

Advances in Mathematics: Scientific Journal 9 (2020), no.3, 1433–1443

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.3.90 Spec. Issue on ICNTMMA

AN APPLICATION OF PASCAL DISTRIBUTION SERIES ON CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS

K. VIJAYA¹ AND V. MALATHI

ABSTRACT. In this paper, we examine the connections between the new subclasses of $\gamma-$ parabolic starlike and $\gamma-$ uniformly convex functions of order δ by using a convolution operator involving the Pascal distribution series. Further we point out significance of our main results .

1. Introduction

Denote the class of analytic functions by A comprising functions of the form

(1.1)
$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j, \quad z \in \mathbb{U}.$$

As usual, we denote by **S** the subclass of **A** whose members are normalized by f(0) = 0 = f'(0) - 1 and also univalent in \mathbb{U} . Denote by **T** the subclass of **A** comprising of functions whose nonzero coefficients from second on, is given by $f(z) = z - \sum_{j=2}^{\infty} |a_j| z^j, z \in \mathbb{U}$ is introduced and studied by Silverman [12]. For functions $f \in \mathbf{A}$ given by (1.1) and $g \in \mathbf{A}$ given by $g(z) = z + \sum_{j=2}^{\infty} b_j z^j$, we define the Hadamard product (or convolution) of f and g by

$$(f * g)(z) = z + \sum_{j=2}^{\infty} a_j b_j z^j, \quad z \in \mathbb{U}.$$

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Univalent, starlike, convex, uniformly starlike functions, uniformly convex functions, Pascal distribution series.

Inspired by the earlier work of Rnning [11], Bharathi et al., [1] defined the following subclass of S namely $\gamma-$ parabolic starlike and $\gamma-$ uniformly convex functions ($-1 < \delta \le 1$, $\gamma \ge 0$):

(1)
$$\mathbf{S}_{P}(\delta, \gamma) = \left\{ f \in \mathcal{A} : \Re\left(\frac{zf'(z)}{f(z)} - \delta\right) > \gamma \left| \frac{zf'(z)}{f(z)} - 1 \right|, z \in \mathbb{U} \right\}$$

(2)
$$UCV(\delta, \gamma) = \left\{ f \in \mathcal{A} : \Re\left(\frac{zf'(z)}{f(z)} - \delta\right) > \gamma \left| \frac{zf'(z)}{f(z)} - 1 \right|, z \in \mathbb{U} \right\}.$$

We note that $f \in \mathbf{UCV}(\delta, \gamma) \Leftrightarrow zf' \in \mathbf{S}_P(\delta, \gamma)$.

Remark 1.1. It is of importance to state that $UCV(\delta, 0) = K(\delta)$ and $S_P(\delta, 0) = S^*(\delta)$ (See [12]).

We consider the following subclasses of A studied in [5].

For $0 \le \mu < 1$, $0 \le \delta < 1$, $\gamma \ge 0$, and $f \in \mathbf{A}$ we let $\mathbf{S}_P(\mu, \delta, \gamma)$ be the subclass of \mathbf{A} satisfying the analytic criterion

$$\Re\left(\frac{zf'(z)}{(1-\mu)f(z)+\mu zf'(z)}-\delta\right) > \gamma \left|\frac{zf'(z)}{(1-\mu)f(z)+\mu zf'(z)}-1\right|, \ z \in \mathbb{U},$$

and also, let $UCV(\mu, \delta, \gamma)$ be the subclass of A satisfying the analytic criterion

$$\Re\left(\frac{f'(z)+zf''(z)}{f'(z)+\mu zf''(z)}-\delta\right) > \gamma \left|\frac{f'(z)+zf''(z)}{f'(z)+\mu zf''(z)}-1\right|, \ z \in \mathbb{U}.$$

By suitably specializing the parameters μ , δ , γ as mentioned in Murugusundaramoorthy and Magesh [5], we get various special classes of S and T. Further we recall the following results for f to be in the subclasses $\mathbf{S}_P(\mu, \delta, \gamma)$, $\mathbf{TS}_P(\mu, \delta, \gamma)$, $\mathbf{UCV}(\mu, \delta, \gamma)$ and $\mathbf{UCT}(\mu, \delta, \gamma)$ as given in [5].

