

Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2711–2716 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.32

SOME NEW SETS ON GENERALIZED TOPOLOGY

M. MUTHUKUMARI

ABSTRACT. In this paper g^* sets, ω^* sets, $g^*\omega^*$ sets are introduced and properties are studied. Properties of continuity is studied using these sets.

1. INTRODUCTION

Csaszar introduced generalized topology, generalized open sets, generalized closed sets in [1, 2] in 2002. Mathematicians studied further and introduced semi open sets, semi closed sets, g-closed sets, g-open sets, ω -closed sets and ω -open sets, [5]. Further various continuous functions were introduced using the above sets, [3,4].

In this paper g^* sets, ω^* sets, $g^*\omega^*$ sets are introduced and properties are studied.

Also some different types of continuous functions are introduced. Also a decomposition is introduced.

2. Preliminaries

- (1) Generalized Topology : Let X be a non empty set. Let $\mu \subset P(X)$. μ is called a generalized topology if $\Phi \in X$ and μ is closed under arbitrary union. Elements of μ are called open sets.
- (2) Semi open set : A subset A of X is called semi open set if $A \subset cl(intA)$.

²⁰¹⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. generalized topological space, ω^* set, g^* set, $g^*\omega^*$ set.

M. MUTHUKUMARI

- (3) g-closed set: A is called g-closed set if $c(A) \subset U$, whenever U is an open set containing A. The complement of g-closed set is g-open set.
- (4) ω -Closed set : A is called ω -Closed set if $c(A) \subset U$, whenever U is a semi open set containing A. The complement of ω -closed set is ω -open set.
- (5) Every open set is ω -open.
- (6) Every ω -open is g-open.

3. New sets

Definition 3.1. Let X be generalized topological space. Let $A \subset X$. A is called a $D(\mu, \omega(\mu))$ set or ω^* set if $i_{\mu}(A) = i_{\omega}(A)$.

Definition 3.2. Let X be generalized topological space. Let $A \subset X$. A is called a $D(\mu, g(\mu))$ set or g^* set if $i_{\mu}(A) = i_g(A)$.

Definition 3.3. Let X be generalized topological space. Let $A \subset X$. A is called $D(\omega(\mu), g(\mu))$ set or $g^*\omega^*$ set if $i_{\omega}(A) = i_g(A)$.

Example 1. Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{b\}, \{a, c\}, \{b, c\}, X\}$. Then $A = \{c\}$ is ω -open set but neither ω^* set nor g^* set, $B = \{a, b\}$ is ω^* set but not ω -open set, $C = \{a\}$ is g^* set but not ω -open set.

Example 2. Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Then $A = \{c\}$ is g-openset but neither g^* set nor $g^*\omega^*$ set, $B = \{b, d\}$ is g^* set but not g-open set and $C = \{a, d\}$ is $g^*\omega^*$ set but not g-open set.

Example 3. Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{b\}, \{a, c\}, \{b, c\}, X\}$. Then in (X, μ) , $A = \{a, c\}$ and $B = \{b, c\}$ are ω^* sets and g^* sets but $A \cap B = \{c\}$ is neither ω^* sets nor g^* sets.

Example 4. Let $X = \{a, b, c, d, e\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}, \{a, b, d\}, \{a, b, c, d\}\}$. Then $A = \{a, b, d, e\}$ and $B = \{b, c, d, e\}$ are $g^*\omega^*$ sets but $A \cap B = \{b, d, e\}$ is not a $g^*\omega^*$ set.

Example 5. Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Then $A = \{d\}$ is g^* set but not μ -open set.

Example 6. Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{b\}, \{a, c\}, \{b, c\}, X\}$. Then $A = \{c\}$ is ω -open set but neither g^* set nor $g^*\omega^*$ set, $B = \{a\}$ is g^* set but not ω -open set.

Example 7. Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Then $A = \{c\}$ is ω^* set but not $g^*\omega^*$ set.

Example 8. Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{b\}, \{a, c\}, \{b, c\}, X\}$. Then $A = \{c\}$ is $g^*\omega^*$ set but not ω^* set.

