

Advances in Mathematics: Scientific Journal 9 (2020), no.3, 1339-1348

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.3.80 Spec. Issue on ICNTMMA

### ON EXTENSION OF PRIME RADICAL IN 2-PRIMAL NEAR-RINGS

B. ELAVARASAN, K. PORSELVI <sup>1</sup>, AND J. CATHERINE GRACE JOHN

ABSTRACT. In this paper, we study some characterizations of prime radical in 2-primal near-ring and introduce the notions of  $\mathcal{P}_{\mathcal{N}}$ -Baer ideals and strongly  $\mathcal{P}_{\mathcal{N}}$ -Baer ideals in 2-primal near-ring. Some equivalent conditions are established for  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal to be a strongly  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal.

#### 1. Preliminaries

Throughout this paper,  $\mathscr N$  denotes a zero symmetric right near-ring and all prime ideals are assumed to be proper in  $\mathscr N$ . For any undefined concepts and notations, we refer to Pilz [6]. Let  $\mathscr P_{\mathscr N}$  denote the prime radical of  $\mathscr N$ , for any ideal L of  $\mathscr N$ , P(L) denote the prime radical of L and  $\mathscr N(\mathscr N)$  the set of nilpotent elements of  $\mathscr N$ . An ideal  $P_r$  of  $\mathscr N$  is prime if for any ideals U,V of  $\mathscr N$ ,  $UV\subseteq P_r$  implies  $U\subseteq P_r$  or  $V\subseteq P_r$ . An ideal M of  $\mathscr N$  is semiprime ideal if for an ideal K of  $\mathscr N$ ,  $K^2\subseteq M$  implies  $K\subseteq M$ . An ideal J of  $\mathscr N$  is completely prime if for any  $u',v'\in \mathscr N$ ,  $u'v'\in J$  implies either  $u'\in J$  or  $v'\in J$ . An ideal J of  $\mathscr N$  is completely semiprime if for any  $u\in \mathscr N$ ,  $u^2\in J$  implies  $u\in J$ . For any non-empty subsets R,S of  $\mathscr N$ , we denote the set  $\{n\in \mathscr N:nS\subseteq R\}$  as < R:S>. For every ideal  $Q_i$  and  $K\subseteq \mathscr N$ ,  $< Q_i:K>$  is maximal element among  $\{< Q_i:Q_1>:Q_1>:Q_1\subseteq \mathscr N$ ,  $< Q_i:Q_1>\ne \mathscr N\}$  if and only if  $< Q_i:K>\ne \mathscr N$  and  $< Q_i:K>\subseteq Q_i:T>\ne \mathscr N$  implies that  $< Q_i:K>=< Q_i:T>$  for any subset T of  $\mathscr N$  [3]. If  $< I_1:K_1>$  is the maximal element among

<sup>&</sup>lt;sup>1</sup>corresponding author

<sup>2010</sup> Mathematics Subject Classification. 16Y30.

Key words and phrases. Near-rings, ideals, prime ideals, prime radical, multiplicative subset.

 $\{< I_1: K_1 >: K_1 \subseteq \mathcal{N}, < I_1: K_1 > \neq \mathcal{N}\}$ , then there is  $c_1 \in \mathcal{N}$  with  $c_1 \notin < I_1: K_1 >$  which implies  $c_1k_1 \notin I_1$  and  $< I_1: K_1 > \subseteq < I_1: k_1 > \neq \mathcal{N}$  for some  $k_1 \in K_1 \setminus I_1$ . So  $< I_1: K_1 > = < I_1: k_1 >$ . If  $\mathcal{N}$  has only one nilpotent element 0, then  $\mathcal{N}$  is reduced. If  $\mathscr{P}_{\mathcal{N}} = \mathcal{N}(\mathcal{N})$ , then  $\mathcal{N}$  is called 2-primal, see [1]. Clearly, every reduced near-ring is 2-primal, but 2-primal near-rings are not necessarily to be reduced, see Example 1.1 of [4]. If  $\mathcal{N}$  is 2-primal, then  $\mathscr{P}_{\mathcal{N}}$  is a completely semiprime ideal.

In [7], T. P. Speed has introduced the notion of Baer ideals in a commutative baer ring and later in [5], C. Jayaram has generalized baer ideals to a commutative semiprime ring and investigated properties of baer rings, regular rings and quasiregular rings by using baer ideals.