Lemma 1.1. Let f be given by (1.1) is in $S_P(\mu, \delta, \gamma)$ if

$$\sum_{j=2}^{\infty} [j(1+\gamma) - (\delta + \gamma)(1+j\mu - \mu)] |a_j| \le 1 - \delta.$$

Lemma 1.2. A function $f(z) = z - \sum_{j=2}^{\infty} |a_j| z^j$, is in $\mathbf{TS}_P(\mu, \delta, \gamma)$ if and only if

$$\sum_{j=2}^{\infty} [j(1+\gamma) - (\delta + \gamma)(1+j\mu - \mu)] |a_j| \le 1 - \delta.$$

Lemma 1.3. Let f be given by (1.1) is in $UCV(\mu, \delta, \gamma)$ if

$$\sum_{j=2}^{\infty} j[j(1+\gamma) - (\delta + \gamma)(1+j\mu - \mu)] |a_j| \le 1 - \delta.$$

Lemma 1.4. A function $f(z)=z-\sum_{j=2}^{\infty}|a_j|z^j$, is in ${\bf UCT}(\mu,\delta,\gamma)$ if and only if

$$\sum_{j=2}^{\infty} j[j(1+\gamma) - (\delta + \gamma)(1+j\mu - \mu)] |a_j| \le 1 - \delta.$$

A variable χ is said to be *Pascal distribution* if it takes the values $0, 1, 2, 3, \ldots$ with probabilities

$$(1-q)^{\vartheta}$$
, $\frac{q^{\vartheta}(1-q)^{\vartheta}}{1!}$, $\frac{q^{2}\vartheta(\vartheta+1)(1-q)^{\vartheta}}{2!}$, $\frac{q^{3}\vartheta(\vartheta+1)(\vartheta+2)(1-q)^{\vartheta}}{3!}$, ... respectively, where q and ϑ are called the parameters, and thus

$$P(\chi = k) = \sum_{j=2}^{\infty} {k + \vartheta - 1 \choose \vartheta - 1} q^{k} (1 - q)^{\vartheta}, k = 0, 1, 2, 3, \dots$$

Lately, El-Deeb [3] gave a power series representation , whose coefficients are probabilities of Pascal distribution

$$\Psi_q^{\vartheta}(z) = z + \sum_{j=2}^{\infty} \binom{j+\vartheta-2}{\vartheta-1} \cdot q^{j-1} (1-q)^{\vartheta} z^j, \qquad z \in \mathbb{U},$$

where $\vartheta \geq 1; 0 \leq q \leq 1$ and we note that, by ratio test the radius of convergence of above series is infinity. Recently Murugusundaramoorthy et al., [7] using the concept of convolution or hadamard product, defined the linear tranformation $\mathbf{I}_a^{\vartheta}(z): \mathbf{A} \to \mathbf{A}$ defined by the

$$\mathbf{I}_q^{\vartheta} f(z) = \Psi_q^{\vartheta}(z) * f(z) = z + \sum_{j=2}^{\infty} {j+\vartheta-2 \choose \vartheta-1} \cdot q^{j-1} (1-q)^{\vartheta} a_j z^j, \qquad z \in \mathbb{U},$$

and also defined

$$\Phi_q^{\vartheta}(z) = 2z - \Psi_q^{\vartheta}(z) = z - \sum_{j=2}^{\infty} {j+\vartheta-2 \choose \vartheta-1} \cdot q^{j-1} (1-q)^{\vartheta} z^j, \qquad z \in \mathbb{U}.$$

Motivated by results on connections between various subclasses of analytic univalent functions by using Poisson distribution series (see [6,8,10] and references cited there in), in this paper we discussed connections between the new subclasses $\mathbf{S}_P(\mu,\delta,\gamma)$, and $\mathbf{UCV}(\mu,\delta,\gamma)$ by using a convolution operator defined through the Pascal distribution series. Finally, we give conditions for the integral operator $\mathbf{G}(\vartheta,z)=\int_0^z \frac{\mathbf{I}_q^\vartheta f(t)}{t}dt$ belonging to the classes $\mathbf{TS}_P(\mu,\delta,\gamma)$ and $\mathbf{UCT}(\mu,\delta,\gamma)$.