Example 9. Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Then $A = \{c\}$ is g -open set but not $g^*\omega^*$ set and $B = \{a, d\}$ is $g^*\omega^*$ set but not g -openset.

Example 10. Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Then $A = \{c\}$ is ω^* set but not g^* set.

Example 11. Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{b\}, \{a, c\}, \{b, c\}, X\}$. Then $A = \{a\}$ is ω^* set but not μ -open set.

4. CHARACTERIZATIONS

Theorem 4.1. In (X, μ) the following are true.

- (1) Every open set is a g^* set.
- (2) Every g^* set is a ω^* set.
- (3) Every open set is ω^* set.
- (4) Every open set is $g^*\omega^*$ set.
- (5) Every g^* set is $g^*\omega^*$ set.
- (6) Every ω open set is $g^*\omega^*$ set.

Proof.

- (1) Let A be an open set. Then A = i(A). Every open set is g open set. We have i(A) ⊂ i_g(A). Always it is true that i_g(A) ⊂ A. Therefore i(A) = i_g(A). Hence A is a g* set.
- (2) Let A be a g* set. Then i(A) = i_g(A). Every ω open set is g open set. We have i_ω(A) ⊂ i_g(A). Therefore i_ω(A) ⊂ i_g(A) = i(A). Every open set is ω open set. Therefore i(A) ⊂ i_ω(A). We have i(A) = i_ω(A). Hence A is ω* set.
- (3) Let A be an open set. Then i(A) = A. Every open set is ω open set. We have i(A) ⊂ i_ω(A). Always i_ω(A) ⊂ i(A). Therefore i(A) = i_ω(A). Hence A is a ω* set.

M. MUTHUKUMARI

- (4) Let A be an open set. Then i(A) = (A). Every open set is ω* set. We have i(A) = iω(A). Every open set is a g* set. Therefore i(A) = ig(A). Therefore iω(A) = ig(A). Hence A is g*ω* set.
- (5) Let A be a g^* set. Then $i(A) = i_g(A)$. Every g^* set is a ω^* set. Therefore A is ω^* set. Therefore $i(A) = i_\omega(A)$. Hence $i_\omega(A) = i_g(A)$. Hence A is $g^*\omega^*$ set.
- (6) Let A be an ω open set. Then A = i_ω(A). Every ω open set is g open set. Therefore A is g open set. We have A = i_g(A). Therefore i_ω(A) = i_g(A). Hence A is a g^{*}ω^{*} set.

Result 1. In each case converse is not true. This is seen from the above examples.

Theorem 4.2. Let (X, μ) be a generalized topological space. A subset A is open iff A is both ω open and ω^* set.

Proof. Let A be an open set. Hence i(A) = A. Every open set is ω open set. $i(A) \subset i_{\omega}(A)$. Always $i_{\omega}(A) \subset i(A)$. Hence $i(A) = i_{\omega}(A)$ and $i_{\omega}(A) = A$. Therefore A is both ω open and ω^* set.

Conversely, let A be both ω open and ω^* set. Now A is ω open implies $i_{\omega}(A) = A$. Also A is ω^* set implies $i_{\omega}(A) = i(A)$. Hence i(A) = A. Therefore A is open. \Box

Theorem 4.3. Let (X, μ) be a generalized topological space. A subset A is open iff A is both g open and g^* set.

Proof. Proof is similar.

Theorem 4.4. Let (X, μ) be a generalized topological space. A subset A is open iff A is both ω open and g^* set.

Proof. Proof is similar.

Theorem 4.5. Let (X, μ) be a generalized topological space. A subset A is ω open A iff A is g open and $g^*\omega^*$ set.

Proof. Proof is similar.

Theorem 4.6. Let (X, μ) be a generalized topological space. A subset A is g^* open iff A is both $g^*\omega^*$ set and ω^* set.

Proof. Proof is similar.

2714

Theorem 4.7. Let (X, μ) be a generalized topological space. A subset A is open iff A is g open, $g^*\omega^*$ set and ω^* set.

