resp., PN -Baer ideal). It should be noted that
our definition of strongly PN -Baer ideal( PN -Baer ideal) will coincide with
that of Jayaram (1984) in a commutative semiprime ring.
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2. MAIN RESULTS

Theorem 2.1. If N is zero-symmetric and if P ′′ is an ideal of N , then the state-
ments given below are equivalent:

(i) P ′′ is prime,
(ii) For any c1, c2 ∈ N , c1 < c2 >⊆ P ′′ implies c1 ∈ P ′′ or c2 ∈ P ′′,

(iii) If A1, A2, ..., An are ideals of N , then A1A2...An ⊆ P ′′ implies Ai ⊆ P ′′ for
some i.

Proof.
(i)⇒(ii) Suppose c1 < c2 >⊆ P ′′ for some c1, c2 ∈ N . Then c1 ∈ (P ′′ :< c1 >).

Since (P ′′ :< c1 >) is an ideal, < c1 >⊆ (P ′′ :< c2 >) and hence < c1 >< c2 >⊆
P ′′ which implies < c1 >⊆ P ′′ or < c2 >⊆ P ′′. i.e., c1 ∈ P ′′ or c2 ∈ P ′′.

(ii)⇒(iii) Let A1, A2, ..., An be ideals of N with A1A2...An ⊆ P ′′ and suppose
that An * P ′′. We claim that A1A2...An−1 ⊆ P ′′. Let c1 ∈ A1A2...An−1 and let
c2 ∈ An\P ′′. Then c1 < c2 >⊆ P ′′. Since c2 /∈ P ′′ by (ii), we have c1 ∈ P ′′.

Thus A1A2...An−1 ⊆ P ′′. Suppose An−1 * P ′′. Then as eariler we can show that
A1A2...An−2 ⊆ P ′′. Proceeding in this way we get (iii).

(iii)⇒(i) It is obvious. �

Lemma 2.1. If N is 2-primal, then for any Z ′ ⊆ N ; c1, c2 ∈ N , we have

(i) < PN : Z ′ >=< PN :< Z ′ >> and Z ′ ⊆< PN :< PN : Z ′ >>,

(ii) < PN :< PN : c1c2 >>=< PN :< PN : c1 >> ∩ < PN :< PN :

c2 >>,

(iii) If c1c2 ∈PN , then < PN : c1 + c2 >=< PN : c1 > ∩ < PN : c2 > .

Proof.
(i) For t ∈ N , t ∈< PN : Z ′ > ⇐⇒ aZ ′ ⊆PN ⇐⇒ a < Z ′ >⊆PN ⇐⇒

a ∈< PN :< Z ′ >> . Also if c1 ∈ Z ′, then for any t ∈< PN : Z ′ >, we have
tc1 ∈PN which implies c1 ∈< PN :< PN : Z ′ >> .

(ii) Clearly < PN :< PN : c1 >> ∩ < PN :< PN : c2 >>⊆< PN :<

PN : c1c2 >> . If t ∈< PN :< PN : c1c2 >>, then t < PN : c1c2 >⊆PN , so
for a ∈< PN : c1 >⊆< PN : c1c2 > and b ∈< PN : c2 >⊆< PN : c1c2 >, ta ∈
PN and tb ∈ PN imply t ∈< PN :< PN : c1 >> ∩ < PN :< PN : c2 >> .

So < PN :< PN : c1c2 >>=< PN :< PN : c1 >> ∩ < PN :< PN : c2 >> .

(iii) If t ∈< PN : c1 > ∩ < PN : c2 >, then tc1 ∈ PN and tc2 ∈ PN which
imply t(c1 + c2) ∈PN . Thus t ∈< PN : c1 + c2 >. If s ∈< PN : c1 + c2 >, then
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s(c1 + c2) ∈PN implies s(c1 + c2)c2 ∈PN and s(c1 + c2)c1 ∈PN . Since c1c2 ∈
PN , we have sc22 ∈PN and sc21 ∈PN . Since PN is completely semiprime, we
have sc2 ∈ PN and sc1 ∈ PN which imply s ∈< PN : c1 > ∩ < PN : c2 > .

