Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2595–2605 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.22

ASCENDING PENDENT DOMINATION DECOMPOSITION OF GRAPHS

V. BRISHNI¹, V. MAHESWARI, AND K. BALA DEEPA ARASI

ABSTRACT. Let G = (V, E) be a simple connected graph. A subset S of vertices in a graph G is called a dominating set if every vertex $v \in V$ is either in S or adjacent to some vertex in S. A dominating set S in G is called a dendant dominating set if $\langle S \rangle$ contains atleast one pendant vertex. If $G_1, G_2, G_3, ..., G_n$ are connected subgraphs of G with $E(G) = E(G_1) \cup E(G_2) \cup E(G_3) ... \cup E(G_n)$, then $(G_1, G_2, G_3, ..., G_n)$ is said to be a decomposition of G. In this paper, we introduce ascending dendent domination decomposition of graphs. Also we obtain $P_{(n+1)^2}, C_{n(n+2)}$ and $K_{\frac{m(m+1)}{2},n}$ admits ascending pendent domination decomposition.

1. INTRODUCTION

Let G = (V, E) be a simple connected graph. A vertex of degree zero is called an isolated vertex and a vertex of degree one is called a pendent vertex. An edge incident with a pendent vertex is called a pendent edge. Pendent domination in some generalised graphs was introduced by Nayaka, Puttaswamy and Purushothama in [5]. Ascending domination decomposition of subdivision of graphs was introduced by Lakshmiprabha and Nagarajan in [3] and Maheswari and Nagarajan in [4]. This motivates us to define ascending pendent domination decomposition, which is researched in [1, 2]. In this paper, we obtain the graphs namely $P_{(n+1)^2}$, $C_{n(n+2)}$ and $K_{\frac{m(m+1)}{2},n}$ admits ascending pendent domination decomposition.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. Primary 05C50, 05C69, 05C70.

Key words and phrases. Dominating set, pendent dominating set, decomposition.

Definition 1.1. If $G_1, G_2, G_3, ..., G_n$ are edge disjoint subgraphs of G with $E(G) = E(G_1) \cup E(G_2) \cup E(G_3) ... \cup E(G_n)$, then $(G_1, G_2, G_3, ..., G_n)$ is said to be a decomposition of G.

Definition 1.2. A subset S of vertices in a graph G is called a dominating set if every vertex $v \in V$ is either in S or adjacent to some vertex in S. The least cardinality of a dominating set in G is called the domination number of G and is usually denoted by $\gamma(G)$.

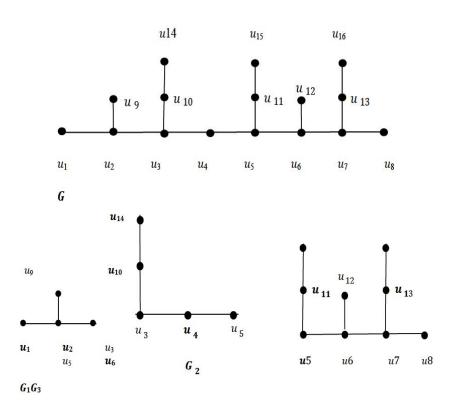
Definition 1.3. A dominating set S in G is called a pendant dominating set if $\langle S \rangle$ contains at least one pendant vertex. The minimum cardinality of a pendent dominating set is called the pendant domination number denoted by $\gamma_{pe}(G)$.

Definition 1.4. The corona $G_1 \odot G_2$ of two graphs G_1 and G_2 is defined as the graph G obtained by taking one copy of G_1 (which has p_1 vertices) and p_1 copies of G_2 and then joining the i^{th} vertex of G_1 to every vertex in the i^{th} copy of G_2 .

Definition 1.5. The graph $C_n \odot K_1$ is called a crown. The graph $P_n \odot K_1$ is called a comb.

Definition 1.6. For a vertex $v \in V$, the open neighbourhood of v is the set N(v) containing all the vertices u adjacent to v and the closed neighbourhood of v is the set N[v] containing v and all the vertices u adjacent to v.

2. MAIN RESULTS


Definition 2.1. A decomposition $(G_1, G_2, ..., G_n)$ of G is said to be ascending pendent domination decomposition (APDD) if

- (i) Each G_i is connected
- (ii) $\gamma_{pe}(G_i) = i + 1, \ 1 \le i \le n.$

Example 1. The following example shows that the graph G admits APDD into 3 - parts.