Proof. Proof is similar.

Theorem 4.8. For a subset A of (X, μ) the following conditions are equivalent:

- (1) A is μ -open.
- (2) A is ω -open and a g^* set.
- (3) A is g-open and a g^* set.
- (4) A is ω -open and ω^* set.

Proof. Proof follows from above theorems.

Remark 4.1. (1) The notions of ω -open sets and ω^* sets are independent,

- (2) The notions of ω -open sets and g^* sets are independent,
- (3) The notions of g-open sets and g^* sets are independent,

(4) The notions of g-opensets and $g^*\omega^*$ sets are independent,

(5) The notions of ω^* sets and $g^*\omega^*$ sets are independent.

5. DECOMPOSITIONS OF CONTINUITY

The following definitions are given in [6–8].

Definition 5.1. A function $f : X \to Y$ is said to be g-continuous, if for each open set U in Y, $f^1(U)$ is g open set in X.

Definition 5.2. A function $f : X \to Y$ is said to be ω -continuous, if for each open set U in Y, $f^1(U)$ is ω open set in X.

Definition 5.3. A function $f : X \to Y$ is said to be g^* -continuous, if for each open set U in Y, $f^1(U)$ is g^* set in X.

Definition 5.4. A function $f : X \to Y$ is said to be ω^* -continuous, if for each open set U in Y, $f^1(U)$ is ω^* set in X.

Definition 5.5. A function $f : X \to Y$ is said to be $g^*\omega^*$ -continuous , if for each open set U in Y, $f^1(U)$ is $g^*\omega^*$ set in X.

Theorem 5.1. Let $f : (X, \mu) \to (Y, \lambda)$. Then the following conditions are equivalent:

 \square

M. MUTHUKUMARI

- (1) f is -continuous,
- (2) f is ω -continuous and g^* -continuous,
- (3) f is g-continuous and g^* -continuous.
- (4) *f* is ω -continuous and ω^* -continuous.

Proof. Proof follows from Theorem 4.8.

Theorem 5.2. Let $f : X \to Y$ is ω -continuous if and only if it is g-continuous and $g^*\omega^*$ -continuous.

Proof. Proof follows from Theorem 4.6.

Theorem 5.3. Let $f : X \to Y$ is g^* -continuous if and only if it is $g^*\omega^*$ -continuous and ω^* -continuous.

Proof. Proof follows from Theorem 4.7.

REFERENCES

- [1] A. CSASZAR: Generalized topology, generalized continuity, Acta Math.Hungar., **96**(2002), 351–357.
- [2] A. CSASZAR: Generalized open sets in generalized topologies, Acta Math. Hungar., 106(1-2) (2005), 53–66.
- [3] W.K. MIN: Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hungar., **128**(4) (2010), 299–306.
- [4] J. DONTCHEV: On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar., 17(1-2) (1996), 109–120.
- [5] S. MARAGATHAVALLI, M. SHEIKJOHN, D. SIVARAJ: On g-closed sets in generalized topological spaces, Journal of Advanced Research in Pure Mathematics, 2(1) (2010), 24–33.
- [6] M. PRZEMSKI: A decomposition of continuity and α-continuity, Acta Math. Hungar., 61(1-2) (1993), 93–98.
- [7] M. RAJAMANI, V. INTHUMATHI, R. RAMESH: (ω_{μ}, λ) -continuty in generalized topological spaces, IJMA., **3**(10) (2012), 3696-3703.
- [8] M. RAJAMANI, V. INTHUMATHI, R. RAMESH: A Decompositions of (μ, λ) $\hat{a}AS$ continuity in generalized topological spaces, Jordan Journal of Mathematics and Statistics, **6**(1) (2013), 15–27.

PG AND RESEARCH DEPARTMENT OF MATHEMATICS A.P.C.MAHALAXMI COLLEGE FOR WOMEN, THOOTHUKUDI *E-mail address*: mmkumari27@gmail.com

2716