Following [5], an ideal J of  $\mathscr{N}$  with  $\mathscr{P}_{\mathscr{N}} \subseteq J$  is  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal if  $x \in J$ implies  $\langle \mathscr{P}_{\mathscr{N}} : \langle \mathscr{P}_{\mathscr{N}} : x \rangle \subseteq J$ . Also, an ideal J of  $\mathscr{N}$  with  $\mathscr{P}_{\mathscr{N}} \subseteq J$  is strongly  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal if for any  $a_1,b_1,c_1\in\mathscr{N},<\mathscr{P}_{\mathscr{N}}:a_1>\cap<\mathscr{P}_{\mathscr{N}}:$  $b_1>=<\mathscr{P}_{\mathscr{N}}:c_1>$  and  $a_1,b_1\in J$  imply  $c_1\in J$ . A subset  $M(\neq\phi)$  of  $\mathscr{N}$  is a multiplicative subset if  $0 \notin M$  and for  $a_1, b_1 \in M$  implies  $a_1b_1 \in M$ . Let D = $\{c_1 \in \mathcal{N} : \langle \mathcal{P}_{\mathcal{N}} : c_1 \rangle = \mathcal{P}_{\mathcal{N}} \}$ . Then  $\mathcal{P}_{\mathcal{N}} \cap D = \phi$  and D is a multiplicative closed subset of  $\mathcal{N}$ . For any multiplicative closed subset S of  $\mathcal{N}$ , we define  $O(S) = \{c_1 \in \mathcal{N} | c_1 s \in \mathcal{P}_{\mathcal{N}} \text{ for some } s \in S\}.$  For each multiplicative closed subset S of  $\mathcal{N}$ , O(S) is a  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal of  $\mathcal{N}$ . An ideal J of  $\mathcal{N}$  is an  $\mathcal{P}_{\mathcal{N}}$ ideal if there exists a multiplicative subset  $M_1$  of  $\mathcal{N}$  such that  $J = O(M_1)$ . Let Iand J be ideals of  $\mathcal{N}$  with  $J \subseteq I$ , I is a J-ideal of  $\mathcal{N}$  if  $I = O(M_1)$  for some multiplicative subset  $M_1$  of  $\mathcal{N}$ . If  $\mathcal{N}$  is 2-primal, then each minimal prime ideal is  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal. Indeed, if  $c_1 \in P_1$ , where  $P_1$  is minimal prime, then, by Theorem 3.5 of [4],  $\langle \mathscr{P}_{\mathscr{N}} : c_1 \rangle \not\subseteq P_1$  which implies  $\langle \mathscr{P}_{\mathscr{N}} : \langle \mathscr{P}_{\mathscr{N}} : c_1 \rangle \subseteq P_1$  $P_1$ , so  $P_1$  is  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal. Every  $\mathscr{P}_{\mathscr{N}}$ -ideal is a strongly  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal, and every strongly  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal of  $\mathscr{N}$  is a  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal, see Lemma 2.2. For any subset T of  $\mathcal{N}, < \mathcal{P}_{\mathcal{N}} : T > \text{is a strongly } \mathcal{P}_{\mathcal{N}}\text{-Baer ideal of } \mathcal{N}$ .

Clearly intersection of strongly  $\mathcal{P}_{\mathcal{N}}$ -Baer ideals (resp.,  $\mathcal{P}_{\mathcal{N}}$ -Baer ideals) is again a strongly  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal (resp.,  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal). It should be noted that our definition of strongly  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal(  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal) will coincide with that of Jayaram (1984) in a commutative semiprime ring.

## 2. Main Results

**Theorem 2.1.** If  $\mathcal{N}$  is zero-symmetric and if P'' is an ideal of  $\mathcal{N}$ , then the statements given below are equivalent:

- (i) P'' is prime,
- (ii) For any  $c_1, c_2 \in \mathcal{N}$ ,  $c_1 < c_2 > \subseteq P''$  implies  $c_1 \in P''$  or  $c_2 \in P''$ ,
- (iii) If  $A_1, A_2, ..., A_n$  are ideals of  $\mathcal{N}$ , then  $A_1A_2...A_n \subseteq P''$  implies  $A_i \subseteq P''$  for some i.

## Proof.

- (i) $\Rightarrow$ (ii) Suppose  $c_1 < c_2 > \subseteq P''$  for some  $c_1, c_2 \in \mathcal{N}$ . Then  $c_1 \in (P'' : < c_1 >)$ . Since  $(P'' : < c_1 >)$  is an ideal,  $< c_1 > \subseteq (P'' : < c_2 >)$  and hence  $< c_1 > < c_2 > \subseteq P''$  which implies  $< c_1 > \subseteq P''$  or  $< c_2 > \subseteq P''$ . i.e.,  $c_1 \in P''$  or  $c_2 \in P''$ .
- (ii) $\Rightarrow$ (iii) Let  $A_1, A_2, ..., A_n$  be ideals of  $\mathscr N$  with  $A_1A_2...A_n\subseteq P''$  and suppose that  $A_n\nsubseteq P''$ . We claim that  $A_1A_2...A_{n-1}\subseteq P''$ . Let  $c_1\in A_1A_2...A_{n-1}$  and let  $c_2\in A_n\backslash P''$ . Then  $c_1< c_2>\subseteq P''$ . Since  $c_2\notin P''$  by (ii), we have  $c_1\in P''$ . Thus  $A_1A_2...A_{n-1}\subseteq P''$ . Suppose  $A_{n-1}\nsubseteq P''$ . Then as earlier we can show that  $A_1A_2...A_{n-2}\subseteq P''$ . Proceeding in this way we get (iii).

$$(iii) \Rightarrow (i)$$
 It is obvious.

**Lemma 2.1.** If  $\mathcal{N}$  is 2-primal, then for any  $Z' \subseteq \mathcal{N}$ ;  $c_1, c_2 \in \mathcal{N}$ , we have

- (i)  $\langle \mathscr{P}_{\mathscr{N}} : Z' \rangle = \langle \mathscr{P}_{\mathscr{N}} : \langle Z' \rangle \rangle$  and  $Z' \subseteq \langle \mathscr{P}_{\mathscr{N}} : \langle \mathscr{P}_{\mathscr{N}} : Z' \rangle \rangle$ ,
- (ii)  $<\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:c_{1}c_{2}>>=<\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:c_{1}>>\cap<\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:c_{2}>>,$
- (iii) If  $c_1c_2 \in \mathscr{P}_{\mathscr{N}}$ , then  $\langle \mathscr{P}_{\mathscr{N}} : c_1 + c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : c_1 \rangle \cap \langle \mathscr{P}_{\mathscr{N}} : c_2 \rangle$ .