Here $\gamma_{pe}(G_1) = 2$, $\gamma_{pe}(G_2) = 3$ and $\gamma_{pe}(G_3) = 4$.

ASCENDING PENDENT DOMINATION ...

Theorem 2.1. The path $P_{(n+1)^2}$ admits APDD into n - parts.

Proof. Let $\{u_1, u_2, ..., u_{(n+1)^2}\}$ be the set of vertices of $P_{(n+1)^2}$. Define

$$G_{1} = \langle N[(u_{2}, u_{3})] \rangle$$

$$G_{2} = \langle N[(u_{5}, u_{6}), u_{8}] \rangle$$

$$G_{3} = \langle N[(u_{10}, u_{11}), u_{13}, u_{15}] \rangle$$

$$G_{4} = \langle N[(u_{17}, u_{18}), u_{20}, u_{22}, u_{24}] \rangle$$

$$\dots$$

$$G_{n} = \langle N[(u_{q}, u_{q+1}), u_{q+3}, u_{q+5}, \dots, u_{s}] \rangle$$

where q and s can be calculated by using Newton's Divided Difference Formula.

To find: q

n	q	Δq	$\Delta^2 q$	$\Delta^3 q$	$\Delta^4 q$
1	2				
		3			
2	5		2		
		5		0	
3	10		2		0
		7		0	
4	17		2		
		9			
5	26				

$$n = n_0 + xh$$

$$n = 1 + x(1) \Rightarrow x = n - 1.$$

$$q = q_0 + x \frac{\Delta q_0}{1!} + \frac{x(x-1)}{2!} \Delta^2 q_0 + \cdots$$

= 2 + (n-1)3 + $\frac{n(n-1)}{2}$ 2
= n² + 1

Hence $q = n^2 + 1$ and $q + 1 = n^2 + 2$. To find : s

n	s	Δs	$\Delta^2 s$	$\Delta^3 s$	$\Delta^4 s$
2	8				
		7			
3	15		2		
		9		0	
4	24		2		0
		11		0	
5	35		2		
		13			
6	48				

$$n = n_0 + xh$$

$$n = 2 + x(1) \Rightarrow x = n - 2.$$

ASCENDING PENDENT DOMINATION ...

$$s = s_0 + x \frac{\Delta s_0}{1!} + \frac{x(x-1)}{2!} \Delta^2 s_0 + \cdots$$
$$= 8 + (n-2)7 + \frac{(n-2)(n-3)}{2}2$$
$$= n(n+2)$$

Clearly, path $P_{(n+1)^2}$ can be decomposed into $G_1, G_2, ..., G_n$ and $\gamma_{pe}(G_i) = i + 1, \ 1 \le i \le n$.

Hence the path $P_{(n+1)^2}$ admits APPD into *n*- parts.

Illustration 2.1. For n = 3, P_{16} admits APPD into 3 - parts.

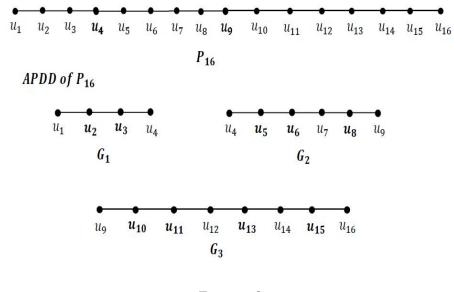


FIGURE 2

Here $\gamma_{pe}(G_1) = 2$, $\gamma_{pe}(G_2) = 3$ and $\gamma_{pe}(G_3) = 4$.

Theorem 2.2. The cycle $C_{n(n+2)}$ admits APDD into n-parts.

Proof. Let $\{u_1, u_2, ..., u_{n(n+2)}\}$ be the set of vertices of $C_{n(n+2)}$.

2599

Define

$$\begin{array}{lcl} G_{1} & = & \langle N[(u_{2}, u_{3})] \rangle \\ G_{2} & = & \langle N[(u_{5}, u_{6}), u_{8}] \rangle \\ G_{3} & = & \langle N[(u_{10}, u_{11}), u_{13}, u_{15}] \rangle \\ G_{4} & = & \langle N[(u_{17}, u_{18}), u_{20}, u_{22}, u_{24}] \rangle \\ & & \\ & \\ G_{n} & = & \langle N[(u_{q}, u_{q+1}), u_{q+3}, u_{q+5}, ..., u_{s}] \rangle \end{array}$$

where q and s can be calculated by using Newton's Divided Difference Formula. To find: q

n	q	Δq	$\Delta^2 q$	$\Delta^3 q$	$\Delta^4 q$
1	2				
		3			
2	5		2		
		5		0	
3	10		2		0
		7		0	
4	17		2		
		9			
5	26				

$$n = n_0 + xh$$

 $n = 1 + x(1) \Rightarrow x = n - 1.$

$$q = q_0 + x \frac{\Delta q_0}{1!} + \frac{x(x-1)}{2!} \Delta^2 q_0 + \cdots$$
$$= 2 + (n-1)3 + \frac{n(n-1)}{2}2$$
$$= n^2 + 1$$

Hence $q = n^2 + 1$ and $q + 1 = n^2 + 2$.

