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AN APPLICATION OF PASCAL DISTRIBUTION SERIES ON CERTAIN
SUBCLASSES OF ANALYTIC FUNCTIONS

K. VIJAYA! AND V. MALATHI

ABSTRACT. In this paper, we examine the connections between the new sub-
classes of v— parabolic starlike and y— uniformly convex functions of order ¢
by using a convolution operator involving the Pascal distribution series. Further
we point out significance of our main results .

1. INTRODUCTION

Denote the class of analytic functions by .A comprising functions of the form
(1.1) f(z):z+Zajzj, z e U.
=2

As usual, we denote by S the subclass of A whose members are normalized by
f(0) =0 = f’(0) — 1 and also univalent in U. Denote by T the subclass of A
comprising of functions whose nonzero coefficients from second on, is given by
f(z) = 2 =322, |aj|2/, 2 € U is introduced and studied by Silverman [12]. For
functions f € A given by (1.1) and g € A given by g(z) = z + Z;’iQ bz, we
define the Hadamard product (or convolution) of f and g by

(f*xg)(z) = z—l—Zajbjzj, zeU.
j=2
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Inspired by the earlier work of Rnning [11], Bharathi et al., [1] defined the
following subclass of S namely v— parabolic starlike and v— uniformly convex
functions (—1 <0 <1,y > 0):

(1) Sp(,7) = {f €A R (j{;g . 5) >y |H@

f(z)

,ZEU}

2) UCV(&,ﬂ:{feA:%(%-é) >~

zf'(z) _
) 1‘ , 2 € U} .

We note that f € UCV (4,7) < zf" € Sp(d,7).

Remark 1.1. It is of importance to state that UCV (6,0) = K(0) and Sp(4,0) =
S*(6)( See [12]).

We consider the following subclasses of A studied in [5].
For0 <pu<1,0<0<1,7>0,and f € A we let Sp(u,d,7) be the subclass
of A satisfying the analytic criterion
z2f'(2) ) zf'(z)
R -0 >
((1 — ) f(z) + pzf'(2) NO= @)+ p2f )
and also, let UCV (1, 0,) be the subclass of A satisfying the analytic criterion
!/ " !/ "
Y EACESUE RPN (MRS
J'(2) + pzf"(2) J'(2) + pzf"(z
By suitably specializing the parameters p,d,~y as mentioned in Murugusun-
daramoorthy and Magesh [5], we get various special classes of S and T. Fur-

1|, z € U,

)—1 , z € U.

ther we recall the following results for f to be in the subclasses Sp(u,d,7),
TSp(p,d,7), UCV(u,d,v) and UCT(u, d, ) as given in [5].

Lemma 1.1. Let f be given by (1.1) is in Sp(u,d,7) if

o0

DA +7) =+ +jp— )] lag] <1—06.

j=2
Lemma 1.2. A function f(2) = 2 — >_2, |a;|#/, is in TSp(u, 9, ) if and only if

o0

D A+ = G+ +ju— )] laj] <186

Jj=2

Lemma 1.3. Let f be given by (1.1) is in UCV (u, 0, 7) if

Zj[j(l +9) = (6 + N+ jp—p)] la] <1-0.



AN APPLICATION OF PASCAL DISTRIBUTION SERIES... 1435

Lemma 1.4. A function f(2) = z — >°2, |a;|#/, is in UCT(u, 6, ) if and only if
Dl +7) = G+ A+ —p)] fal <14
=2

A variable y is said to be Pascal distribution if it takes the values 0, 1,2, 3, ...

with probabilities

Ly WA=9)” @@+ —q)” @O0+ 1D +2)(1 - q)”
1=9)" = o : 2 e

respectively, where ¢ and ¢ are called the parameters, and thus

“ (k+9—-1
P(X:k):Z( 91 >qk(1—q)0,l{::0,1,2,3,....

j=2

Lately, El-Deeb [3] gave a power series representation , whose coefficients are
probabilities of Pascal distribution

B0\ — (J+0 -2 i—1 9
\Ilq(z)_z+z2( 9—1 )q] (1_Q) Zj) Z€U7
]:
where ¢ > 1;0 < ¢ < 1 and we note that, by ratio test the radius of convergence
of above series is infinity. Recently Murugusundaramoorthy et al., [7] using the
concept of convolution or hadamard product, defined the linear tranformation
I’(z) : A — A defined by the

Igf(z) = \Pg(z) x f(z) =2+ Z ( 91 ) PN = q)%a;2, ze U,
and also defined
PV(z) =22 —W)(2) =2 — ( 19_;2> N L zeU.
j=2