## Proof.

- (i) For  $t \in \mathcal{N}$ ,  $t \in \mathcal{P}_{\mathcal{N}} : Z' > \iff aZ' \subseteq \mathcal{P}_{\mathcal{N}} \iff a < Z' > \subseteq \mathcal{P}_{\mathcal{N}} \iff a \in \mathcal{P}_{\mathcal{N}} : \langle Z' \rangle >$ . Also if  $c_1 \in Z'$ , then for any  $t \in \mathcal{P}_{\mathcal{N}} : Z' >$ , we have  $tc_1 \in \mathcal{P}_{\mathcal{N}}$  which implies  $c_1 \in \mathcal{P}_{\mathcal{N}} : \langle \mathcal{P}_{\mathcal{N}} : Z' \rangle >$ .
- (ii) Clearly  $< \mathscr{P}_{\mathscr{N}} : < \mathscr{P}_{\mathscr{N}} : c_1 >> \cap < \mathscr{P}_{\mathscr{N}} : < c_2 >> \subseteq < \mathscr{P}_{\mathscr{N}} : < \mathscr{P}_{\mathscr{N}} : c_1 c_2 >>$ . If  $t \in < \mathscr{P}_{\mathscr{N}} : c_1 c_2 >>$ , then  $t < \mathscr{P}_{\mathscr{N}} : c_1 c_2 > \subseteq \mathscr{P}_{\mathscr{N}}$ , so for  $a \in < \mathscr{P}_{\mathscr{N}} : c_1 > \subseteq < \mathscr{P}_{\mathscr{N}} : c_1 c_2 >$  and  $b \in < \mathscr{P}_{\mathscr{N}} : c_2 > \subseteq < \mathscr{P}_{\mathscr{N}} : c_1 c_2 >$ ,  $ta \in \mathscr{P}_{\mathscr{N}}$  and  $tb \in \mathscr{P}_{\mathscr{N}}$  imply  $t \in < \mathscr{P}_{\mathscr{N}} : < \mathscr{P}_{\mathscr{N}} : c_1 >> \cap < \mathscr{P}_{\mathscr{N}} : < c_2 >>$ . So  $< \mathscr{P}_{\mathscr{N}} : < c_1 c_2 >> = < \mathscr{P}_{\mathscr{N}} : < \mathscr{P}_{\mathscr{N}} : c_1 >> \cap < \mathscr{P}_{\mathscr{N}} : < \mathscr{P}_{\mathscr{N}} : c_2 >>$ .
- (iii) If  $t \in \langle \mathscr{P}_{\mathscr{N}} : c_1 \rangle \cap \langle \mathscr{P}_{\mathscr{N}} : c_2 \rangle$ , then  $tc_1 \in \mathscr{P}_{\mathscr{N}}$  and  $tc_2 \in \mathscr{P}_{\mathscr{N}}$  which imply  $t(c_1 + c_2) \in \mathscr{P}_{\mathscr{N}}$ . Thus  $t \in \langle \mathscr{P}_{\mathscr{N}} : c_1 + c_2 \rangle$ . If  $s \in \langle \mathscr{P}_{\mathscr{N}} : c_1 + c_2 \rangle$ , then

 $s(c_1+c_2)\in\mathscr{P}_{\mathscr{N}}$  implies  $s(c_1+c_2)c_2\in\mathscr{P}_{\mathscr{N}}$  and  $s(c_1+c_2)c_1\in\mathscr{P}_{\mathscr{N}}$ . Since  $c_1c_2\in\mathscr{P}_{\mathscr{N}}$ , we have  $sc_2^2\in\mathscr{P}_{\mathscr{N}}$  and  $sc_1^2\in\mathscr{P}_{\mathscr{N}}$ . Since  $\mathscr{P}_{\mathscr{N}}$  is completely semiprime, we have  $sc_2\in\mathscr{P}_{\mathscr{N}}$  and  $sc_1\in\mathscr{P}_{\mathscr{N}}$  which imply  $s\in\mathscr{P}_{\mathscr{N}}:c_1>\cap\mathscr{P}_{\mathscr{N}}:c_2>$ . Therefore  $\mathscr{P}_{\mathscr{N}}:c_1+c_2>=<\mathscr{P}_{\mathscr{N}}:c_1>\cap\mathscr{P}_{\mathscr{N}}:c_2>$ .

**Theorem 2.2.** If  $\mathscr{N}$  is 2-primal,  $T = \{ < \mathscr{P}_{\mathscr{N}} : Q > : Q \subseteq \mathscr{N}, < \mathscr{P}_{\mathscr{N}} : Q > \neq \mathscr{N} \}$  and  $S \subseteq \mathscr{N}$  with  $S \nsubseteq \mathscr{P}_{\mathscr{N}}$ , then the statements given below are equivalent:

- (i)  $\langle \mathscr{P}_{\mathscr{N}} : S \rangle$  is maximal among T,
- (ii)  $\langle \mathscr{P}_{\mathscr{N}} : S \rangle$  is completely prime,
- (iii)  $\langle \mathscr{P}_{\mathscr{N}} : S \rangle$  is minimal prime.

