Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2509–2516 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.14

SOME RESULTS ON CONNECTED REGULAR DOMINATION OF ZERO-DIVISOR GRAPHS

V. MAHESWARI¹, Y. KAYATHIRI, R. RAJESWARI, AND J. ANUF SARUMATHI

ABSTRACT. The concept of connected regular domination number of $\Gamma(\mathbb{Z}_n)$ was introduced by K. Ananthi, J. Ravi Sankar and N. Selvi. A connected regular domination of a graph G(V, E) is defined as the vertex set $D \subseteq V$ satisfying the following conditions, (i) D is Dominating set (ii) D is regular and (iii) D is connected. In this paper, we extend the notion of connected regular domination number for some product and line graph of zero-divisor graphs.

1. INTRODUCTION

Let R be a commutative ring and let Z(R) be its set of zero-divisors. We consider a graph $\Gamma(R)$ with vertices $Z^*(R) = Z(R) - \{0\}$, the set of non-zero zero-divisors of R and for distinct $x, y \in Z^*(R)$, the vertices x and y are adjacent iff xy = 0. The first instances of associating graph with various algebraic structures is due to Beck [4] who introduced the idea of zero-divisor graph of a commutative ring with unity and later on Anderson [3], Akbari and Mohammadian [1] continued the study of zero-divisor graph by considering only the non-zero zero-divisors. The connected regular dominating set of $\Gamma(\mathbb{Z}_n)$ was suggested by K. Ananthi, J. Ravi Sankar and N. Selvi [2]. In this paper, we have extended their work to find connected regular domination number of $\Gamma(\mathbb{Z}_n)$ of some product and line graph on commutative rings.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C25, 05C69.

Key words and phrases. connected regular domination, zero-divisor, product graph, line graph.

2510 V. MAHESWARI, Y. KAYATHIRI, R. RAJESWARI, AND J. A. SARUMATHI

Definition 1.1. Let R be a ring. A non-zero element $a \in R$ is said to be a zero-divisor if there exists a non-zero element $b \in R$ such that ab = 0 or ba = 0.

Definition 1.2. A dominating set is a set of vertices such that each vertex of V is either in D or has atleast one neighbour in D. The minimum cardinality of such a set is called the domination number of the graph G and it is denoted by $\gamma(G)$.

Definition 1.3. A connected dominating set D is a set of vertices of a graph G such that every vertex in V - D is adjacent to atleast one vertex in D and the subgraph < D > induced by the set D is connected. The connected domination number $\gamma_c(G)$ is the minimum cardinality of the connected dominating set of G.

Definition 1.4. A regular dominating set is a dominating set D of V(G) if < D > is regular. The minimum cardinality of a regular dominating set is called regular domination number of G and is denoted by $\gamma_r(G)$.

Definition 1.5. Let G be a graph, V is a vertex set of G and $D \subseteq V$, then D is said to be connected regular dominating set, if it satisfies the following conditions, (i) D is dominating set (ii) D is connected and (iii) D is regular. The minimum cardinality of connected regular dominating set is called connected regular domination number of G and is denoted by $\gamma_{cr}(G)$.

2. CONNECTED REGULAR DOMINATION NUMBER OF ZERO-DIVISOR GRAPHS

In this section we evaluate the connected regular domination number of some product and line graph of $\Gamma(\mathbb{Z}_n)$.

Theorem 2.1. For any graph $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_p)$, where p > 2 is any prime number, holds $\gamma_{cr}(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_p)) = 1$.

Proof. The vertex set of $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_p)$ is defined as $V = \{(0, 1), (0, 2), (0, 3, ..., (0, p - 1), (1, 0)\} = \{v_1, v_2, v_3, ..., v_{(p-1)}, v_p\}.$

The total number of vertices in $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_p)$ is p. $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_p)$ is a star graph.

It is clear that, v_p is adjacent to every other vertices in V. Thus, $\gamma(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_p))$ is one. $\{v_p\}$ is itself connected and regular. Therefore, $\gamma_{cr}(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_p)) = 1$. \Box

Theorem 2.2. For any graph $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np})$, where *n* is a non-zero positive integer and p > 2 is any prime number, holds $\gamma_{cr}(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np})) = 1$.