2. INCLUSION RESULTS

For convenience throughout in the sequel, we use the following notations:

$$\sum_{j=0}^{\infty} \binom{j+\vartheta-1}{\vartheta-1} q^j = \frac{1}{(1-q)^{\vartheta}}, \qquad \sum_{j=0}^{\infty} \binom{j+\vartheta-2}{m-2} q^j = \frac{1}{(1-q)^{\vartheta-1}},$$

$$(2.1) \sum_{j=0}^{\infty} \binom{j+\vartheta}{\vartheta} q^j = \frac{1}{(1-q)^{\vartheta+1}} \text{ and } \sum_{j=0}^{\infty} \binom{j+\vartheta+1}{\vartheta+1} q^j = \frac{1}{(1-q)^{\vartheta+2}}.$$

By simple computation we state the following:

(2.2)
$$\sum_{j=2}^{\infty} {j+\vartheta-2 \choose \vartheta-1} q^{j-1} = \sum_{j=0}^{\infty} {j+\vartheta-1 \choose \vartheta-1} q^{j} - 1,$$

(2.3)
$$\sum_{j=2}^{\infty} (j-1) {j+\vartheta-2 \choose \vartheta-1} q^{j-1} = q \ m \sum_{j=0}^{\infty} {j+\vartheta \choose \vartheta} q^{j}$$

and

(2.4)
$$\sum_{j=2}^{\infty} (j-1)(j-2) \binom{j+\vartheta-2}{\vartheta-1} q^{j-1} = q^2 \ m(m+1) \sum_{n=0}^{\infty} \binom{j+m+1}{m+1} q^j.$$

Throughout this paper unless otherwise stated, we let

$$0 < \mu < 1, 0 < \delta < 1, \gamma > 0$$
, and $0 < q < 1$.

Theorem 2.1. If $\vartheta \geq 1$, then $\Phi_q^m(z) \in \mathbf{TS}_P(\mu, \delta, \gamma)$ if and only if

$$(2.5) [1 + \gamma - \mu(\delta + \gamma)] \frac{q \,\vartheta}{(1 - q)^{\vartheta + 1}} \le 1 - \delta$$

Proof. Since $\Phi_q^{\vartheta}(z)=2z-\Psi_q^{\vartheta}(z)=z-\sum\limits_{j=2}^{\infty}{j+\vartheta-2\choose \vartheta-1}\cdot q^{j-1}(1-q)^{\vartheta}z^j$, according to Lemma 1.2, we must show that

$$\Lambda_1(\mu, \delta, \gamma) = \sum_{j=2}^{\infty} [j(1+\gamma) - (\delta+\gamma)(1+j\mu-\mu)] \binom{j+\vartheta-2}{\vartheta-1} q^{j-1} (1-q)^{\vartheta} \le (1-\delta).$$

By writing j = j - 1 we get

$$\Lambda_1(\mu, \delta, \gamma) = [1 + \gamma - \mu(\delta + \gamma)] \sum_{j=2}^{\infty} (j-1) \binom{j+\vartheta-2}{\vartheta-1} q^{j-1} (1-q)^{\vartheta}$$
$$+ (1-\delta) \sum_{j=2}^{\infty} \binom{j+\vartheta-2}{\vartheta-1} q^{j-1} (1-q)^{\vartheta}.$$

From (2.2) and (2.3) we get

$$\Lambda_{1}(\mu, \delta, \gamma) = [1 + \gamma - \mu(\delta + \gamma)]q \,\vartheta(1 - q)^{\vartheta} \sum_{n=0}^{\infty} {j + \vartheta \choose \vartheta} q^{j}$$

$$+ (1 - \delta)(1 - q)^{\vartheta} \left[\sum_{n=0}^{\infty} {j + \vartheta - 1 \choose \vartheta - 1} q^{j} - 1 \right]$$

$$= [1 + \gamma - \mu(\delta + \gamma)] \frac{q \,\vartheta}{1 - q} + (1 - \delta) \left[1 - (1 - q)^{\vartheta} \right].$$

But $\Lambda_1(\mu, \delta, \gamma)$ is bounded above by $1 - \delta$ if and only if (2.5) holds.