## Proof.

- $\begin{array}{l} (i)\Rightarrow (ii) \text{ By assumption, } \exists y\in S\backslash \mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:S>=<\mathscr{P}_{\mathscr{N}}:y>. \text{ Since } \\ <\mathscr{P}_{\mathscr{N}}:y>\subseteq<\mathscr{P}_{\mathscr{N}}:y^2>\text{ and } y^3\notin \mathscr{P}_{\mathscr{N}},<\mathscr{P}_{\mathscr{N}}:y>=<\mathscr{P}_{\mathscr{N}}:y^2>. \text{ If } ab\in<<\mathscr{P}_{\mathscr{N}}:y>\text{ and } a\notin<\mathscr{P}_{\mathscr{N}}:y>\text{ for some } a,b\in\mathscr{N},\text{ then }<\mathscr{P}_{\mathscr{N}}:ya>\neq\mathscr{N}. \text{ By the maximality of }<\mathscr{P}_{\mathscr{N}}:y>,\text{ we have }b\in<\mathscr{P}_{\mathscr{N}}:ya>=<\mathscr{P}_{\mathscr{N}}:y>. \end{array}$
- $(ii) \Rightarrow (iii)$  Suppose that Q is prime with  $Q \subseteq < \mathscr{P}_{\mathscr{N}} : S >$ . Let  $y \in S \setminus \mathscr{P}_{\mathscr{N}}$  and  $a \in < \mathscr{P}_{\mathscr{N}} : S >$ . Then  $< a > < y > \in \mathscr{P}_{\mathscr{N}} \subseteq Q$ . Since  $y^2 \notin \mathscr{P}_{\mathscr{N}}$ , we have  $a \in Q$ . So  $Q = < \mathscr{P}_{\mathscr{N}} : S >$ .  $(iii) \Rightarrow (ii)$  It follows from Corollary 1.3 of [2].
- $(ii) \Rightarrow (i) \text{ Suppose that } < \mathscr{P}_{\mathscr{N}} : S > \subseteq < \mathscr{P}_{\mathscr{N}} : T > \neq \mathscr{N}. \text{ Then there is } y \in T \text{ such that } y \notin \mathscr{P}_{\mathscr{N}}. \text{ Let } a \in < \mathscr{P}_{\mathscr{N}} : T > . \text{ Then } ay \in \mathscr{P}_{\mathscr{N}} \subseteq < \mathscr{P}_{\mathscr{N}} : S >, \text{ so } a \in < \mathscr{P}_{\mathscr{N}} : S > \text{ or } y \in < \mathscr{P}_{\mathscr{N}} : S > . \text{ Since } y^2 \notin \mathscr{P}_{\mathscr{N}}, \text{ we have } y \notin < \mathscr{P}_{\mathscr{N}} : S > . \text{ Thus } a \in < \mathscr{P}_{\mathscr{N}} : S > \text{ and hence } < \mathscr{P}_{\mathscr{N}} : S > = < \mathscr{P}_{\mathscr{N}} : T > . \qquad \Box$

**Theorem 2.3.** If  $\mathcal{N}$  is 2-primal, then the maximality and minimality conditions of the elements on the set  $T = \{ \langle \mathscr{P}_{\mathcal{N}} : A_1 \rangle : A_1 \subseteq \mathcal{N}, \langle \mathscr{P}_{\mathcal{N}} : A_1 \rangle \neq \mathcal{N} \}$  are coincide.

*Proof.* Suppose a.c.c. holds on the set T and let  $<\mathscr{P}_{\mathscr{N}}: X_1>\supseteq<\mathscr{P}_{\mathscr{N}}: X_2>\supseteq$  ... be a descending chain on the set T. Then  $<\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}: X_1>>\subseteq<\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:X_2>>\subseteq$  ... is an ascending chain, which ends after finite steps.

Since  $\langle \mathscr{P}_{\mathscr{N}} : \langle \mathscr{P}_{\mathscr{N}} : \langle \mathscr{P}_{\mathscr{N}} : X_i \rangle > = \langle \mathscr{P}_{\mathscr{N}} : X_i \rangle$ , so the descending chain  $\langle \mathscr{P}_{\mathscr{N}} : \langle \mathscr{P}_{\mathscr{N}} : \langle \mathscr{P}_{\mathscr{N}} : X_1 \rangle > \geq \langle \mathscr{P}_{\mathscr{N}} : \langle \mathscr{P}_{\mathscr{N}} : \langle \mathscr{P}_{\mathscr{N}} : X_2 \rangle > \geq \ldots$  or the chain ends after finite steps. Similarly we can prove the converse part.  $\square$ 

**Theorem 2.4.** For any  $\mathcal{N} \neq \mathcal{P}_{\mathcal{N}}$ , the statements given below are equivalent:

•

- (i)  $\mathcal{N}$  is 2-primal and, for every  $c_1 \in \mathcal{N} \setminus \mathcal{P}_{\mathcal{N}}$ ,  $< \mathcal{P}_{\mathcal{N}} : c_1 >$  is contained in some maximal element among  $T = \{< \mathcal{P}_{\mathcal{N}} : X_n > : X_n \subseteq \mathcal{N}, < \mathcal{P}_{\mathcal{N}} : X_n > \neq \mathcal{N}\}$ ,
- (ii) The number of minimal completely prime ideals  $P_i$ , i = 1, 2, ..., n with  $\bigcap_{i=1}^n P_i = \mathscr{P}_{\mathscr{N}}$  of  $\mathscr{N}$  is finite.

Proof.

 $i)\Rightarrow ii)$  Assume that  $c_1c_2\in \mathscr{P}_{\mathscr{N}}$  for some  $c_1\in \mathscr{N}\backslash \mathscr{P}_{\mathscr{N}}$  and  $c_2\in \mathscr{N}\backslash \mathscr{P}_{\mathscr{N}}$ . Then there is a maximal element  $<\mathscr{P}_{\mathscr{N}}:c_3>$  in T such that  $c_3\in \mathscr{N}\backslash \mathscr{P}_{\mathscr{N}}$  and  $c_1\in <\mathscr{P}_{\mathscr{N}}:c_2>\subseteq <\mathscr{P}_{\mathscr{N}}:c_3>$ . By Theorem 2.2,  $<\mathscr{P}_{\mathscr{N}}:c_3>$  is completely prime ideal. Consider the set of all distinct minimal completely prime ideals  $P_\alpha$  of  $\mathscr{N}$  where  $P_\alpha=<\mathscr{P}_{\mathscr{N}}:z_\alpha>$   $(\alpha\in I)$  and  $z_\alpha\in \mathscr{N}\backslash \mathscr{P}_{\mathscr{N}}$ . Let  $P=\bigcap_{\alpha\in I}P_\alpha$ . Then  $z_\alpha\in <\mathscr{P}_{\mathscr{N}}:P_\alpha>$  and  $<\mathscr{P}_{\mathscr{N}}:P_\alpha>\subseteq <\mathscr{P}_{\mathscr{N}}:P>$  for all  $\alpha\in I$ .

