ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2561–2572 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.19

FIBONACCI MEAN ANTI-MAGIC LABELING OF SOME GRAPHS

B. SIVARANJANI¹ AND R. KALA

ABSTRACT. Let G = (V(G), E(G)) be a simple, finite, connected and undirected graph. A Fibonacci Mean Anti-Magic labeling of a graph G is an injective function $g : V(G) \rightarrow \{f_2, f_3, ..., f_{n+1}\}$ where f_n is the n_{th} Fibonacci number with the induced function $g^* : E(G) \rightarrow N$ defined by,

$$g^*(e = uv) = \begin{cases} \frac{g(u) + g(v)}{2} & \text{if } g(u) + g(v) \text{ is even} \\ \frac{g(u) + g(v) + 1}{2} & \text{if } g(u) + g(v) \text{ is odd} \end{cases}$$

and all these edge labelings are distinct. The graph which admits Fibonacci Mean Anti-Magic Labeling is a Fibonacci Mean Anti-Magic graph. In this paper, we investigate this labeling for some special graphs.

1. INTRODUCTION

Let G = (V(G), E(G)) with p vertices and q edges be a simple, finite, connected and undirected graph. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. A useful survey on graph labeling can be found in J.A.Gallian(2014). S.Somasundaram and R.Ponraj in [4] introduced the notion of mean labeling of graphs. The concept of Fibonacci Mean Anti-Magic Labeling in graphs was introduced by Ameenal Bibi and T. Ranjani in [1]. In 1994, N .Hartsfield and G. Ringel introduced the concept of Anti-Magic labeling, [2].

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C78.

Key words and phrases. Anti-Magic labeling, mean Anti-Magic labeling, Fibonacci mean Anti-Magic labeling.

2. PRELIMINARIES

Definition 2.1. [5] Each vertex labeling f of a graph G be a (p,q) graph from $\{0, 1, 2, ..., q\}$ induces a edge labeling gf where $g^*(e)$ is sum the labels of end vertices of an edge e. Labeling f is called anti-magic if and only if all the edge labelings are pair wise distinct.

Definition 2.2. By an edge anti-magic vertex labeling we mean a one-to-one mapping V(G) into $\{0, 1, 2, ..., q\}$ such that the set of edge weights of all edges in G is $\{1, 2, ..., q\}$.

Different kinds of anti-magic graphs were studied by T. Nicholas, S. Somasundaram and V. Vilfred in [3].

Definition 2.3. A graph G with p vertices and q edges is a mean graph if there is an injective function f from the vertices of G to $\{1, 2, ..., q\}$ such that when each edge labeled with (f(u) + f(v))/2 if f(u) + f(v) is even and (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd, the resulting edges are distinct.

Definition 2.4. The Fibonacci numbers can be defined by the linear recurrence relation $F_n = F(n-1) + F(n-2)$; $n \ge 3$. This generates the infinite sequence of integers 1,2,3,5,8,13,21,34,55,89,144,...

Definition 2.5. A walk in which no vertex is repeated is called path. A path with n vertices is denoted as P_n . A path from v_0 to v_n is denoted as $v_0 - v_n$ path.

Definition 2.6. A closed path is called a cycle. A cycle with n vertices is denoted by C_n .

Definition 2.7. A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. It is denoted by K_n

Definition 2.8. The Cartesian product $G = G_1 \times G_2$ sometimes simply called the graph product and denoted by $G_1 \times G_2$ of graphs G_1 and G_2 with disjoint point sets V_1 and V_2 and edge sets X_1 and X_2 is the graph with point set $V_1 \times V_2$ and $u = (u_1, u_2)$ adjacent with $v = (v_1, v_2)$ whenever $[u_1 = v_1$ and u_2 adj v_2] or $[u_2 = v_2$ and u_1 adj v_1].

3. MAIN RESULTS

Definition 3.1. Book graph is a cartesian product of a star and a single edge, denoted by B_n . The *n*-book graph is defined as the cartesian product $S_{n+1} \times P_2$, where S_{n+1} is a star graph and P_2 is the path graph.

Theorem 3.1. The Book graph Bn is a Fibonacci Mean Anti-magic graph for $n \ge 2$.

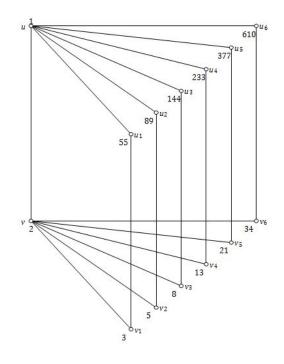


FIGURE 1. B_6

Proof. Let $G = B_n$ be a book graph. Let $V(G) = \{u, v, u_i, v_i/1 \le i \le n\}$ be the vertex set and $E(G) = \{uv\} \cup \{uu_i/1 \le i \le n\} \cup \{vv_i/1 \le i \le n\} \cup \{u_iv_i/1 \le i \le n\}$ be the edge set.