Theorem 2.2. If $\vartheta \geq 1$, then $\Phi_q^{\vartheta}(z) \in \mathbf{UCT}(\mu, \delta, \gamma)$ if and only if

$$(2.6) \ [1+\gamma-\mu(\delta+\gamma)] \frac{q^2 \ \vartheta(\vartheta+1)}{(1-q)^{\vartheta+2}} + [3+2\gamma-\delta-2\mu(\delta+\gamma)] \frac{q \ \vartheta}{(1-q)^{\vartheta+1}} \le 1-\delta.$$

Proof. In view of Lemma 1.4,we need to show that

$$\Lambda_2(\mu, \delta, \gamma) = \sum_{j=2}^{\infty} j[j(1+\gamma) - (\delta+\gamma)(1+j\mu-\mu)] \binom{j+\vartheta-2}{\vartheta-1} q^{j-1} (1-q)^{\vartheta} \le (1-\delta).$$

Now

$$\Lambda_2(\mu, \delta, \gamma) = [1 + \gamma - \mu(\delta + \gamma)] \sum_{j=2}^{\infty} j^2 \binom{j + \vartheta - 2}{\vartheta - 1} q^{j-1} (1 - q)^{\vartheta}$$
$$- (\delta + \gamma)(1 - \mu) \sum_{j=2}^{\infty} j \binom{j + \vartheta - 2}{\vartheta - 1} q^{j-1} (1 - q)^{\vartheta}$$

Writing
$$j^2=(j-1)(j-2)+3(j-1)+1$$
 and $j=(j-1)+1$, we get
$$\Lambda_2(\mu,\delta,\gamma)=[1+\gamma-\mu(\delta+\gamma)]\sum_{j=2}^\infty (j-1)(j-2)\binom{j+\vartheta-2}{\vartheta-1}q^{j-1}(1-q)^\vartheta \\ +[3+2\gamma-\delta-2\mu(\delta+\gamma)]\sum_{j=2}^\infty (j-1)\binom{j+\vartheta-2}{\vartheta-1}q^{j-1}(1-q)^\vartheta \\ +(1-\delta)\sum_{j=2}^\infty \binom{j+\vartheta-2}{\vartheta-1}q^{j-1}(1-q)^\vartheta.$$

From (2.2), (2.3) and (2.4), we get

$$\Lambda_{2}(\mu, \delta, \gamma) = [1 + \gamma - \mu(\delta + \gamma)](1 - q)^{\vartheta}q^{2} \,\vartheta(\vartheta + 1) \sum_{j=0}^{\infty} \binom{j + \vartheta + 1}{\vartheta + 1} q^{j}$$

$$+ [3 + 2\gamma - \delta - 2\mu(\delta + \gamma)]q \,\vartheta(1 - q)^{\vartheta} \sum_{j=0}^{\infty} \binom{j + \vartheta}{\vartheta} q^{j}$$

$$+ (1 - \delta)(1 - q)^{\vartheta} \left[\sum_{j=0}^{\infty} \binom{j + \vartheta - 1}{\vartheta - 1} q^{j} - 1 \right].$$

Further by using (2.1) we get

$$\Lambda_{2}(\mu, \delta, \gamma) = [1 + \gamma - \mu(\delta + \gamma)] \frac{q^{2} \vartheta(\vartheta + 1)}{(1 - q)^{2}} + [3 + 2\gamma - \delta - 2\mu(\delta + \gamma)] \frac{q \vartheta}{(1 - q)} + (1 - \delta)[1 - (1 - q)^{\vartheta}].$$

Then $\Lambda_2(\mu, \delta, \gamma)$ is bounded above by $(1 - \delta)$ if and only if (2.6) holds.

3. INCLUSION PROPERTIES

Let $f \in \mathbf{A}$ and f is in $\mathbf{R}^{\kappa}(A, B)$, $(\kappa \in \mathbb{C} \setminus \{0\}, -1 \le B < A \le 1)$, if

$$\left| \frac{f'(z) - 1}{(A - B)\kappa - B[f'(z) - 1]} \right| < 1, \quad z \in \mathbb{U},$$

holds. The class $\mathbf{R}^{\kappa}(\mathbf{A},\mathbf{B})$ was defined earlier by Dixit and Pal [4]. By fixing $\kappa=1,\ \mathbf{A}=\gamma$ and $\mathbf{B}=-\gamma\ (0<\gamma\leq 1),$ (among others)Padmanabhan [9] and Caplinger and Causey [2] deduce the class of functions $f\in\mathbf{A}$ satisfying the inequality $\left|\frac{f'(z)-1}{f'(z)+1}\right|<\gamma\quad (z\in\mathbb{U};0<\gamma\leq 1).$ Making use of the following lemma, we will study the action of the Pascal distribution on the classes $\mathbf{UCT}(\mu,\delta,\gamma).$

Lemma 3.1. [4] If $f \in \mathbf{R}^{\kappa}(A, B)$ is of form (1.1), then

$$|a_j| \le \frac{(A - B)|\kappa|}{j}, \quad j \in \mathbb{N} \setminus \{1\}.$$

The result is sharp.