Proof. The vertex set of $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np})$ is defined as $V = \{(0, 1), (0, 2), (0, 3), ..., (0, np - 1), (1, 0)\} = \{v_1, v_2, v_3, ..., v_{(np-1)}, v_{np}\}.$

The total number of vertices in $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np})$ is np. $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np})$ is a star graph. It is clear that, v_{np} is adjacent to every other vertices in V. Thus, $\gamma(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np}))$ is one. $\{v_{np}\}$ is itself connected and regular.

Therefore, $\gamma_{cr}(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np}))) = 1$.

Theorem 2.3. For any graph $\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q)$, where q > p and p, q are odd prime numbers, holds $\gamma_{cr}(\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q)) = 2$.

Proof. The vertex set of $\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q)$ is defined as $V = \{(0, 1), (0, 2), ..., (0, q - 1), (1, 0), (2, 0), ..., (p - 1, 0)\}$. The total number of vertices in $\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q)$ is p + q - 2.

It is clear that, $\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q)$ is a complete bi-partite graph. So, we can split the vertex set into two set of vertices V_1 and V_2 .

Let $V_1 = \{(0, 1), (0, 2), ..., (0, q - 1)\} = \{v_{11}, v_{12}, ..., v_{1(q-1)}\}$ and $V_2 = \{(1, 0), (2, 0), ..., (p - 1, 0)\} = \{v_{21}, v_{22}, ..., v_{2(p-1)}\}.$

Clearly, any vertex from the vertex set V_1 is adjacent to all vertices in V_2 . Similarly, any vertex from the vertex set V_2 is adjacent to all vertices in V_1 .

Therefore, any one vertex from V_1 and one vertex from V_2 form the dominating set. Thus, $\gamma(\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q))$ is two.

The induced subgraph formed from the dominating set is both connected as well as regular. Therefore, $\gamma_{cr}(\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q)) = 2$.

Theorem 2.4. For any graph $\Gamma(\mathbb{Z}_{p^3})$, where p is any prime number, holds $\gamma_{cr}(\Gamma(\mathbb{Z}_{p^3})) = 1$.

Proof. The vertex set of the graph $\Gamma(\mathbb{Z}_{p^3})$ is $\{p, 2p, 3p, ..., (p^2 - 1)p, p^2, 2p^2, ..., (p-1)p^2\}$. Decompose the vertex set into the following disjoint sets as multiples of p but not p^2 and multiples of p^2 respectively.

- $V_1 = \{p, 2p, 3p, ..., (p^2 1)p\}$
- $V_2 = \{p^2, 2p^2, ..., (p-1)p^2\}$

Clearly, the vertices in V_2 are adjacent to each other and all vertices in V_1 . Any vertex from V_2 form the dominating set with minimal cardinality.

The induced subgraph formed from the dominating set is both connected as well as regular. Therefore, $\gamma_{cr}(\Gamma(\mathbb{Z}_{p^3})) = 1$.

Theorem 2.5. For any graph $\Gamma(\mathbb{Z}_{pq^2})$, where q > p and p, q are distinct prime numbers, holds $\gamma_{cr}(\Gamma(\mathbb{Z}_{pq^2})) = 2$.

Proof. The vertex set of the graph $\Gamma(\mathbb{Z}_{pq^2})$ is $\{p, 2p, 3p, ..., (q-1)p, pq, (q+1)p, ..., (q^2-1)p, q, 2q, ..., (p-1)q, (p+1)q, ..., ((q-1)p-1)q, ((q-1)p+1)q, ..., (pq-1)q, 2pq, ..., (q-1)pq, q^2, 2q^2, ..., (p-1)q^2\}.$

Decompose the vertex set into the following sets as multiples of p, q, pq and q^2 respectively.

•
$$V_1 = \{p, 2p, (q-1)p, (q+1)p, ..., (q^2-1)p\}$$

 $((q-1)p+1)q, ..., (pq-1)q\}$

•
$$V_3 = \{pq, 2pq, ..., (q-1)pq\}$$

2512

• $V_4 = \{q^2, 2q^2, ..., (p-1)q^2\}$

Clearly, the vertices in V_3 are adjacent to all vertices in V_2 and V_4 and also V_1 and V_4 forms a complete bipartite graph.