Therefore < PN : c1 + c2 >=< PN : c1 > ∩ < PN : c2 > . �

Theorem 2.2. If N is 2-primal, T = {< PN : Q > : Q ⊆ N , < PN : Q > 6=
N } and S ⊆ N with S * PN , then the statements given below are equivalent:

(i) < PN : S > is maximal among T,
(ii) < PN : S > is completely prime,

(iii) < PN : S > is minimal prime.

Proof.
(i) ⇒ (ii) By assumption, ∃y ∈ S\PN : < PN : S >=< PN : y > . Since

< PN : y >⊆< PN : y2 > and y3 /∈PN , < PN : y >=< PN : y2 > . If ab ∈<
PN : y > and a /∈< PN : y > for some a, b ∈ N , then < PN : ya >6= N . By
the maximality of < PN : y >, we have b ∈< PN : ya >=< PN : y > .

(ii) ⇒ (iii) Suppose that Q is prime with Q ⊆< PN : S > . Let y ∈ S\PN

and a ∈< PN : S > . Then < a >< y >∈ PN ⊆ Q. Since y2 /∈ PN , we have
a ∈ Q. So Q =< PN : S > . (iii)⇒ (ii) It follows from Corollary 1.3 of [2].

(ii)⇒ (i) Suppose that < PN : S >⊆< PN : T > 6= N . Then there is y ∈ T
such that y /∈ PN . Let a ∈< PN : T > . Then ay ∈ PN ⊆< PN : S >, so
a ∈< PN : S > or y ∈< PN : S > . Since y2 /∈PN , we have y /∈< PN : S > .

Thus a ∈< PN : S > and hence < PN : S >=< PN : T > . �

Theorem 2.3. If N is 2-primal, then the maximality and minimality conditions
of the elements on the set T = {< PN : A1 > : A1 ⊆ N , < PN : A1 >6= N }
are coincide.

Proof. Suppose a.c.c. holds on the set T and let < PN : X1 >⊇< PN : X2 >⊇
... be a descending chain on the set T. Then < PN :< PN : X1 >>⊆< PN :<

PN : X2 >>⊆ ... is an ascending chain, which ends after finite steps.
Since < PN :< PN :< PN : Xi >>>=< PN : Xi >, so the descending

chain < PN :< PN :< PN : X1 >>>⊇< PN :< PN :< PN : X2 >>>⊇ ...

or the chain ends after finite steps. Similarly we can prove the converse part. �

Theorem 2.4. For any N 6= PN , the statements given below are equivalent:

•
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(i) N is 2-primal and, for every c1 ∈ N \PN , < PN : c1 > is contained in
some maximal element among T = {< PN : Xn > : Xn ⊆ N , < PN :

Xn >6= N },
(ii) The number of minimal completely prime ideals Pi, i = 1, 2, ..., n with

n⋂
i=1

Pi = PN of N is finite.

Proof.
i) ⇒ ii) Assume that c1c2 ∈ PN for some c1 ∈ N \PN and c2 ∈ N \PN .

Then there is a maximal element < PN : c3 > in T such that c3 ∈ N \PN and
c1 ∈< PN : c2 >⊆< PN : c3 > . By Theorem 2.2, < PN : c3 > is completely
prime ideal. Consider the set of all distinct minimal completely prime ideals Pα
of N where Pα =< PN : zα > (α ∈ I) and zα ∈ N \PN . Let P =

⋂
α∈I

Pα. Then

zα ∈< PN : Pα > and < PN : Pα >⊆< PN : P > for all α ∈ I.
We now claim that PN = P. If not, then there is a maximal element <

PN : zβ > in T with zβ /∈ N \PN and < PN : P >⊆< PN : zβ > . So
Pβ =< PN : zβ > for some β ∈ I, but zβ ∈< PN : P >, we have zβ

2 ∈
zβ < PN : P >⊆ zβ < PN : zβ >= zβPβ ⊆ PN , a contradiction. So
P =

⋂
α∈I

Pα = PN . We now prove that |I| is finite. If not, then for some α1 ∈ I,

< PN : zα1 > is not contained in all < PN : zα > which implies zα1zα for all
α( 6= 1) ∈ I. Take some α2 ∈ I, < PN : zα1 >*< PN : zα2 > which implies
< PN : zα1 >⊂< PN : zα1 > ∩ < PN : zα2 > . If < PN : zα1 > ∩ < PN :

zα2 >6= PN , then we have a descending chain < PN : zα1 >⊃< PN : zα1 >

∩ < PN : zα2 >⊃ .... If t(zα1 + zα2) ∈ PN , then tzα1 ∈ PN and tzα2 ∈ PN .