Theorem 3.1. Let If $\vartheta \geq 1$. If $f \in \mathbf{R}^{\kappa}(A, B)$, and if the inequality

(3.1)
$$(A - B)|\kappa| \left\{ [1 + \gamma - \mu(\delta + \gamma)][1 - (1 - q)^{\vartheta}] - \frac{(\delta + \gamma)(1 - \mu)}{q(\vartheta - 1)} \left[(1 - q) - [1 + q(\vartheta - 1)](1 - q)^{\vartheta} \right] \right\} \le 1 - \delta.$$

is satisfied, then $\mathbf{I}_a^{\vartheta} f(z) \in \mathbf{TS}_P(\mu, \delta, \gamma)$.

Proof. Let f be given by(1.1) is in $\mathbf{R}^{\kappa}(A,B)$. By asset of Lemma 1.2, it enough to show that

$$\Lambda_3(\mu,\delta,\gamma) = \sum_{j=2}^{\infty} [j(1+\gamma) - (\delta+\gamma)(1+j\mu-\mu)] \binom{j+\vartheta-2}{\vartheta-1} q^{j-1} (1-q)^{\vartheta} |a_j| \le 1-\delta.$$

Since $f \in \mathbf{R}^{\kappa}(A, B)$ then by Lemma 3.1 we have

$$|a_{j}| \leq \frac{(A-B)|\kappa|}{j},$$

$$\Lambda_{3}(\mu, \delta, \gamma) \leq (A-B)|\kappa| \left[\sum_{j=2}^{\infty} \frac{1}{j} [j(1+\gamma) - (\delta+\gamma)(1+j\mu-\mu)] \right]$$

$$\times {j+\vartheta-2 \choose \vartheta-1} q^{j-1} (1-q)^{\vartheta}$$

$$= (A-B)|\kappa| \left[[1+\gamma-\mu(\delta+\gamma)] \sum_{j=2}^{\infty} {j+\vartheta-2 \choose \vartheta-1} q^{j-1} (1-q)^{\vartheta} \right]$$

$$-(\delta+\gamma)(1-\mu) \sum_{j=2}^{\infty} \frac{1}{j} {j+\vartheta-2 \choose \vartheta-1} q^{j-1} (1-q)^{\vartheta} \right].$$

Hence by using (2.1) and (2.3), we get

$$\Lambda_{3}(\mu, \delta, \gamma) \leq (A - B)|\kappa| \left\{ [1 + \gamma - \mu(\delta + \gamma)][1 - (1 - q)^{\vartheta}] - \frac{(\delta + \gamma)(1 - \mu)}{q(\vartheta - 1)} [(1 - q) - [1 + q(\vartheta - 1)](1 - q)^{\vartheta}] \right\}.$$

But $\Lambda_3(\mu, \delta, \gamma)$ is bounded above by $1 - \delta$ if and only if (3.1) holds.

Theorem 3.2. Let $m \ge 1$ then $\mathbf{G}(\vartheta, z) = \int_0^z \frac{\mathbf{I}_q^\vartheta f(t)}{t} dt$ is in $\mathbf{TS}_P(\mu, \delta, \gamma)$ if and only if inequality

$$[1+\gamma-\mu(\delta+\gamma)][1-(1-q)^{\vartheta}]-\frac{(\delta+\gamma)(1-\mu)}{q(\vartheta-1)}\left[(1-q)-[1+q(\vartheta-1)](1-q)^{\vartheta}\right] \le 1-\delta.$$

Proof. Since $\mathbf{G}(\vartheta,z)=z-\sum_{j=2}^{\infty}\binom{j+\vartheta-2}{\vartheta-1}q^{j-1}(1-q)^{\vartheta}\frac{z^j}{j}$, then by Lemma 1.2 we need only to show that

$$\Lambda_4(\mu, \delta, \gamma) = \sum_{j=2}^{\infty} [j(1+\gamma) - (\delta+\gamma)(1+j\mu-\mu)] \binom{j+\vartheta-2}{\vartheta-1} q^{j-1}(1-q)^{\vartheta} \le 1-\delta.$$