We now claim that  $\mathscr{P}_{\mathcal{N}}=P$ . If not, then there is a maximal element  $<\mathscr{P}_{\mathcal{N}}:z_{\beta}>$  in T with  $z_{\beta}\notin\mathcal{N}\setminus\mathcal{P}_{\mathcal{N}}$  and  $<\mathscr{P}_{\mathcal{N}}:P>\subseteq<\mathscr{P}_{\mathcal{N}}:z_{\beta}>$ . So  $P_{\beta}=<\mathscr{P}_{\mathcal{N}}:z_{\beta}>$  for some  $\beta\in I$ , but  $z_{\beta}\in<\mathscr{P}_{\mathcal{N}}:P>$ , we have  $z_{\beta}^{2}\in z_{\beta}<\mathscr{P}_{\mathcal{N}}:P>\subseteq z_{\beta}<\mathscr{P}_{\mathcal{N}}:z_{\beta}>=z_{\beta}P_{\beta}\subseteq\mathscr{P}_{\mathcal{N}}$ , a contradiction. So  $P=\bigcap_{\alpha\in I}P_{\alpha}=\mathscr{P}_{\mathcal{N}}$ . We now prove that |I| is finite. If not, then for some  $\alpha_{1}\in I$ ,  $<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>$  is not contained in all  $<\mathscr{P}_{\mathcal{N}}:z_{\alpha}>$  which implies  $z_{\alpha_{1}}z_{\alpha}$  for all  $\alpha(\neq 1)\in I$ . Take some  $\alpha_{2}\in I$ ,  $<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\nsubseteq<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{2}}>$  which implies  $<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\subset<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{2}}>$ . If  $<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>-1$ . This shows that  $<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>\cap<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>-1$ . So the obtained descending chain  $<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>-1$ . So the obtained descending chain  $<\mathscr{P}_{\mathcal{N}}:z_{\alpha_{1}}>-1$ . Hence |I| is finite.

$$(ii) \Rightarrow (i)$$
 It is trivial as  $\mathscr{N}/\mathscr{P}_{\mathscr{N}}$  is reduced.

**Lemma 2.2.** Let  $N_1$  be an ideal of a 2-primal near-ring  $\mathscr{N}$  with  $\mathscr{P}_{\mathscr{N}} \subseteq N_1$ . If  $N_1$  is strongly  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal, then  $N_1$  is a  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal of  $\mathscr{N}$ .

*Proof.* Let  $N_1$  be a strongly  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal of  $\mathscr{N}$ . For  $c_1 \in N_1$  and let  $c_2 \in \mathscr{P}_{\mathscr{N}} : < \mathscr{P}_{\mathscr{N}} : c_1 >>$ . We now prove that  $< \mathscr{P}_{\mathscr{N}} : c_1 >= < \mathscr{P}_{\mathscr{N}} : c_1 c_2 >$ . Clearly  $< \mathscr{P}_{\mathscr{N}} : c_1 > \subseteq < \mathscr{P}_{\mathscr{N}} : c_1 c_2 >$ . Let  $a \in < \mathscr{P}_{\mathscr{N}} : c_1 c_2 >$ . Then  $ac_2 \in < \mathscr{P}_{\mathscr{N}} : c_1 c_2 >$ .

 $\mathscr{P}_{\mathscr{N}}: c_1 > .$  Since  $c_2 < \mathscr{P}_{\mathscr{N}}: c_1 > \subseteq \mathscr{P}_{\mathscr{N}}$ , we get  $ac_2^2 \in \mathscr{P}_{\mathscr{N}}$  implies  $ac_2 \in \mathscr{P}_{\mathscr{N}}$ , so  $a \in < \mathscr{P}_{\mathscr{N}}: c_2 > .$  Thus  $< \mathscr{P}_{\mathscr{N}}: c_2 > = < \mathscr{P}_{\mathscr{N}}: c_1c_2 >$  and hence  $c_2 \in N_1$ .  $\square$ 

**Lemma 2.3.** If Q is an ideal of a 2-primal near-ring  $\mathscr{N}$  with  $\mathscr{P}_{\mathscr{N}} \subseteq Q$ , then the statements given below are equivalent:

- (i) Q is  $\mathscr{P}_{\mathcal{N}}$ -Baer ideal,
- (ii) For any  $c_1, c_2 \in \mathcal{N}$ ,  $\langle \mathcal{P}_{\mathcal{N}} : c_1 \rangle = \langle \mathcal{P}_{\mathcal{N}} : c_2 \rangle$  and  $c_1 \in Q$  imply  $c_2 \in Q$ ,

(iii) 
$$Q = \bigcup_{c_1 \in Q} < \mathscr{P}_{\mathscr{N}} : < \mathscr{P}_{\mathscr{N}} : c_1 >> .$$

Proof.

- $(i) \Rightarrow (ii)$  and  $(iii) \Rightarrow (i)$  are evident.
- $\begin{array}{l} (ii) \, \Rightarrow \, (iii) \, \, \text{For any} \, \, c_1 \, \in Q \, \, \text{and} \, \, c_2 \, \in < \, \mathscr{P}_{\mathcal{N}} \, : < c_1 \, >>, \, \text{we have} < \\ \mathscr{P}_{\mathcal{N}} \, : \, c_1 \, > \subseteq < \, \mathscr{P}_{\mathcal{N}} \, : \, c_2 \, > \, \text{and} \, < \, \mathscr{P}_{\mathcal{N}} \, : \, c_2 \, > = < \, \mathscr{P}_{\mathcal{N}} \, : \, c_1 \, > \cup \, < \, \mathscr{P}_{\mathcal{N}} \, : \\ c_2 \, > = < \, \mathscr{P}_{\mathcal{N}} \, : \, c_1 c_2 \, > \, \text{as} \, \, c_2 \, < \, \mathscr{P}_{\mathcal{N}} \, : \, c_1 \, > \subseteq \, \mathscr{P}_{\mathcal{N}}. \, \, \text{Since} \, \, c_1 c_2 \, \in \, Q, \, \text{we have} \\ c_2 \, \in \, Q. \, \, \text{So}, \, \bigcup_{c_1 \in Q} \, < \, \mathscr{P}_{\mathcal{N}} \, : < \, \mathscr{P}_{\mathcal{N}} \, : \, c_1 \, > > \subseteq \, Q. \, \, \text{Since for any} \, \, c_1 \, \in \, \mathscr{N}, \, \text{we have} \\ \end{array}$