This shows that < PN : zα1 > ∩ < PN : zα2 >=< PN : zα1 + zα2 > . So
the obtained descending chain < PN : zα1 >⊃< PN : zα1 + zα2 >⊃ ... not
terminated, a contradiction to Theorem 2.3. Hence |I| is finite.

(ii)⇒ (i) It is trivial as N /PN is reduced. �

Lemma 2.2. Let N1 be an ideal of a 2-primal near-ring N with PN ⊆ N1. If N1

is strongly PN -Baer ideal, then N1 is a PN -Baer ideal of N .

Proof. Let N1 be a strongly PN -Baer ideal of N . For c1 ∈ N1 and let c2 ∈<
PN :< PN : c1 >> . We now prove that < PN : c1 >=< PN : c1c2 > .

Clearly < PN : c1 >⊆< PN : c1c2 > . Let a ∈< PN : c1c2 > . Then ac2 ∈<
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PN : c1 > . Since c2 < PN : c1 >⊆PN , we get ac22 ∈PN implies ac2 ∈PN ,

so a ∈< PN : c2 > . Thus < PN : c2 >=< PN : c1c2 > and hence c2 ∈ N1. �

Lemma 2.3. If Q is an ideal of a 2-primal near-ring N with PN ⊆ Q, then the
statements given below are equivalent:

(i) Q is PN -Baer ideal,
(ii) For any c1, c2 ∈ N , < PN : c1 >=< PN : c2 > and c1 ∈ Q imply c2 ∈ Q,

(iii) Q =
⋃
c1∈Q

< PN :< PN : c1 >> .

Proof.
(i)⇒ (ii) and (iii)⇒ (i) are evident.
(ii) ⇒ (iii) For any c1 ∈ Q and c2 ∈< PN :< PN : c1 >>, we have <

PN : c1 >⊆< PN : c2 > and < PN : c2 >=< PN : c1 > ∪ < PN :

c2 >=< PN : c1c2 > as c2 < PN : c1 >⊆ PN . Since c1c2 ∈ Q, we have
c2 ∈ Q. So,

⋃
c1∈Q

< PN :< PN : c1 >>⊆ Q. Since for any c1 ∈ N , we have

c1 ∈< PN :< PN : c1 >> . Thus Q ⊆
⋃
c1∈Q

< PN :< PN : c1 >> and hence

Q =
⋃
c1∈Q

< PN :< PN : c1 >> . �

Lemma 2.4. If Q is a PN -Baer ideal of a 2-primal near-ring N , then Q =

PN (Q).

Proof. Let c1 ∈PN (Q). Then, by Proposition 2.94 of [6], we can find a positive
integer n such that cn1 ∈ Q. Since N is 2-primal, we get < PN : c1 >=<

PN : cn1 > . By Lemma 2.3, we have c1 ∈ Q. Thus PN (Q) ⊆ Q and hence
Q = PN (Q). �

Corollary 2.1. For every strongly PN -Baer ideal Q of a 2-primal near-ring N ,

we have Q = PN (Q).

Proof. It follows from Lemma 2.2 and Lemma 2.4. �

Theorem 2.5. If I1 is a reflexive ideal of N and P ′′ is prime with I1 ⊆ P ′′, then
the statements given below are equivalent:

(i) P ′′ is a minimal prime,
(ii) For every a ∈ P ′′, there exist xi ∈ N \P ′′ such that at0x1at1x2at2x3...xnatn ∈

I1, where t′is are positive integers with t0 and tn allowed to be zero.
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Proof.
(i) ⇒ (ii) Let a ∈ P ′′ and T = {at0x1at1x2at2x3...xnatn , where xi ∈ N \P ′′

and t′is are the positive integers with t0 and tn allowed to be zero}. Then F =

T ∪ (N \P ′′) is a multiplicative closed subset of N . If I1 ∩ F = φ, then, by
Proposition 2.1.6 of [1], there exists a proper maximal idealM1 withM1∩F = φ.