Now,

$$\Lambda_4(\mu, \delta, \gamma) = \sum_{j=2}^{\infty} \frac{1}{j} [j(1+\gamma) - (\delta+\gamma)(1+j\mu-\mu)] \begin{pmatrix} j+\vartheta-2\\ \vartheta-1 \end{pmatrix} q^{j-1} (1-q)^{\vartheta}$$

$$= \sum_{j=2}^{\infty} \left[[1+\gamma-\mu(\delta+\gamma)] \sum_{j=2}^{\infty} \binom{j+\vartheta-2}{\vartheta-1} q^{j-1} (1-q)^{\vartheta} - (\delta+\gamma)(1-\mu) \sum_{j=2}^{\infty} \frac{1}{j} \binom{j+\vartheta-2}{\vartheta-1} q^{j-1} (1-q)^{\vartheta} \right].$$

Following the similar technics employed in Theorem 3.1, we have

$$\Lambda_4(\mu, \delta, \gamma) = [1 + \gamma - \mu(\delta + \gamma)][1 - (1 - q)^{\vartheta}]$$
$$-\frac{(\delta + \gamma)(1 - \mu)}{q(\vartheta - 1)} \left[(1 - q) - [1 + q(\vartheta - 1)](1 - q)^{\vartheta} \right]$$

which is bounded above by $1 - \delta$ if and only if (3.2) holds.

Theorem 3.3. Let If $\vartheta \geq 1$. If $f \in \mathbf{R}^{\kappa}(A, B)$, and if

(3.2)
$$(A - B)|\kappa| \left\{ [1 + \gamma - \mu(\delta + \gamma)] \frac{q \vartheta}{1 - q} + (1 - \delta) [1 - (1 - q)^{\vartheta}] \right\} \le 1 - \delta$$
 holds, then $\mathbf{I}_{q}^{\vartheta} f(z) \in \mathbf{UCT}(\mu, \delta, \gamma)$.

Proof. Let f be given by (1.1) and $f \in \mathbf{R}^{\kappa}(A, B)$. By virtue of Lemma 1.4, it suffices to show that

$$\Lambda_5(\mu,\delta,\gamma) = \sum_{j=2}^{\infty} j[j(1+\gamma) - (\delta+\gamma)(1+j\mu-\mu)] \binom{j+\vartheta-2}{\vartheta-1} q^{j-1} (1-q)^{\vartheta} |a_j| \le 1-\delta.$$

Since $f \in \mathbf{R}^{\kappa}(A, B)$ then by Lemma 3.1 we have $|a_j| \leq \frac{(A-B)|\kappa|}{j}$.

 $\Lambda_5(\mu, \delta, \gamma)$

$$\leq (\mathbf{A} - \mathbf{B})|\kappa| \left[\sum_{j=2}^{\infty} [j(1+\gamma) - (\delta+\gamma)(1+j\mu-\mu)] \binom{j+\vartheta-2}{\vartheta-1} \cdot q^{j-1}(1-q)^{\vartheta} \right]
\leq (\mathbf{A} - \mathbf{B})|\kappa| \left[[1+\gamma-\mu(\delta+\gamma)] \sum_{j=2}^{\infty} (j-1) \binom{j+\vartheta-2}{\vartheta-1} q^{j-1}(1-q)^{\vartheta} \right]
+ (1-\delta) \sum_{j=2}^{\infty} \binom{j+\vartheta-2}{\vartheta-1} q^{j-1}(1-q)^{\vartheta} \right].$$

Further, proceeding as in Theorem 2.1

$$\Lambda_5(\mu, \delta, \gamma) \le (A - B)|\kappa| \left\{ [1 + \gamma - \mu(\delta + \gamma)] \frac{q \vartheta}{1 - q} + (1 - \delta) \left[1 - (1 - q)^{\vartheta} \right] \right\}.$$

But $\Lambda_5(\mu, \delta, \gamma)$ is bounded above by $1 - \delta$ if and only if (3.2) holds.