 $c_1 \in <\mathscr{P}_{\mathscr{N}} : <\mathscr{P}_{\mathscr{N}} : c_1 >>$ . Thus  $Q \subseteq \bigcup_{c_1 \in Q} <\mathscr{P}_{\mathscr{N}} : <\mathscr{P}_{\mathscr{N}} : c_1 >>$  and hence

$$Q = \bigcup_{c_1 \in Q} \langle \mathcal{P}_{\mathcal{N}} : \langle \mathcal{P}_{\mathcal{N}} : c_1 \rangle \rangle.$$

**Lemma 2.4.** If Q is a  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal of a 2-primal near-ring  $\mathscr{N}$ , then  $Q = \mathscr{P}_{\mathscr{N}}(Q)$ .

*Proof.* Let  $c_1 \in \mathscr{P}_{\mathscr{N}}(Q)$ . Then, by Proposition 2.94 of [6], we can find a positive integer n such that  $c_1^n \in Q$ . Since  $\mathscr{N}$  is 2-primal, we get  $\langle \mathscr{P}_{\mathscr{N}} : c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : c_1^n \rangle$ . By Lemma 2.3, we have  $c_1 \in Q$ . Thus  $\mathscr{P}_{\mathscr{N}}(Q) \subseteq Q$  and hence  $Q = \mathscr{P}_{\mathscr{N}}(Q)$ .

**Corollary 2.1.** For every strongly  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal Q of a 2-primal near-ring  $\mathscr{N}$ , we have  $Q = \mathscr{P}_{\mathscr{N}}(Q)$ .

*Proof.* It follows from Lemma 2.2 and Lemma 2.4.

**Theorem 2.5.** If  $I_1$  is a reflexive ideal of  $\mathcal{N}$  and P'' is prime with  $I_1 \subseteq P''$ , then the statements given below are equivalent:

- (i) P'' is a minimal prime,
- (ii) For every  $a \in P''$ , there exist  $x_i \in \mathcal{N} \setminus P''$  such that  $a^{t_0}x_1a^{t_1}x_2a^{t_2}x_3...x_na^{t_n} \in I_1$ , where  $t_i's$  are positive integers with  $t_0$  and  $t_n$  allowed to be zero.

Proof.

- $(i)\Rightarrow (ii)$  Let  $a\in P''$  and  $T=\{a^{t_0}x_1a^{t_1}x_2a^{t_2}x_3...x_na^{t_n}, \text{ where } x_i\in \mathcal{N}\backslash P''$  and  $t_i's$  are the positive integers with  $t_0$  and  $t_n$  allowed to be zero}. Then  $F=T\cup (\mathcal{N}\backslash P'')$  is a multiplicative closed subset of  $\mathcal{N}$ . If  $I_1\cap F=\phi$ , then, by Proposition 2.1.6 of [1], there exists a proper maximal ideal  $M_1$  with  $M_1\cap F=\phi$ . Since  $a\notin M_1$ , we have  $M_1+< a>=\mathcal{N}$  which implies b+c=1 for some  $b\in M_1$  and  $c\in A$  and  $c\in A$  so since  $a\in P''$ , we have  $b\in \mathcal{N}\backslash P''$ . So  $b\in M_1\cap F\neq \{\phi\}$ , a contradiction. Thus  $I_1\cap F=\phi$  and hence  $I_1\cap T\neq \{\phi\}$ .
- $(ii)\Rightarrow (i)$  Suppose that K is a prime ideal with  $I_1\subseteq K\subseteq P''$ . Then for any  $a\in P''$ , there are  $x_i\in \mathcal{N}\backslash P''$  such that  $a^{t_0}x_1a^{t_1}x_2a^{t_2}x_3...x_na^{t_n}\in I_1$  where  $t_i's$  are positive integers with  $t_0$  and  $t_n$  allowed to be zero. Since  $I_1$  is reflexive ideal, we have  $< a>^{t_0}< x_1>< a>^{t_1}< x_2>...< x_n>< a>^{t_n}\subseteq I_1\subseteq K$  which implies  $a\in K$ . Thus  $P''\subseteq K$  and hence P'' is a minimal prime.

**Lemma 2.5.** Let  $\mathcal{N}$  be a 2-primal near-ring and K a  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal (resp., strongly  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal) of  $\mathcal{N}$ . Then each minimal prime ideal P of  $\mathcal{N}$  containing K is a  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal (resp., strongly  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal) of  $\mathcal{N}$ .

Proof. Suppose that K is  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal and P is minimal prime containing K. Let  $\langle \mathscr{P}_{\mathscr{N}} : c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : c_2 \rangle$  and  $c_1 \in P$ . Then by Theorem 2.5, there exist  $x_i \in \mathscr{N} \backslash P$  such that  $c_1^{t_0} x_1 c_1^{t_1} x_2 c_1^{t_2} x_3 ... x_n c_1^{t_n} \in K$  where  $t_i's$  are positive integers with  $t_0$  and  $t_n$  allowed to be zero. Since  $\langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_1 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2 \rangle = \langle \mathscr{P}_{\mathscr{N}} : x_1 x_2 ... x_n c_2$ 

**Corollary 2.2.** Let  $\mathcal N$  be a 2-primal near-ring. Then every  $\mathscr P_{\mathcal N}$ -Baer ideal (resp., strongly  $\mathscr P_{\mathcal N}$ -Baer ideal) of  $\mathcal N$  is the intersection of every prime  $\mathscr P_{\mathcal N}$ -Baer ideals (resp., prime strongly  $\mathscr P_{\mathcal N}$ -Baer ideals) containing it.