Motivated by results on connections between various subclasses of analytic
univalent functions by using Poisson distribution series (see [6,8,10] and refer-
ences cited there in), in this paper we discussed connections between the new
subclasses Sp(u,0,7), and UCV (u,d,7) by using a convolution operator de-

fined through the Pascal distribution series. Finally, we give conditions for the
z I0F(t)
0 ¢

integral operator G(, z) =
UCT(u,6,7).

dt belonging to the classes TSp(yu,d,v) and
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2. INCLUSION RESULTS

For convenience throughout in the sequel, we use the following notations:

i(‘jﬁ?)qj:u—lqw’ i(jlﬁ—_;)qj:(l——lq)w

=0 j=0
— i+ ; jH0+1 1
(2'”;( )"0 = g and Z( b1 )= g

By simple computation we state the following:

2.2) Z(J;ﬁ > _Z(]+19 )qj—l,

j=2

= o [(it9=2\ — [+ ;
(2.3) > U 1)( 19_1>q =qm) (", )a
and
e oy (FFO=2Y N (FEmELY
@4 S0 I G P TR D BY (A I
Throughout this paper unless otherwise stated, we let

0<u<1,0<6<1,v>0, and 0<qg<1.

Theorem 2.1. If ¥ > 1, then ®}'(z) € TSp(u,9,7) if and only if

9
(2.5) D+7—u®+7»a%éﬁgﬁl—5

Proof. Since ®?(z) =2z — W)(z) =z — > (71"7%) - ¢1(1 — ¢)?+, according to
j=2
Lemma 1.2, we must show that

MGn6.9) = i+ = G+nin—w] (11772 ) e a-0? < 0-9)

Jj=2
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By writing 7 = j — 1 we get

A, 0,7) =L+ = p(0+7)] D (G — 1)(‘7';?; 2>qj‘1(1 —q)’

Jj=2

ra-a> (30T
From (2.2) and (2.3) we get

A(pd,7) = [L+5 = p0 + g 91— ¢)" > <j g 19) ¢

n=0

+(1-8)(1-q) [Z (5 qj—ll

— (14—l + N+ (=8 [1- (L= 0)].

But A (u,d,v) is bounded above by 1 — 4 if and only if (2.5) holds. O

Theorem 2.2. If ) > 1, then ®)(z) € UCT(y,d,~) if and only if

P9+ 1)

q v
W+[3+27_5_2M(5+7)]— <1-4.

(2.6) [1+7v—p(d+7) (1—q)?+ —

Proof. In view of Lemma 1.4,we need to show that

As(p1,6,7) = Zy (1+7)— 5+7)(1+ju—u)](j;f12>qj‘l(1—q)§§(1—5).

Now

Ao(p, 6,7) = [L+y = p(6 +7)] > 5 (J—H?—Q) -

Jj=2

SRR DY (i V(RS

J=2
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Writing 72 = (j —1)(j —2)+3(j —1)+1land j = (j — 1) + 1, we get

M 69) = [k =6+ G- 06 =275 T e o

¥ —1

+%1—®§§(jgﬁ;2)f*O—QW

j=2

From (2.2), (2.3) and (2.4),we get

+B+ﬂv—5—2M5+7H§]j—U(j+ﬁ_2)¢40—QW

<.

o~ (j+0+1\
Ma(nd.9) = 149 = o+l -’ o+ 0 Y (T F )
7=0

£ B2y — 6 — 26+ )]q O 1—qﬂZ(J+‘9) ;

7=0
9 J + 19
+(1=06)(1—9q) E: 1
j=0
Further by using (2.1) we get
290 +1
Aﬂm&vﬁ=ﬂ+v—w5+wﬂ—i—3l
(1—q)
v
HB 2y == 2 +9) g+ (== (1= )]
Then As(p, 6,7) is bounded above by (1 — §) if and only if (2.6) holds. O

3. INCLUSION PROPERTIES
Let f € A and fisin R*(A,B), (rk € C\{0}, -1 <B <A <1),if
f'(z) -1
(A—B)r —B[f"(z) — 1]
holds. The class R*(A, B) was defined earlier by Dixit and Pal [4]. By fixing
k=1 A =~and B = —y (0 <y < 1), (among others)Padmanabhan [9]
and Caplinger and Causey [2] deduce the class of functions f € A satisfying the
(z € U;0 < v < 1). Making use of the following lemma,

<1, ze€0,

we will study the action of the Pascal distribution on the classes UCT(y, 4, ).
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Lemma 3.1. [4] If f € R*(A,B) is of form (1.1), then

(A=B)

Ja; < , JEN\{1}.

The result is sharp.