 $\{pq, q^2\}$ forms the dominating set with minimal cardinality. The induced subgraph formed from the dominating set is both connected as well as regular.

Therefore, $\gamma_{cr}(\Gamma(\mathbb{Z}_{pq^2})) = 2.$

Theorem 2.6. Let $L(\Gamma(\mathbb{Z}_n))$ be a line graph of $\Gamma(\mathbb{Z}_n)$. If n = 2p where p > 2 is any prime number then $\gamma_{cr}(L(\Gamma(\mathbb{Z}_n)))$ is 1.

Proof. If n = 2p, then $\Gamma(\mathbb{Z}_n)$ is a star graph. So there is a common vertex which is adjacent to all other vertices and that vertex is also called the centre of the graph.

We draw the line graph of $\Gamma(\mathbb{Z}_n)$, for n = 2p. Let v_1 be the common vertex of $\Gamma(\mathbb{Z}_n)$, which is end point of every edge of $\Gamma(\mathbb{Z}_n)$. Then v_1 appears in every vertex of the line graph.

 $(v_1, u_i) \in V(L(\Gamma(\mathbb{Z}_n)))$, where $\{u_i = 2, 2.2, 2.3, ..., 2(p-1), p = v_1\}$.

The line graph of forms a complete graph. Therefore, $D = \{(v_1, u_i)\}$ is the minimum dominating set with cardinality 1. So, $\gamma_{cr}(L(\Gamma(\mathbb{Z}_n)))$ is 1.

Theorem 2.7. For any graph $L(\Gamma(\mathbb{Z}_{3p}))$, where $p \geq 3$ is an odd prime number, $\gamma_{cr}(L(\Gamma(\mathbb{Z}_{3p})))$ is 2.

Proof. If n = 3p then $\Gamma(\mathbb{Z}_n)$ is a complete bipartite graph. The vertex set of $\Gamma(\mathbb{Z}_n)$ is $\{3, 6, 9, ..., 3(p-1), p, 2p\}$. Decompose the vertex set into the following disjoint subsets:

- the set S of non-zero multiples of 3 which are less than n.
- the set M of multiples of prime p which are less than n.

In $\Gamma(\mathbb{Z}_n)$, every vertex of M is adjacent to all the vertices of S, but the distinct vertices of S are not adjacent to each other. These two vertices of $\Gamma(\mathbb{Z}_n)$ appears in line graph as the end points of edges.

Let (p, v_1) and $(2p, v_2) \in V(L(V))$, they are not adjacent to each other but (p, v_1) is adjacent to $(p, v_i) \in V(L(\Gamma(\mathbb{Z}_n)))$ where v_i is multiple of 3 and $2 \le i \le p-1$.

Similarly, $(2p, v_1)$ is adjacent to $(2p, v_i) \in V(L(\Gamma(\mathbb{Z}_n)))$.

Then (p, v_1) and $(2p, v_2)$ are two vertices adjacent to remaining all vertices of line graph $\Gamma(\mathbb{Z}_n)$.

Therefore, $D = \{(p, v_i), (2p, v_i)\}$ is a minimum dominating set. The induced subgraph formed from the dominating set is both connected as well as regular. Therefore, $\gamma_{cr}(L(\Gamma(\mathbb{Z}_n))) = 2$.

Theorem 2.8. For any graph $L(\Gamma(\mathbb{Z}_{pq}))$, where p, q are odd prime numbers and $2 , it holds <math>\gamma_{cr}(L(\Gamma(\mathbb{Z}_n))) = p - 1$.