*Proof.* It is evident from Lemma 2.4 and Lemma 2.5. □

**Lemma 2.6.** Let  $\mathcal{N}$  be a 2-primal near-ring and Q be a  $\mathcal{P}_{\mathcal{N}}$ -ideal of  $\mathcal{N}$ . Then every minimal prime ideal belonging to Q is a minimal prime ideal of  $\mathcal{N}$ .

*Proof.* Let Q be a  $\mathscr{P}_{\mathscr{N}}$ -ideal and P a minimal prime ideal belonging to Q. Then Q = O(K) for some multiplicative subset K of  $\mathscr{N}$  and Q is reflexive. By Theorem 2.5, we claim that for each  $q \in P$ , there exist  $x_i \in \mathscr{N} \setminus P$  such that

**Lemma 2.7.** Suppose that for each  $u \in \mathcal{N}$ , there is  $v \in \mathcal{N}$  such that  $\langle \mathcal{P}_{\mathcal{N}} : \langle \mathcal{P}_{\mathcal{N}} : u \rangle = \langle \mathcal{P}_{\mathcal{N}} : v \rangle$ . Then every  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal is strongly  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal.

*Proof.* Assume that for each  $u \in \mathcal{N}$ , there is  $v \in \mathcal{N}$  with  $\langle \mathcal{P}_{\mathcal{N}} : \langle \mathcal{P}_{\mathcal{N}} : u \rangle > = \langle \mathcal{P}_{\mathcal{N}} : v \rangle$ . Let Q be a  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal of  $\mathcal{N}$  and  $\langle \mathcal{P}_{\mathcal{N}} : c_1 \rangle \cap \langle \mathcal{P}_{\mathcal{N}} : c_2 \rangle = \langle \mathcal{P}_{\mathcal{N}} : c_3 \rangle$  for  $c_1, c_2 \in Q$ . By assumption, there exist  $c'_1, c'_2 \in \mathcal{N}$  with  $\langle \mathcal{P}_{\mathcal{N}} \langle \mathcal{P}_{\mathcal{N}} : c_1 \rangle > = \langle \mathcal{P}_{\mathcal{N}} : c'_1 \rangle$  and  $\langle \mathcal{P}_{\mathcal{N}} \langle \mathcal{P}_{\mathcal{N}} : c_2 \rangle > = \langle \mathcal{P}_{\mathcal{N}} : c'_2 \rangle$ , we have  $c_1c'_1, c_2\alpha'_2 \in \mathcal{P}_{\mathcal{N}}$  and  $c_1 + c'_1, c_2 + c'_2 \in D$ . Suppose  $c_3 \notin Q$ . By Lemma 2.4, there is a prime  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal P of  $\mathcal{N}$  such that  $Q \subseteq P$  and  $c_3 \notin P$ . Since  $c_3c'_1c'_2 \in \mathcal{P}_{\mathcal{N}}$ , we get  $c'_1 \in P$  or  $c'_2 \in P$ . But in either case we have  $P \cap D \neq \phi$ , as P is a  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal. Thus  $c_3 \in Q$  and hence Q is a strongly  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal.

**Theorem 2.6.** If  $\mathcal{N}$  is a 2-primal with identity, then the statements given below are equivalent:

- (i) Every ideal of  $\mathcal{N}$  containing  $\mathcal{P}_{\mathcal{N}}$  is a  $\mathcal{P}_{\mathcal{N}}$ -ideal,
- (ii) Every ideal of  $\mathcal N$  containing  $\mathscr P_{\mathcal N}$  is strongly  $\mathscr P_{\mathcal N}$ -Baer ideal,
- (iii) Every ideal of  $\mathcal N$  containing  $\mathcal P_{\mathcal N}$  is  $\mathcal P_{\mathcal N}$ -Baer ideal,
- (iv) For any  $s, t \in \mathcal{N}$ ,  $\langle \mathcal{P}_{\mathcal{N}} : s \rangle = \langle \mathcal{P}_{\mathcal{N}} : t \rangle$  implies  $\langle s \rangle = \langle t \rangle$ ,
- (v) For any  $s \in \mathcal{N}$ , we have  $s + s^2 \in \mathcal{P}_{\mathcal{N}}$ .

# Proof.

- $(i)\Rightarrow (ii)$  Let K' be an ideal of  $\mathscr{N}$ . Then K'=O(R') for some multiplicative subset R' of  $\mathscr{N}$ . Let  $c_1,c_2\in K'$  with  $<\mathscr{P}_{\mathscr{N}}:c_1>\cap<\mathscr{P}_{\mathscr{N}}:c_2>=<\mathscr{P}_{\mathscr{N}}:z>$  for some  $z\in\mathscr{N}$ . Then  $c_1s_1,c_2s_2\in\mathscr{P}_{\mathscr{N}}$  for some  $s_1,s_2\in R'$ . Since  $s_1,s_2\in R'$  and  $s_1s_2\in<\mathscr{P}_{\mathscr{N}}:c_1>\cap<\mathscr{P}_{\mathscr{N}}:c_2>$ , we have  $(s_1s_2)z\in\mathscr{P}_{\mathscr{N}}$ . Thus z=O(R')=K' and hence K' is a strongly  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal of  $\mathscr{N}$ .
- $(ii)\Rightarrow (iii)$  It is evident from the fact that each  $\mathscr{P}_{\mathscr{N}}$ -ideal of  $\mathscr{N}$  is a strongly  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal of  $\mathscr{N}$ .