Define $g: V(G) \to \{f_2, f_3, ..., f_{n+1}\}$ by

$$g(u) = f_2,$$

$$g(v) = f_3,$$

$$g(v_i) = f_{i+3}, \ 1 \le i \le n,$$

$$g(u_i) = f_{n+i+3}, \ 1 \le i \le n$$

Then the induced function $g^* : E(G) \to N$ given by

$$g^*(e = uv) = \begin{cases} \frac{g(u)+g(v)}{2} & \text{if } g(u) + g(v) \text{ is even} \\ \frac{g(u)+g(v)+1}{2} & \text{if } g(u) + g(v) \text{ is odd} \end{cases}$$

We observe that the labels are all distinct. Hence the function g is a Fibonacci Mean Anti-magic labeling and so B_n $(n \ge 2)$ is a Fibonacci Mean Antimagic graph. \Box

Illustration 3.1. The illustration of the book graph B_n when n = 6 is shown in figure 1.

Theorem 3.2. Complete graph K_n $(n \ge 3)$ are not Fibonacci Mean A_n -timagic graphs.

Proof. Let $G = K_n$ be the complete graph on n vertices (say) $v_1, v_2, ..., v_n$. They must receive labels $f_2, f_3, ..., f_{(n+1)}$ in some order. Let v_i, v_j, v_k receive 1,2,3 as labels respectively, i.e. $g(v_i) = 1, g(v_j) = 2, g(v_k) = 3$. Then v_i, v_j and v_k have the same edge label 2. Thus, the labels induced by the

function $g^* : E(G) \to N$ are not distinct.

Therefore, the graph K_n is not a Fibonacci Mean Antimagic graph.

Definition 3.2. The corona of G with H, $G \odot H$ is the graph obtained by taking one copy of G and P copies of H and joining the i^{th} vertex of G with an edge to every vertex in the i^{th} copy of H. $P_n \odot K_1$ is called the comb and $P_n \odot 2K_1$ is called the double comb.

Theorem 3.3. The graph $P_n \odot 2K_1$ is a Fibonacci Mean Antimagic graph.

Proof. Let $G = P_n \odot 2K_1$ be a graph. Let $v_i \ (1 \le i \le n)$ be the vertices of the path P_n . Let $V(G) = \{u_i, v_i, w_i/1 \le i \le n\}$ be the vertex set and $E(G) = \{u_i v_i/1 \le i \le n\} \cup \{v_i v_{n+1}/1 \le i \le n-1\} \cup \{v_i w_i/1 \le i \le n\}$ be the edge set.

Define $g: V(G) \to \{f_2, f_3, ..., f_{n+1}\}$ by

$$g(u_i) = f_{i+1}, \ 1 \le i \le n,$$

$$g(v_i) = f_{n+i+1}, \ 1 \le i \le n,$$

$$g(w_i) = f_{2n+i+1}, \ 1 \le i \le n$$

Then the induced function $g^* : E(G) \to N$ given by

$$g^*(e = uv) = \begin{cases} \frac{g(u) + g(v)}{2} & if \ g(u) + g(v) \text{ is even} \\ \frac{g(u) + g(v) + 1}{2} & if \ g(u) + g(v) \text{ is odd.} \end{cases}$$

We observe that the labels are all distinct. Hence the function g is a Fibonacci Mean Anti-magic labeling and so $P_n \odot 2K_1$ is a Fibonacci Mean Antimagic graph.

Illustration 3.2. The illustration of the graph $P_6 \odot 2k_1$ is given in figure 2.

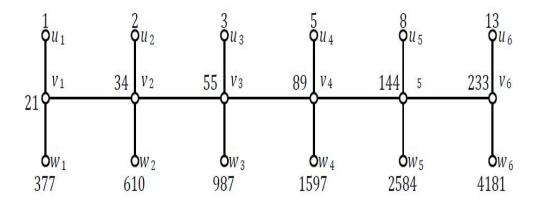


Figure 2. $P_6 \odot 2k_1$

Definition 3.3. An (n,m) balloon tree is a graph obtained by connecting one leaf of each of *n*-copies of an *m*-star graph. Let us denote it by $BL_{n,m}$.

Theorem 3.4. The balloon tree graph $BL_{n,m}$ is a Fibonacci Mean Antimagic graph.