Since a /∈M1, we have M1+ < a >= N which implies b+c = 1 for some b ∈M1

and c ∈< a > . Since a ∈ P ′′, we have b ∈ N \P ′′. So b ∈ M1 ∩ F 6= {φ}, a
contradiction. Thus I1 ∩ F = φ and hence I1 ∩ T 6= {φ}.

(ii) ⇒ (i) Suppose that K is a prime ideal with I1 ⊆ K ⊆ P ′′. Then for any
a ∈ P ′′, there are xi ∈ N \P ′′ such that at0x1at1x2at2x3...xnatn ∈ I1 where t′is are
positive integers with t0 and tn allowed to be zero. Since I1 is reflexive ideal, we
have < a >t0< x1 >< a >t1< x2 > ... < xn >< a >tn⊆ I1 ⊆ K which implies
a ∈ K. Thus P ′′ ⊆ K and hence P ′′ is a minimal prime. �

Lemma 2.5. Let N be a 2-primal near-ring and K a PN -Baer ideal (resp.,
strongly PN -Baer ideal) of N . Then each minimal prime ideal P of N containing
K is a PN -Baer ideal (resp., strongly PN -Baer ideal) of N .

Proof. Suppose that K is PN -Baer ideal and P is minimal prime containing K.
Let < PN : c1 >=< PN : c2 > and c1 ∈ P. Then by Theorem 2.5, there exist
xi ∈ N \P such that ct01 x1c

t1
1 x2c

t2
1 x3...xnc

tn
1 ∈ K where t′is are positive integers

with t0 and tn allowed to be zero. Since < PN : x1x2...xnc1 >=< PN :

x1x2...xnc2 >=< PN : ct01 x1c
t1
1 x2c

t2
1 x3...xnc

tn
1 > and K is PN -Baer ideal, we

have x1x2...xnc2 ∈ K and so x1x2...xnc2 ∈ P. Consequently c2 ∈ P as x′is are not
in P. Therefore P is a PN -Baer ideal. �

Corollary 2.2. Let N be a 2-primal near-ring. Then every PN -Baer ideal (resp.,
strongly PN -Baer ideal) of N is the intersection of every prime PN -Baer ideals
(resp., prime strongly PN -Baer ideals) containing it.

Proof. It is evident from Lemma 2.4 and Lemma 2.5. �

Lemma 2.6. Let N be a 2-primal near-ring and Q be a PN -ideal of N . Then
every minimal prime ideal belonging to Q is a minimal prime ideal of N .

Proof. Let Q be a PN -ideal and P a minimal prime ideal belonging to Q. Then
Q = O(K) for some multiplicative subset K of N and Q is reflexive. By
Theorem 2.5, we claim that for each q ∈ P, there exist xi ∈ N \P such that
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qt0x1q
t1x2q

t2x3...xnq
tn ∈ PN , where t′is are positive integers. Let q ∈ P. Then,

by Theorem 2.5, there exist xi ∈ N \P such that qt0x1qt1x2qt2x3...xnqtn ∈ Q =

O(K), so qt0x1q
t1x2q

t2x3...xnq
tnd ∈ PN for some d ∈ K. Since N is 2-primal,

we have q < d >< x1 >< x2 > ... < xn >⊆ PN . Clearly P ∩ K = φ and
therefore < d >< x1 >< x2 > ... < xn >* P. So there exists y ∈< d >< x1 ><

x2 > ... < xn > \P such that qy ∈PN . Hence P is minimal prime. �

Lemma 2.7. Suppose that for each u ∈ N , there is v ∈ N such that < PN :<

PN : u >>=< PN : v > . Then every PN -Baer ideal is strongly PN -Baer ideal.