Theorem 3.1. Let If ¥ > 1. If f € R"(A, B), and if the inequality

(A =Bl { [+ = p(E+ )]l - (1 - )]

(0 +7)(1—p) 9
ay O 0 g - vja -7 <16

is satisfied, then IV f(z) € TSp(u,d,7).

Proof. Let f be given by(1.1)is in R"(A, B). By asset of Lemma 1.2, it enough to
show that

[e.9]

: : |+ =2\ i
As(p,6,7) =D [H(1+7) = (047 (1+jpn—p)] (‘7 91 )qﬂ H(1—=g)"]a;] < 1-4.
7j=2
Since f € R*(A, B) then by Lemma 3.1 we have
A—B)|k
0] < ( j )1kl

As(p,6,7) < (A —B)|x] [Z %[J’(l +7) = (6 +7)A+jp— p)]

Jj=2

()

— =B |1t - Y (15 e
— 1/j+9-2\ p
—(5+v)(1—u)j223( 91 )q (1—q)].

Hence by using (2.1) and (2.3),we get
Ag(p6,7) < (A =Bl { [+ = u(6 + ][ = (1= g)"]

O+ —n v
- [(1=q) = [L+q(@ - 1] -q) }}-

But A3(u,d,v) is bounded above by 1 — 4 if and only if (3.1) holds. O
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Theorem 3.2. Let m > 1 then G(9,z) = [ Ig{idt is in TSp(u,d,v) if and only
if inequality
[L+y=p@+y][1l-01-97]-

) — 0
SO =g - 14 g0 - D)= 0] <15

Proof. Since G(¥,2) = z — Y20, (*5"7%) ¢ (1 — q)ﬂ%ﬂ', then by Lemma 1.2 we
need only to show that

Aali0,7) = g;[j(1+7)—(5+7)(1 in—p) (j;‘ff) ¢ (1—q) <1-4
Now,
Ag(p,6,7) = g%[j(l +7) = @+ +jp— )] (‘j;fz 2) @1 —q)’
:fj w3 (7)o
(5+7)(1—u)§; H J—1<1—q>ﬁ]

Following the similar technics employed in Theorem 3.1, we have
Aa(p,6,7) = [L+7 = p(@+ ][~ (1 - )]

(0+7)1—p) 9
- 1—q)—[1+q(—1)]1 -
-1 [(1—=q) = [1+¢(@ - 1D](1 —q)"]
which is bounded above by 1 — ¢ if and only if (3.2) holds. d

Theorem 3.3. Let If ¥ > 1. If f € R"(A,B), and if
G2 (=B {4y -0+ N+ (1-0) 1= (-] f <10
holds, then I f(z) € UCT (11,6, 7).

Proof. Let f be given by (1.1) and f € R”(A,B). By virtue of Lemma 1.4, it
suffices to show that

j+0—2

As(p,0,7) = ZJ (1+7)- 5+7)(1+ju—u)]( 91 )qj‘l(l—Q)ﬂ|aj|§1—5-
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Since f € R"(A, B) then by Lemma 3.1 we have |q,| < (A_TB)'”‘.

A5(M757 7)
< (=Bl [0+ - @ an—l (157 7) a0 —q>ﬂ]

Lj=2

<B4 - ue -0 (T 5T ) - o

Lo (=2 i,
+(1 5);2( 91 )q (1-9)"].
Further, proceeding as in Theorem 2.1
q v 9
As(p,0,7) < (A = B)|| [1+7—u(5+7)]1—_q+(1—5)[1—(1—q)} :

But A5(u, d, ) is bounded above by 1 — ¢ if and only if (3.2) holds. O

Theorem 3.4. Let ¥ > 1 then G(¥,z2) = [; Ig};(t)dt is in UCT (p, 6, ) if and only
if inequality

9
(3.3) [1+7—,u(5+7)](1_qw§1—5.

Proof. Since G(9,2) = z + 3.2, ("171%) ¢"}(1 — q)’% then by Lemma 1.4, we

need only to show that
. 4+ 0 =2\
Ae(p,0,7) = ZJ (14+7) = (0+7) (A +jp—p) (‘719_1 )qj H(1-¢q)’ <1-4.
Now,

) + 19— 2 . 1
L +7) =0+ +jp— )] (j 91 )q] 1(1—61)193

i

(1+7) = (@ +7) 1+ ju— ) (‘j;?f)q“(l—q)ﬁ.

Jj=2

Further, proceeding as in Theorem 2.1

Aol 9) = (149 = p(G+ )+ (1= 9 1= (1= 9],

which is bounded above by 1 — ¢ if and only if (3.3) holds. O
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Concluding Remarks. By taking 7 = 0 and specializing the parameter p in
above theorems we obtain analogous results for the subclasses listed in [5].
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