Proof. Let $G = BL_{n,m}$ be a balloon tree graph. Let $V(G) = \{u_{00}, u_{ij}/1 \le i \le n, 1 \le j \le m\}$ be the vertex set and $E(G) = \{u_{00}u_{i0}/1 \le i \le n\} \cup \{u_{i0}u_{ij}/1 \le i \le n, 1 \le j \le m\}$ be the edge set.

Define $g: V(G) \to \{f_2, f_3, ..., f_{n+1}\}$ by

$$g(u_{ij}) = \begin{cases} f_2 & if \ i = 0, \ j = 0\\ f_{i(m+1)-m+j+2} & if \ 1 \le i \le n, \ 0 \le j \le m \end{cases}$$

Then the induced function $g^* : E(G) \to N$ given by

$$g^*(e = uv) = \begin{cases} \frac{g(u) + g(v)}{2} & \text{if } g(u) + g(v) \text{ is even} \\ \frac{g(u) + g(v) + 1}{2} & \text{if } g(u) + g(v) \text{ is odd.} \end{cases}$$

We observe that the labels are all distinct. Hence the function g is a Fibonacci Mean Anti-magic labeling and so $BL_{n,m}$ is a Fibonacci Mean Antimagic graph.

Illustration 3.3. The illustration of the balloon tree graph $BL_{2,7}$ is given in figure 3.

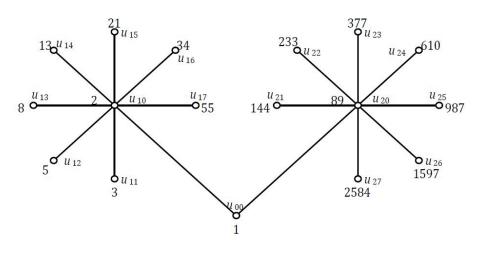


FIGURE 3. $BL_{2,7}$

Definition 3.4. An (n, m) banana tree is a graph obtained by connecting one leaf of each of *n*-copies of an *m*-star graph with a single root vertex that is distinct from all the stars and we denote it by $Ba_{n,m}$.

Theorem 3.5. The banana tree graph $Ba_{n,m}$ is a Fibonacci Mean Antimagic graph.

Proof. Let $G = Ba_{n,m}$ be a banana tree graph. Let $V(G) = \{u_{00}, u_{ij}/1 \le i \le n, 1 \le j \le m\}$ be the vertex set and $E(G) = \{u_{00}u_{i1}/1 \le i \le n\} \cup \{u_{i2}u_{i1}/1 \le i \le n\} \cup \{u_{i2}u_{ij}/1 \le i \le n, 1 \le j \le m\}$ be the edge set. Define $g: V(G) \to \{f_2, f_3, ..., f_{n+1}\}$ by,

$$g(u_{ij}) = \begin{cases} f_2 & if \ i = 0, \ j = 0\\ f_{i(m+1)-m+j+2} & if \ 1 \le i \le n, \ 0 \le j \le m. \end{cases}$$

Then the induced function $g^* : E(G) \to N$ is given by

$$g^*(e = uv) = \begin{cases} \frac{g(u) + g(v)}{2} & \text{if } g(u) + g(v) \text{ is even} \\ \frac{g(u) + g(v) + 1}{2} & \text{if } g(u) + g(v) \text{ is odd.} \end{cases}$$

We observe that the labels are all distinct. Hence the function g is a Fibonacci Mean Anti-magic labeling and so $Ba_{n,m}$ is a Fibonacci Mean Antimagic graph.

Illustration 3.4. The illustration of the banana tree graph $Ba_{4,4}$ is given in figure 4.

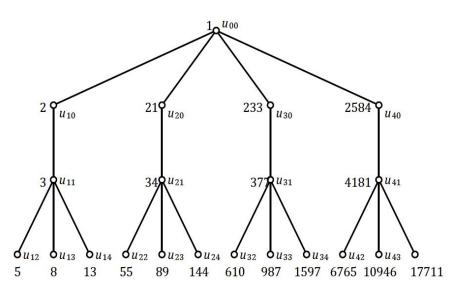


FIGURE 4. $Ba_{4,4}$

Definition 3.5. The *H*-graph of path P_n is the graph obtained from two copies of P_n with vertices $v_1, v_2, ..., v_n$ and $u_1, u_2, ..., u_n$ by joining the vertices $U\frac{n+1}{2}$ and $U\frac{n+1}{2}$ if *n* is odd and the vertices $U\frac{n}{2} + 1$ and $U\frac{n}{2}$ if *n* is even

Theorem 3.6. The *H*-graph of path P_n is a Fibonacci Mean Antimagic graph.