Proof. Let $\Gamma(\mathbb{Z}_n)$ be a line graph of $\Gamma(\mathbb{Z}_n)$. If n = pq where p, q are odd prime numbers and $2 . Then the vertex set of <math>L(\Gamma(\mathbb{Z}_n))$ is

$$\begin{split} V &= \{(q,p), (q,2p), (q,3p), ..., (q, p(q-1)), (2q,p), (2q,2p), ..., (2q, p(q-1)), \\ (3q,p), (3q,2p), ..., (3q, p(q-1)), (4q,p), (4q,2p), ..., (4q, p(q-1)), ..., ((p-1)q, p), \\ ((p-1)q, 2p), ..., ((p-1)q, p(q-1))\}. \end{split}$$

Decompose the vertex set of line graph of $\Gamma(\mathbb{Z}_n)$ into the following disjoint subsets.

The set $P = \{(q, p), (q, 2p), (q, 3p), ..., (q, p(q - 1))\}.$ The set $Q = \{(2q, p), (2q, 2p), (2q, 3p), ..., (2q, p(q - 1))\}.$ The set $R = \{(3q, p), (3q, 2p), (3q, 3p), ..., (3q, p(q - 1))\}.$

.....

The set $Y = \{((p-1)q, p), ((p-1)q, 2p), ((p-1)q, 3p), ..., ((p-1)q, (q-1))\}$. The edge set E(G) of line graph of $\Gamma(\mathbb{Z}_n)$ is defined by

$$E(G) = \{((u_1, v_1), (u_2, v_2)) / u_1 = u_2 \text{ or } v_1 = v_2\}$$

i.e., either first ordinate is common or second ordinate is common.

Let us consider a vertex $(q, p) \in P$. So (q, p) is adjacent to all vertices of P because q is the common and (q, p) is adjacent to only $(2q, p) \in Q, (3q, p) \in R, ..., ((p-1)q, p) \in Y$ but (q, p) is not adjacent to the remaining vertices. So that $D = \{(q, p)\}$ is not a dominating set.

Let us consider another vertex $(2q, p) \in Q$. It is adjacent to all the vertices of Q. Since 2q is the common and (2q, p) is also adjacent to $(q, p) \in P, (3q, p) \in$ $R, ..., ((p-1)q, p) \in Y$. So that $D = \{(q, p), (2q, p)\}$ is not a dominating set, since some of the vertices of R, S, ..., Y are not adjacent to D.

Let us consider another vertex $(3q, p) \in R$. (3q, p) is adjacent to all the vertices of R because 3q is the common in R and also (3q, p) is adjacent to $(q, p) \in$ $P, (2q, p) \in Q, ..., ((p-1)q, p) \in Y$. The remaining vertices of S, T, ..., Y are not adjacent. Therefore, $D = \{(q, p), (2q, p), (3q, p)\}$ is not a dominating set.

Continuing like this let us consider $((p-1)q, p) \in Y$. ((p-1)q, p) is adjacent to all the vertices of Y and it is adjacent to only a single vertex in each set. i.e., $(q, p) \in P, (2q, p) \in Q, (3q, p) \in R, ...$

Therefore, $D = \{(q, p), (2q, p), (3q, p), ..., ((p - 1)q, p)\}$ is a minimum dominating set with cardinality p-1. The induced subgraph formed from the dominating set is both connected as well as regular. Therefore, $\gamma_{cr}(L(\Gamma(\mathbb{Z}_n))) = p - 1$. \Box

Theorem 2.9. For any graph $L(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np}))$, where *n* is a non-zero positive integer and p > 2 is any prime number, holds $\gamma_{cr}(L(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np}))) = 1$.

Proof. The vertex set of $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np})$ is defined as $V = \{(0,1), (0,2), (0,3), ..., (0, np - 1), (1,0)\} = \{v_1, v_2, v_3, ..., v_{np-1}, v_{np}\}.$

The total number of vertices in $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np})$ is np. $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np})$ is a star graph. Clearly, the line graph of $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np})$ is a complete graph.

Therefore, $\gamma_{cr}(L(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_{np}))) = 1.$

2514

Theorem 2.10. For any graph $L(\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q))$, where q > p and p, q are odd prime numbers, it holds $\gamma_{cr}(L(\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q))) = p - 1$.

Proof. The vertex set of $\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q)$ is defined as $V = \{(0, 1), (0, 2), ..., (0, q - 1), (1, 0), (2, 0), ..., (p - 1, 0)\}$. The total number of vertices in $\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q)$ is p + q - 2.

