ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2717–2721 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.33

TRI β **FUNCTION**

J. CARLIN¹ AND M. MUTHUKUMARI

ABSTRACT. In this paper we study the properties of tri β continuous and define tri β open map, tri β closed map and tri β homeomorphism.

1. INTRODUCTION

M.E.Abd El-Monsef introduced a generalization of open set in topological space called β open set in topological space called β open set. The generalized open sets and generalized continuity is analyzed in [2] and [3], respectively. A subset *A* of a topological space is called β open if $A \subseteq cl(int(clA))$. Lellis Thivagar extended this concept to bitopological spaces. In [1], the authors considered α open sets and α continuous functions. Palaniammal in his PhD thesis, [4], extended this concept to tri topological spaces. Palaniammal and others defined the concept tri β continuous function.

2. Tri β function

Definition 2.1. Let X be a non empty set and T_1, T_2 and T_3 be three topologies on X. X together with three topologies is called a tri topological space. It is denoted by (X, T_1, T_2, T_3) .

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. tri β continuous function, tri α open map, tri β closed map.

Example 1. Let $X = \{a, b, c, d\}$, $T_1 = \{\emptyset, X\}$, $T_2 = P(X)$, $T_3 = \{\emptyset, \{a\}, X\}$ Then (X, T_1, T_2, T_3) is a tri topological space.

Definition 2.2. Let (X, T_1, T_2, T_3) be a tri topological space. Let $A \subset X$. A is called a tri β open set if $A \subset T_1 clT_2 intT_3 clA$.

Example 2. Let $X = \{1, 2, 3\}$, $T_1 = \{\emptyset, \{1\}, X\}$, $T_2 = \{\emptyset, \{2\}, X\}$, $T_3 = P(X)$ Then tri β open sets are $\{\emptyset, \{2\}, \{2, 3\}, X\}$.

Definition 2.3. Let (X, T_1, T_2, T_3) be a tri topological space. Let $A \subset X$. A is called a tri β closed set if A^c is tri β open.

Example 3. Let $X = \{1, 2, 3\}$, $T_1 = \{\emptyset, \{1\}, X\}$, $T_2 = \{\emptyset, \{2\}, X\}$, $T_3 = P(X)$ Then tri β closed sets are $\{\emptyset, \{1\}, \{1, 3\}, X\}$.

Result 1. (1) Arbitrary union of tri β open sets is tri β open.

(2) Arbitrary intersection of tri β closed sets is tri β closed.

(3) \emptyset and X are always both tri β open and tri β closed.

Definition 2.4. Let (X, T_1, T_2, T_3) and (Y, T'_1, T'_2, T'_3) be two tri topological spaces. A function f from X to Y, is called a tri β continuous function if $f^{-1}(V)$ is tri β open set in X, for every tri β open set V in Y.

Example 4. Let (X, T_1, T_2, T_3) and (Y, T'_1, T'_2, T'_3) be two tri topological spaces, where $X = \{1, 2, 3\}, Y = \{a, b, c\}, T_1 = \{\emptyset, \{1\}, X\}, T'_1 = \{\emptyset, \{a\}, Y\}, T_2 = \{\emptyset, \{1\}, \{1, 3\}, X\}, T'_2 = \{\emptyset, \{a\}, \{a, b\}, Y\}, T_3 = \{\emptyset, \{1\}, \{1, 2\}, X\},$

 $T'_3 = \{\emptyset, \{a\}, \{b\}, Y\}$. Tri β open sets in X are $\{\emptyset, \{1\}, \{1, 2\}, \{1, 3\}, X\}$, tri β open sets in Y are $\{\emptyset, \{a\}, \{a, b\}, \{a, c\}, Y\}$. Let $f : X \to Y$ be a function such that: f(1) = a, f(2) = b, f(3) = c. Therefore, f is a tri β continuous function.

Example 5. Let (X, T_1, T_2, T_3) and (Y, T'_1, T'_2, T'_3) be two tri topological spaces, where $X = \{1, 2, 3\}$, $Y = \{a, b, c\}$, $T_1 = \{\emptyset, \{1\}, X\}$, $T'_1 = \{\emptyset, \{a\}, Y\}$, $T_2 = \{\emptyset, \{1\}, \{1, 3\}, X\}$, $T'_2 = \{\emptyset, \{a\}, \{a, b\}, Y\}$, $T_3 = \{\emptyset, \{1\}, \{1, 2\}, X\}$,

 $T'_{3} = \{\emptyset, \{a\}, \{b\}, Y\}$. Tri β open sets in X are $\{\emptyset, \{1\}, \{1, 2\}, \{1, 3\}, X\}$ Tri β open sets in Y are $\{\emptyset, \{a\}, \{a, b\}, \{a, c\}, Y\}$. Let $f_{1} : X \to Y$ be a function such that: $f_{1}(1) = b, f_{1}(2) = c, f_{1}(3) = a$. Therefore, f_{1} is not tri β continuous function.

Definition 2.5. Let X and Y be two tri topological spaces. A function f from X to Y is said to be tri β continuous at a point $a \in X$ if for every tri β open set V containing f(a), there exists a tri β open set U containing a such that $f(U) \subset V$.

2718

Theorem 2.1. f is a tri β continuous iff f is a tri β continuous at each point $x \in X$.

Proof. Suppose f is tri β continuous. We prove that f is tri β continuous at each point $x \in X$.

Let $f: X \to Y$ be a tri β continuous function.

Take any $a \in X$. Let V be a tri β open set containing f(a).

Since $f^{-1}(V)$ is tri β open set containing a.

Let $U = f^{-1}(V)$.