Proof. Let G = H of path P_n be a graph. $Let V(G) = \{u_i, v_i/1 \le i \le n\}$ be the vertex set and

$$\begin{split} E(G) &= \{u_i u_{i+1}/1 \le i \le n-1\} \cup \{v_i v_{i+1}/1 \le i \le n-1\} \cup \{u \lceil \frac{n}{2} \rceil v \lceil \frac{n}{2} \rceil\} \\ \text{be the edge set when } n \text{ is odd and } E(G) &= \{u_i u_{i+1}/1 \le i \le n-1\} \cup \{v_i v_{i+1}/1 \le i$$

$$f(u_i) = F_{i+1}, \quad 1 \le i \le$$

$$f(v_i) = F_{n+i+1}, \quad 1 \le i \le n.$$

n

Then the induced function $g^* : E(G) \to N$ is given by

$$g^*(e = uv) = \begin{cases} \frac{g(u) + g(v)}{2} & \text{if } g(u) + g(v) \text{ is even} \\ \frac{g(u) + g(v) + 1}{2} & \text{if } g(u) + g(v) \text{ is odd.} \end{cases}$$

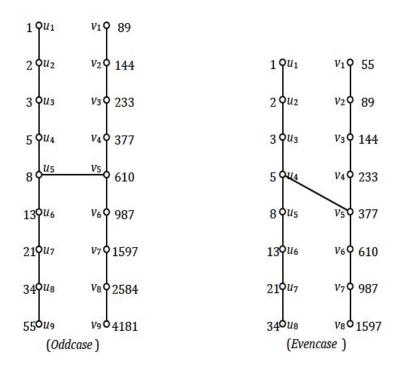


FIGURE 5. *H* graph

We observe that the labels are all distinct. Hence the function g is a Fibonacci Mean Anti-Magic labeling and so H-graph is a Fibonacci Mean Antimagic graph.

Illustration 3.5. The illustration of *H*-graph is given in figure 5.

Definition 3.6. A two-dimensional grid graph, also known as a rectangular grid graph or two-dimensional lattice graph is an $m \times n$ lattice graph that is the graph cartesian product $P_m \times P_n$ of path graphs on m and n vertices. The $m \times n$ grid graph is denoted as $L_{m,n}$.

Theorem 3.7. The grid graph $L_{m,n}$ is a Fibonacci Mean Antimagic graph.

Proof. Let G = L(m, n) be a graph. Let $V(G) = \{u_{ij}/1 \le i \le m, 1 \le j \le n\}$ be the vertex set and $E(G) = \{u_{ij}u_{i(j+1)}/1 \le i \le m, 1 \le j \le n-1\} \cup \{u_{ij}u_{(i+1)j}/1 \le i \le m-1, 1 \le j \le n\}$ be the edge set. Define $g: V(G) \to \{f_2, f_3, ..., f_{n+1}\}$ by,

$$g(u_{ij}) = \begin{cases} f_{n(i-1)+j+1} & if \quad i \text{ is odd}, \ 1 \le j \le n \\ f_{ni-j+2} & if \quad i \text{ is even}, \ 1 \le j \le n. \end{cases}$$

Then the induced function $g^* : E(G) \to N$ is given by,

$$g^*(e = uv) = \begin{cases} \frac{g(u) + g(v)}{2} & \text{if } g(u) + g(v) \text{ is even} \\ \frac{g(u) + g(v) + 1}{2} & \text{if } g(u) + g(v) \text{ is odd.} \end{cases}$$

We observe that the labels are all distinct. Hence the function g is a Fibonacci Mean Anti-magic labeling and so $L_{m,n}$ is a Fibonacci Mean Antimagic graph.

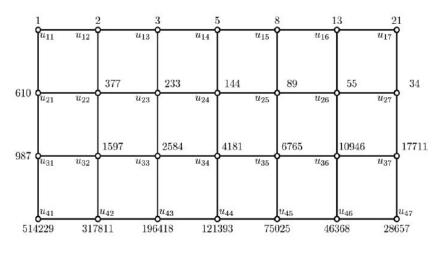


FIGURE 6. L(4,7)

Illustration 3.6. The illustration of the grid-graph L(4,7) is given in figure 6.

Definition 3.7. An armed crown is a graph in which path P_m is attached at each vertex of cycle C_n . This graph is denoted by $C_m \oplus P_m$.

Theorem 3.8. The graph $C_n \oplus P_m$ is a Fibonacci Mean Antimagic graph.