Proof. Assume that for each u ∈ N , there is v ∈ N with < PN :< PN :

u >>=< PN : v > . Let Q be a PN -Baer ideal of N and < PN : c1 > ∩ <
PN : c2 >=< PN : c3 > for c1, c2 ∈ Q. By assumption, there exist c′1, c

′
2 ∈ N

with < PN < PN : c1 >>=< PN : c′1 > and < PN < PN : c2 >>=< PN :

c′2 > . Since c1 ∈< PN :< PN : c1 >> and c2 ∈< PN :< PN : c2 >>, we
have c1c′1, c2α

′
2 ∈ PN and c1 + c′1, c2 + c′2 ∈ D. Suppose c3 /∈ Q. By Lemma 2.4,

there is a prime PN -Baer ideal P of N such that Q ⊆ P and c3 /∈ P. Since
c3c
′
1c
′
2 ∈ PN , we get c′1 ∈ P or c′2 ∈ P. But in either case we have P ∩ D 6= φ,

as P is a PN -Baer ideal. Thus c3 ∈ Q and hence Q is a strongly PN -Baer
ideal. �

Theorem 2.6. If N is a 2-primal with identity, then the statements given below
are equivalent:

(i) Every ideal of N containing PN is a PN -ideal,
(ii) Every ideal of N containing PN is strongly PN -Baer ideal,

(iii) Every ideal of N containing PN is PN -Baer ideal,
(iv) For any s, t ∈ N , < PN : s >=< PN : t > implies < s >=< t >,

(v) For any s ∈ N , we have s+ s2 ∈PN .

Proof.
(i) ⇒ (ii) Let K ′ be an ideal of N . Then K ′ = O(R′) for some multiplicative

subset R′ of N . Let c1, c2 ∈ K ′ with < PN : c1 > ∩ < PN : c2 >=< PN : z >

for some z ∈ N . Then c1s1, c2s2 ∈ PN for some s1, s2 ∈ R′. Since s1, s2 ∈ R′

and s1s2 ∈< PN : c1 > ∩ < PN : c2 >, we have (s1s2)z ∈ PN . Thus
z = O(R′) = K ′ and hence K ′ is a strongly PN -Baer ideal of N .

(ii) ⇒ (iii) It is evident from the fact that each PN -ideal of N is a strongly
PN -Baer ideal of N .
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(iii) ⇒ (iv) It is trivial as every strongly PN -Baer ideal of N is PN -Baer
ideal of N .

(iv) ⇒ (v) For each s ∈ N , < PN : s >=< PN : s2 > . By (iv), < s >=<

s2 > which implies s+ s2 ∈< s > + < s2 >⊆PN .

(v)⇒ (i) Let I1 be an ideal of N with PN ⊆ I1 and let t ∈ I1. Then (1+ t)t ∈
PN . Take I∗ = {x ∈ N : < PN : z >⊆< PN :< PN : x > for some z ∈ I1}.
Then I∗ is a multiplicative closed subset of N and < PN : t >⊆< PN :< PN :

1 + t >> which imply 1 + t ∈ I∗ and t ∈ O(I∗), so I1 ⊆ O(I∗). Let r ∈ O(I∗).

Then rs ∈PN for some s ∈ I∗ with < PN : z >⊆< PN :< PN : s > for some
z ∈ I1. By (v), (1 + z)z ∈ PN implies 1 + z ∈< PN :< PN : s >> . Since
r ∈< PN : s >, we have (1 + z)r = r + zr ∈PN ⊆ I1 which implies r ∈ I1.

Thus O(I∗) ⊆ I1 and hence I1 is PN -ideal. �

Theorem 2.7. If N is 2-primal, then the statements given below are equivalent:

(i) For any c1 ∈ N , there is c2 ∈ N such that < PN :< PN : c1 >>=<

PN : c2 >,
(ii) Every PN -Baer ideal of N containing PN is an PN -ideal,

(iii) Every strongly PN -Baer ideal of N containing PN is an PN -ideal,
(iv) For X ⊆ N , < PN : X > is an PN −ideal.

Proof.
(i) ⇒ (ii) It is evident from Lemma 2.7 and Theorem 2.6. (ii) ⇒ (iii) ⇒ (iv)

are obvious. (iv) ⇒ (i) Let n ∈ I. Then by (iv), < PN :< PN : n >>= O(S)

for some multiplicative subset S of N and ns ∈ PN for some s ∈ S which
imply < PN :< PN : n >>⊆< PN : y > . Also < PN : y >⊆ O(S) =<

PN :< PN : n >> . Therefore < PN :< PN : n >>=< PN : y > . �
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