-	C 1		
10	find	٠	e
10	mu	٠	Э

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n	s	Δs	$\Delta^2 s$	$\Delta^3 s$	$\Delta^4 s$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	8				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	15		2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			9		0	
$5 \hspace{0.1cm} 35 \hspace{0.1cm} 2 \\ 13 \hspace{0.1cm} 13 \hspace{0.1cm}$	4	24		2		0
13			11		0	
	5	35		2		
6 48			13			
	6	48				
	n	=	2 + x	\Rightarrow (1) \Rightarrow	$\cdot x = r$	n - 2.
$n = 2 + x(1) \Rightarrow x = n - 2.$	$s_{\rm c}$	$_{0} + x$	$\frac{\Delta s_0}{11}$	$+\frac{x(x)}{x}$	$\frac{x-1}{2}$	$\Delta^2 s_0$ -
			1!	(2! 2)	(n 5
	8	+(r	n - 2	$)7 + \frac{1}{2}$	$\frac{n-2}{n}$	$\frac{n-n}{2}$
$n = 2 + x(1) \Rightarrow x = n - 2.$ $s_0 + x \frac{\Delta s_0}{1!} + \frac{x(x-1)}{2!} \Delta^2 s_0 - \frac{1}{2!} \Delta^$		(-	-

Clearly, path $C_{n(n+2)}$ can be decomposed into $G_1, G_2, ..., G_n$ and $\gamma_{pe}(G_i) = i+1, 1 \leq i \leq n$.

Hence the path $C_{n(n+2)}$ admits APPD into *n*- parts.

s

Illustration 2.2. For n = 3, C_{15} admits APDD into 3- parts.

= n(n+2)

At the figure 3 $\gamma_{pe}(G_1) = 2$, $\gamma_{pe}(G_2) = 3$ and $\gamma_{pe}(G_3) = 4$.

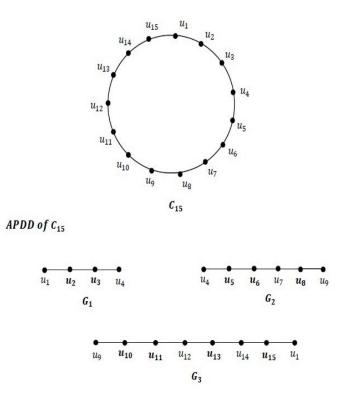


FIGURE 3

Theorem 2.3. A complete bipartite $K_{\frac{m(m+1)}{2},n}$ admits APDD into m- parts and $\gamma_{pe}\left(K_{\frac{m(m+1)}{2},n}\right) = \sum_{i=1}^{m} \gamma_{pe}(G_i) - m + 1.$

Proof. Let $\{u_1, u_2, ..., u_{\frac{m(m+1)}{2}}\}$ be the set of vertices of degree n in $K_{\frac{m(m+1)}{2},n}$. Let $\{v_1, v_2, ..., v_n\}$ be the set of vertices of degree $\frac{m(m+1)}{2}$ in $K_{\frac{m(m+1)}{2},n}$. Define

 $G_1 = \langle N[u_1] \rangle$ $G_2 = \langle N[u_2, u_3] \rangle$ $G_3 = \langle N[u_4, u_5, u_6] \rangle$ \dots $G_m = \langle N[u_r, u_{r+1}, \dots, u_s] \rangle$

where r and s can be calculated by using Newton's Divided Difference Formula.