Proof. Let $C_n \oplus P_m$ be a graph. Let $V(G) = \{u_{ij}/1 \le i \le n, 1 \le j \le m\}$ be the vertex set and $E(G) = \{u_{ij}u_{i(j+1)}/1 \le i \le n, 1 \le j \le m-1\} \cup \{u_{i3}u_{(i+1)3}/1 \le i \le n-1\}$ be the edge set.

Define $g: V(G) \to \{f_2, f_3, \dots f_{n+1}\}$ by $g(u_{ij}) = f_{n(j-1)+i+1}, 1 \le i \le n, 1 \le j \le m$. Then the induced function $g^*: E(G) \to N$ is given by

$$g^*(e = uv) = \begin{cases} \frac{g(u) + g(v)}{2} & \text{if } g(u) + g(v) \text{ is even} \\ \frac{g(u) + g(v) + 1}{2} & \text{if } g(u) + g(v) \text{ is odd.} \end{cases}$$

We observe that the labels are all distinct. Hence the function g is a Fibonacci Mean Anti-magic labeling and so $C_n \oplus P_m$ is a Fibonacci Mean Antimagic graph.

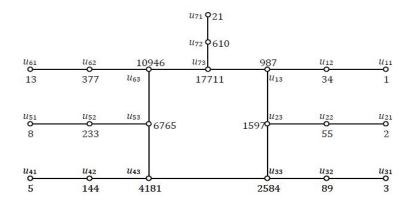


FIGURE 7. $C_7 \oplus P_3$

Illustration 3.7. The illustration of the armed crown $C_7 \oplus P_3$ is given in figure 7.

Definition 3.8. Umbrella is the graph obtained from fan by joining a path P_m to a middle vertex of path P_n in fan F_n . It is denoted by $U_{m,n}$.

Theorem 3.9. The umbrella graph $U_{m,n}$ is a Fibonacci Mean Antimagic graph.

Proof. Let $u_{(m,n)}$ be a graph. Let $V(G) = \{u_i, v_i/1 \le i \le m, 1 \le i \le n\}$ be the vertex set and $E(G) = \{u_i u_{i+1}/1 \le i \le m-1\} \cup \{u_i v_n/1 \le i \le m\} \cup \{v_i v_{i+1}/1 \le i \le n-1\}$ be the edge set.

Define $g: V(G) \to \{f_2, f_3, ..., f_{n+1}\}$ by

$$g(u_i) = F_{n+i+1}, \ 1 \le i \le m$$

 $g(v_i) = F_{n-i+2}, \ 1 \le i \le n.$

Then the induced function $g^* : E(G) \to N$ is given by

$$g^*(e=uv) = \begin{cases} \frac{g(u)+g(v)}{2} & if \ g(u)+g(v) \text{ is even} \\ \frac{g(u)+g(v)+1}{2} & if \ g(u)+g(v) \text{ is odd.} \end{cases}$$

We observe that the labels are all distinct. Hence the function g is a Fibonacci Mean Anti-magic labeling and so U(m, n) is a Fibonacci Mean Antimagic graph.

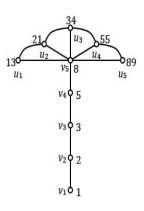


Figure 8. U(5, 5)

Illustration 3.8. The illustration of the umbrella graph U(5,5) is given in figure 8.

References

- AMEENAL BIBI, T. RANJANI: Fibonacci Mean Anti-Magic Labeling of Graphs, Kong. Res. J., 5(1) (2018), 1–3.
- [2] N. HARTSFIELD, G. RINGEL: *Pearls in Graph Theory*, Academic Press, Boston San Diego New York London, 1990.

- [3] T. NICHOLAS, S. SOMASUNDARAM, V. VILFRED: On (a,d)-anti-magic Special trees, Unicyclic graphs and Complete bipartitle graphs, Ars.Combin., **70** (2004), 207–220.
- [4] S. SOMASUNDARAM, R. PONRAJ: *Mean labeling of graphs*, National academy Science letters, **26** (2003), 210–213.
- [5] K. THIRUGNANASAMBANDAM, G. CHITRA: Fibonacci Mean Anti-Magic Labeling of Graphs, International Journal of Research in Advent Technology, E-ISSN: 2321-9637, 7 4S (2019).

DEPARTMENT OF MATHEMATICS MANONMANIAM SUNDARANAR UNIVERSITY ABISHEKAPATTI, TIRUNELVELI 627 012 *E-mail address*: ranjani1345@gmail.com

DEPARTMENT OF MATHEMATICS MANONMANIAM SUNDARANAR UNIVERSITY ABISHEKAPATTI, TIRUNELVELI 627 012 *E-mail address*: karthipyi91@yahoo.co.in