- $(iii) \Rightarrow (iv)$  It is trivial as every strongly  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal of  $\mathscr{N}$  is  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal of  $\mathscr{N}$ .
- $(iv) \Rightarrow (v)$  For each  $s \in \mathcal{N}, < \mathscr{P}_{\mathcal{N}} : s > = < \mathscr{P}_{\mathcal{N}} : s^2 >$  . By (iv),  $< s > = < s^2 >$  which implies  $s + s^2 \in < s > + < s^2 > \subseteq \mathscr{P}_{\mathcal{N}}$ .
- $(v)\Rightarrow (i) \text{ Let } I_1 \text{ be an ideal of } \mathscr{N} \text{ with } \mathscr{P}_{\mathscr{N}}\subseteq I_1 \text{ and let } t\in I_1. \text{ Then } (1+t)t\in \mathscr{P}_{\mathscr{N}}. \text{ Take } I_*=\{x\in\mathscr{N}:<\mathscr{P}_{\mathscr{N}}:z>\subseteq<\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:x>\text{ for some } z\in I_1\}.$  Then  $I_*$  is a multiplicative closed subset of  $\mathscr{N}$  and  $<\mathscr{P}_{\mathscr{N}}:t>\subseteq<\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:$  1+t>> which imply  $1+t\in I_*$  and  $t\in O(I_*),$  so  $I_1\subseteq O(I_*).$  Let  $r\in O(I_*).$  Then  $rs\in\mathscr{P}_{\mathscr{N}}$  for some  $s\in I_*$  with  $<\mathscr{P}_{\mathscr{N}}:z>\subseteq<\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:s>$  for some  $z\in I_1.$  By  $(v),\ (1+z)z\in\mathscr{P}_{\mathscr{N}}$  implies  $1+z\in<\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:s>>$ . Since  $r\in<\mathscr{P}_{\mathscr{N}}:s>$ , we have  $(1+z)r=r+zr\in\mathscr{P}_{\mathscr{N}}\subseteq I_1$  which implies  $r\in I_1.$  Thus  $O(I_*)\subseteq I_1$  and hence  $I_1$  is  $\mathscr{P}_{\mathscr{N}}$ -ideal.  $\square$

**Theorem 2.7.** *If*  $\mathcal{N}$  *is 2-primal, then the statements given below are equivalent:* 

- (i) For any  $c_1 \in \mathcal{N}$ , there is  $c_2 \in \mathcal{N}$  such that  $\langle \mathcal{P}_{\mathcal{N}} : \langle \mathcal{P}_{\mathcal{N}} : c_1 \rangle > = \langle \mathcal{P}_{\mathcal{N}} : c_2 \rangle$ ,
- (ii) Every  $\mathcal{P}_{\mathcal{N}}$ -Baer ideal of  $\mathcal{N}$  containing  $\mathcal{P}_{\mathcal{N}}$  is an  $\mathcal{P}_{\mathcal{N}}$ -ideal,
- (iii) Every strongly  $\mathscr{P}_{\mathscr{N}}$ -Baer ideal of  $\mathscr{N}$  containing  $\mathscr{P}_{\mathscr{N}}$  is an  $\mathscr{P}_{\mathscr{N}}$ -ideal,
- (iv) For  $X \subseteq \mathcal{N}$ ,  $< \mathcal{P}_{\mathcal{N}} : X >$ is an  $\mathcal{P}_{\mathcal{N}}$ ideal.

## Proof.

 $\begin{array}{l} (i)\Rightarrow (ii) \text{ It is evident from Lemma 2.7 and Theorem 2.6. } (ii)\Rightarrow (iii)\Rightarrow (iv)\\ \text{are obvious. } (iv)\Rightarrow (i) \text{ Let } n\in I. \text{ Then by } (iv), <\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:n>>=O(S)\\ \text{for some multiplicative subset } S \text{ of } \mathscr{N} \text{ and } ns\in\mathscr{P}_{\mathscr{N}} \text{ for some } s\in S \text{ which imply } <\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:n>>\subseteq <\mathscr{P}_{\mathscr{N}}:y>. \text{ Also } <\mathscr{P}_{\mathscr{N}}:y>\subseteq O(S)=<\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:n>> . \text{ Therefore } <\mathscr{P}_{\mathscr{N}}:<\mathscr{P}_{\mathscr{N}}:n>>=<\mathscr{P}_{\mathscr{N}}:y>. \end{array}$ 

#### REFERENCES

- [1] G BIRKENMEIER, H. HEATHERLY, E. LEE: Prime Ideals and Prime Radicals in Near-Rings, Mh. Math., 117 (1994), 179–197.
- [2] G. BIRKENMEIER, H. HEATHERLY, E. LEE: *Completely Prime Ideals and Radicals in Near-Rings*, Near-Rings and Near-Fields, Mathematics and Its Applications, **336** (1995), 63–73.
- [3] W. H. CORNISH, P. N. STEWART: Rings with no nilpotent elements and with the maximum condition on annihilators, Canad. Math. Bull., 17(1) (1974), 35–38.
- [4] P. DHEENA, B. ELAVARASAN: An Ideal-Based Zero-Divisor Graph of 2-Primal Near-rings, Bull. Korean Math. Soc., 46(6) (2009), 1051–1060.

- [5] C. JAYARAM: Baer ideals in commutative semiprime rings, Indian J. pure appl. Math., **15**(8) (1984), 855–864.
- [6] G. PILZ: Near-Rings, North-Holland Publishing Company, Amsterdam, 1983.
- [7] T. P. Speed: A note on commutative Baer rings, J. Aust. Math. Soc., 14) (1968), 257–263.

DEPARTMENT OF MATHEMATICS

KARUNYA INSTITUTE OF TECHNOLOGY AND SCIENCES

COIMBATORE - 641 114, INDIA

Email address: belavarasan@gmail.com

DEPARTMENT OF MATHEMATICS

KARUNYA INSTITUTE OF TECHNOLOGY AND SCIENCES

COIMBATORE - 641 114, INDIA

Email address: porselvi94@yahoo.co.in

DEPARTMENT OF MATHEMATICS

KARUNYA INSTITUTE OF TECHNOLOGY AND SCIENCES

COIMBATORE - 641 114, INDIA

Email address: catherinegracejohn@gmail.com