To find: r

n	r	Δr	$\Delta^2 r$	$\Delta^3 r$	$\Delta^4 r$
1	1				
		1			
2	2		1		
		2		0	
3	4		1		0
		3		0	
4	7		1		
		4			
5	11				

$$m = m_0 + xh$$

$$m = 1 + x(1) \Rightarrow x = m - 1.$$

$$r = r_0 + x \frac{\Delta r_0}{1!} + \frac{x(x-1)}{2!} \Delta^2 r_0 + \cdots$$
$$= 1 + (m-1)3 + \frac{(m-1)(m-2)}{2} 1$$
$$= \frac{m^2 - m + 1}{2}$$

To find : s

n	s	Δs	$\Delta^2 s$	$\Delta^3 s$	$\Delta^4 s$
1	1				
		2			
2	3		1		
		3		0	
3	6		1		0
		4		0	
4	10		1		
		5			
5	15				

$$m = m_0 + xh$$

 $m = 1 + x(1) \Rightarrow x = m - 1.$

V. BRISHNI, V. MAHESWARI, AND K. BALA DEEPA ARASI

$$s = s_0 + x \frac{\Delta s_0}{1!} + \frac{x(x-1)}{2!} \Delta^2 s_0 + \cdots$$
$$= 1 + (m-1)2 + \frac{(m-1)(m-2)}{2} 1$$
$$= \frac{m(m+1)}{2}$$

Clearly, path $K_{\frac{m(m+1)}{2},n}$ can be decomposed into $G_1, G_2, ..., G_m$ and $\gamma_{pe}(G_i) =$ $i+1, 1 \leq i \leq n.$

Hence the path $K_{\frac{m(m+1)}{2},n}$ admits APPD into *m*- parts. Also, the pendent dominating set in $K_{\frac{m(m+1)}{2},n}$ is $\{u_1, u_2, ..., u_{\frac{m(m+1)}{2}}\}$ and we

can choose anyone of the vertices in $\{v_1, v_2, ..., v_n\}$. Therefore, $\gamma_{pe}\left(K_{\frac{m(m+1)}{2},n}\right) = \frac{m(m+1)}{2} + 1$. Now,

$$\sum_{i=1}^{m} \gamma_{pe}(G_i) = \gamma_{pe}(G_1) + \gamma_{pe}(G_2) + \dots + \gamma_{pe}(G_m)$$

= 2+3+...+m+1
= (1+2+3+...+m+m+1) - 1
= (1+2+3+...+m) + m
= $\frac{m(m+1)}{2} + m$
= $\gamma_{pe}\left(K_{\frac{m(m+1)}{2},n}\right) - 1 + m$

Hence
$$\gamma_{pe}\left(K_{\frac{m(m+1)}{2},n}\right) = \sum_{i=1}^{m} \gamma_{pe}(G_i) - m + 1.$$

Illustration 2.3. For m = 3 and n = 3, $K_{6,3}$ admits APDD into 3 - parts.

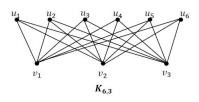


FIGURE 4

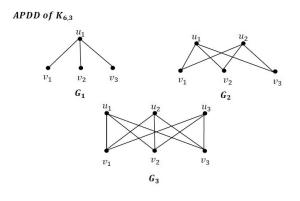


FIGURE 5

Here $\gamma_{pe}(G_1) = 2$, $\gamma_{pe}(G_2) = 3$ and $\gamma_{pe}(G_3) = 4$.

References

- M. BHUVANESHWARI, S. AVADAYAPPAN, P. CHANDRA DEVI: Ascending Domination Decomposition of Some graphs, International Journal of Applied and Advanced Scientific Research, (2017), 40–48.
- [2] V. BRISHNI, V. MAHESWARI, V. NAGARAJAN: Even Decomposition of Graphs, Journal of Emerging Technologies and Innovative Research(JETIR), 6(2) (2019), 108–115.
- [3] K. LAKSHMIPRABHA, K. NAGARAJAN: Ascending Domination Decomposition of Subdivision of graphs, International Journal of Mathematics and Soft Computing, 5(2), 105–114.
- [4] V. MAHESWARI, A. NAGARAJAN: *Ascending Graphoidal Tree Cover*, International Journal of Discrete Mathematical Sciences and Cryptography, **16**(4-5) (2011), 283–295.
- [5] S. R. NAYAKA, PUTTASWAMY, S. PURUSHOTHAMA: Pendent Domination in some Generalised Graphs, International Journal of Scientific Engineering and Science, 1(7) (2017), 13–15.

PG and Research Department of Mathematics V. O. Chidambaram College Thoothukudi

PG and Research Department of Mathematics A.P.C Mahalaxmi College Thoothukudi

PG AND RESEARCH DEPARTMENT OF MATHEMATICS A.P.C MAHALAXMI COLLEGE THOOTHUKUDI.