Theorem 3.4. Let $\vartheta \geq 1$ then $\mathbf{G}(\vartheta, z) = \int_0^z \frac{\mathbf{I}_q^\vartheta f(t)}{t} dt$ is in $\mathbf{UCT}(\mu, \delta, \gamma)$ if and only if inequality

$$(3.3) [1+\gamma-\mu(\delta+\gamma)]\frac{q\,\vartheta}{(1-q)^{\vartheta+1}} \le 1-\delta.$$

Proof. Since $\mathbf{G}(\vartheta,z)=z+\sum_{j=2}^{\infty}\binom{j+\vartheta-2}{\vartheta-1}q^{j-1}(1-q)^{\vartheta}\frac{z^j}{n}$ then by Lemma 1.4, we need only to show that

$$\Lambda_6(\mu, \delta, \gamma) = \sum_{j=2}^{\infty} j[j(1+\gamma) - (\delta+\gamma)(1+j\mu-\mu)] \begin{pmatrix} j+\vartheta-2 \\ \vartheta-1 \end{pmatrix} q^{j-1}(1-q)^{\vartheta} \le 1-\delta.$$

Now,

$$\Lambda_{6}(\mu, \delta, \gamma) = \sum_{j=2}^{\infty} j[j(1+\gamma) - (\delta+\gamma)(1+j\mu-\mu)] \binom{j+\vartheta-2}{\vartheta-1} q^{j-1}(1-q)^{\vartheta} \frac{1}{j}$$
$$= \sum_{j=2}^{\infty} [j(1+\gamma) - (\delta+\gamma)(1+j\mu-\mu)] \binom{j+\vartheta-2}{\vartheta-1} q^{j-1}(1-q)^{\vartheta}.$$

Further, proceeding as in Theorem 2.1

$$\Lambda_6(\mu, \delta, \gamma) = \left[1 + \gamma - \mu(\delta + \gamma)\right] \frac{q \,\vartheta}{1 - q} + \left(1 - \delta\right) \left[1 - (1 - q)^{\vartheta}\right],$$

which is bounded above by $1 - \delta$ if and only if (3.3) holds.

Concluding Remarks. By taking $\gamma = 0$ and specializing the parameter μ in above theorems we obtain analogous results for the subclasses listed in [5].

ACKNOWLEDGMENT

We record our sincere thanks to the organising committee of IC-IPIS2020, and authorities of Sri Vidya Mandir Arts and Science College Katteri - 636 902, Uthangarai, Tamil Nadu, India, for having given an opportunity to present our paper in IC-IPIS2020 held on 14th and 15th February 2020.

REFERENCES

- [1] R. BHARATI, R. PARVATHAM, A. SWAMINATHAN, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., **26**(1) (1997), 17–32.
- [2] T. R. CAPLINGER, W. M. CAUSEY: *A class of univalent functions*, Proc. Amer. Math. Soc., **39** (1973), 357–361.
- [3] S. M. EL-DEEB, T. BULBOACA, J. DZIOK: Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., **59** (2019), 301–314.
- [4] K. K. DIXIT, S. K. PAL: On a class of univalent functions related to complex order, Indian J. Pure Appl. Math., **26**(9) (1995) 889–896.
- [5] G. MURUGUSUNDARAMOORTHY, N. MAGESH: On certain subclasses of analytic functions associated with hypergeometric functions, Appl. Math. Letters, **24** (2011), 494–500.
- [6] G. MURUGUSUNDARAMOORTHY: Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat., 28 (2017), 1357–1366.
- [7] G. MURUGUSUNDARAMOORTHY, B. A. FRASIN, T. AL-HAWARY: *Uniformly convex spiral functions and uniformly spirallike function associated with Pascal distribution series*, arXiv preprint arXiv: 2001.07517.
- [8] G. MURUGUSUNDARAMOORTHY, K. VIJAYA, S. PORWAL: Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series, Hacettepe J. Math. Stat., 45(4) (2016), 1101–1107.
- [9] K. S. PADMANABHAN: On a certain class of functions whose derivatives have a positive real part in the unit disc, Ann. Polon. Math., 23 (1970), 73–81.
- [10] S. PORWAL: An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., 2014 (2014), Art. ID 984135, 1–3.
- [11] F. RONNING: *Uniformly convex functions and a corresponding class of starlike functions*, Proc. Amer.Math. Soc., **118** (1993), 189–196.
- [12] H. SILVERMAN: Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109–116.

SCHOOL OF ADVANCED SCIENCES

VELLORE INSTITUTE OF TECHNOLOGY (DEEMED TO BE UNIVERSITY)

Vellore - 632014, Tamilnadu, India

Email address: kvijaya@vit.ac.in