Then $f(U) \subset V \Rightarrow$ there exists a tri β open set U containing a and $f(U) \subset V$. Hence, f is tri β continuous at a.

Conversely, suppose that f is tri β continuous at each point of X.

Let V be a tri β open set of Y. If $f^{-1}(V) = \emptyset$ then it is tri β open set.

Take any $a \in f^{-1}(V)$, f is tri β continuous at a. Hence there exists U_a , tri β open set containing a and $f(U_a) \subset V$.

Let
$$U = \bigcup \{ U_a | a \in f^{-1}(V) \}$$

We claim that: $U = f^{-1}(V)$

 $a \in f^{-1}(V) \Rightarrow U_a \subset U \Rightarrow a \in U \ x \in U \Rightarrow x \in U_a$ for some $a \Rightarrow f(x) \in V \Rightarrow x \in f^{-1}(V)$ Hence, $U = f^{-1}(V)$.

Each U_a is tri β open. Hence U is tri β open.

 $\Rightarrow f^{-1}(V)$ is tri β open in X.

Hence, f is tri β continuous function.

Theorem 2.2. Let (X, T_1, T_2, T_3) and (Y, T'_1, T'_2, T'_3) be two tri topological spaces. Then f is a tri β continuous function iff $f^{-1}(V)$ is tri β closed in X for every tri β closed V in Y.

Proof. Let $f: X \to Y$ is tri β continuous function. Let V be any tri β closed in Y. $\Rightarrow V^c$ is tri β open in Y $\Rightarrow f^{-1}(V^c)$ is tri β open in X $\Rightarrow [f^{-1}(V)]^c$ is tri β open in X $\Rightarrow f^{-1}(V)$ is tri β closed in X. Hence, $f^{-1}(V)$ is tri β closed in X. Whenever, V is tri β closed in Y. Conversely, suppose $f^{-1}(V)$ is tri β closed in X. Whenever V is tri β closed in Y. $V \text{ is tri } \beta \text{ open set in } Y.$ $\Rightarrow V^c \text{ is tri } \beta \text{ closed in } Y$ $\Rightarrow f^{-1}(V^c) \text{ is tri } \beta \text{ closed in } X$ $\Rightarrow [f^{-1}(V)]^c \text{ is tri } \beta \text{ closed in } X$ $\Rightarrow f^{-1}(V) \text{ is tri } \beta \text{ open in } X.$ Hence, f is tri β continuous function.

Definition 2.6. Let (X, T_1, T_2, T_3) and (Y, T'_1, T'_2, T'_3) be two tri topological spaces. A function f from X to Y is called tri β open map if f(V) is tri β open in Y for every tri β open set V in X.

Example 6. In example 4, f is tri β open map also.

Definition 2.7. Let (X, T_1, T_2, T_3) and (Y, T'_1, T'_2, T'_3) be two tri topological spaces. Let f from X to Y be a mapping. f is called tri β closed map if f(V) is tri β closed in Y for every tri β closed set F in X.

Example 7. Let (X, T_1, T_2, T_3) and (Y, T'_1, T'_2, T'_3) be two tri topological spaces, where $X = \{1, 2, 3\}, Y = \{a, b, c\}, T_1 = \{\emptyset, \{1\}, X\}, T'_1 = \{\emptyset, \{a\}, Y\}, T_2 = \{\emptyset, \{1\}, \{1, 3\}, X\}, T'_2 = \{\emptyset, \{a\}, \{a, b\}, Y\}, T_3 = \{\emptyset, \{1\}, \{1, 2\}, X\},$ $T'_3 = \{\emptyset, \{a\}, \{b\}, Y\}.$ Tri β closed sets in X are $\{\emptyset, \{2\}, \{3\}, \{2, 3\}, X\}$ Tri β closed sets in Y are $\{\emptyset, \{b\}, \{c\}, \{b, c\}, Y\}.$ Let $f : X \to Y$ be a function such that f(1) = a, f(2) = b, f(3) = c.Therefore, f is a closed map.

Result 2. Let X & Y be a two tri topological spaces. Let $f : X \to Y$ be a mapping. Then f is tri β continuous function iff $f^{-1} : Y \to X$ is tri β open map.

Definition 2.8. Let (X, T_1, T_2, T_3) and (Y, T'_1, T'_2, T'_3) be two topological spaces. Let f from X to Y be a mapping. f is called a tri β homeomorphism. If

- i) *f* is a bijection;
- ii) f is a tri β continuous;
- iii) f^{-1} is tri β continuous.

Example 8. The function f defined in the example 4 is

i) *f* is a bijection;

2720

TRI β FUNCTION

ii) f is tri β continuous;

iii) f^{-1} is tri β continuous. Therefore, f is a tri β homeomorphism.

References

- [1] A. S. MASSHHOUR, I. A. HASANEIN, S.N. EL-DEEB: α continuous and α open mappings, Acta Math. Hung. **41**(3-4) (1983), 213–218.
- [2] A. CSASZAR: Generalized open sets, Acta Math. Hungar., 75(1-2) (1997), 65–87.
- [3] A. CSASZAR: Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357.
- [4] S. PALANIAMMAL: *A Study of tri topological spaces*, Ph.D Thesis Manonmaniam Sundaranar University, November 2011, 21–42.

A. P. C. MAHALAXMI COLLEGE FOR WOMEN THOOTHUKUDI-2 TAMIL NADU, INDIA *E-mail address*: carlinewilliams103@gmail.com

A. P. C. MAHALAXMI COLLEGE FOR WOMEN THOOTHUKUDI-2 TAMIL NADU, INDIA *E-mail address*: mmkumari27@gmail.com