It is clear that, $\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q)$ is a complete bi-partite graph. So, we can split the vertex set into two set of vertices V_1 and V_2 .

Let $V_1 = \{(0, 1), (0, 2), ..., (0, q - 1)\} = \{v_{11}, v_{12}, ..., v_{1(q-1)}\}$ and $V_2 = \{(1, 0), (2, 0), ..., (p - 1, 0)\} = \{v_{21}, v_{22}, ..., v_{2(p-1)}\}.$

Clearly, any vertex from the vertex set V_1 is adjacent to all vertices in V_2 . Similarly, any vertex from the vertex set V_2 is adjacent to all vertices in V_1 .

Now, the vertex set of $L(\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q))$ is $\{(v_{11}, v_{21}), (v_{11}, v_{22}), ..., (v_{11}, v_{2(p-1)})\}$, $(v_{1(q-1)}, v_{21}), (v_{1(q-1)}, v_{22}), ..., (v_{1(q-1)}, v_{2(p-1)})\}$. The edge set E(G) of line graph of $\Gamma(\mathbb{Z}_n)$ is defined by

$$E(G) = \{((u_1, v_1), (u_2, v_2)) / u_1 = u_2 \text{ or } v_1 = v_2\}.$$

Let us consider a vertex $(v_{11}, v_{21}) \in V(L(\Gamma(\mathbb{Z}_n)))$. (v_{11}, v_{21}) is adjacent to all (v_{11}, v_{2i}) and (v_{1j}, v_{21}) but (v_{11}, v_{21}) is not adjacent to $(v_{1k}, v_{22}), (v_{1k}, v_{23}), ..., (v_{1k}, v_{2(p-1)})$ where $2 \leq k \leq q - 1$.

Similarly, (v_{12}, v_{22}) is adjacent to all (v_{12}, v_{2i}) and (v_{1j}, v_{22}) but (v_{12}, v_{22}) is not adjacent to $(v_{1k}, v_{21}), (v_{1k}, v_{23}), (v_{1k}, v_{24}), ..., (v_{1k}, v_{2(p-1)})$ where k = 1 and $3 \le k \le q-1$.

Continuing like this we get the dominating set as $\{(v_{11}, v_{21}), (v_{11}, v_{22}), ..., (v_{11}, v_{2(p-1)})\}$. The induced subgraph formed from the dominating set is both connected as well as regular. Therefore, $\gamma_{cr}(L(\Gamma(\mathbb{Z}_p \times \mathbb{Z}_q))) = p - 1$.

REFERENCES

- S. AKBARI, A. MOHAMMADIAN: On the Zero divisor graph of Commutative rings, J. Algebra, 274 (2004), 847–855.
- [2] K. ANANTHI, J. R. SANKAR, N. SELVI: Connected Regular Domination number of $\Gamma(\mathbb{Z}_n)$, International Journal of Pure and Applied Mathematics, **115**(9) (2017), 299–307.
- [3] D. F. ANDERSON, P. S. LIVINGSTON: *The zero-divisor graph of a commutative ring*, J. Algebra, **217**(2) (1999), 434–447.
- [4] I. BECK: Colouring of Commutative Rings, J. Algebra, 116(1988), 208-226.

2516 V. MAHESWARI, Y. KAYATHIRI, R. RAJESWARI, AND J. A. SARUMATHI

PG AND RESEARCH DEPARTMENT OF MATHEMATICS A.P.C. MAHALAXMI COLLEGE FOR WOMEN, THOOTHUKUDI *E-mail address*: maheswari@apcmcollege.ac.in

PG AND RESEARCH DEPARTMENT OF MATHEMATICS A.P.C. MAHALAXMI COLLEGE FOR WOMEN, THOOTHUKUDI *E-mail address*: kayathiri906@gmail.com

PG and Research Department of Mathematics A.P.C. Mahalaxmi College for Women, Thoothukudi

PG AND RESEARCH DEPARTMENT OF MATHEMATICS A.P.C. MAHALAXMI COLLEGE FOR WOMEN, THOOTHUKUDI