ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2723–2730 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.34

ON GENERALIZED RIGHT PERMUTABLE Γ -NEAR SUBTRACTION SEMIGROUPS

P. MEENAKSHI¹ AND N. MEENAKUMARI

ABSTRACT. In analogy with the concept of generalized right permutable Γ -near-rings, we introduce the notion of generalized right permutable Γ -near subtraction semigroups. We show that any right permutable Γ -near subtraction semigroup is a generalized right permutable Γ -near subtraction semigroup. Also we study various properties of generalized right permutable Γ -near subtraction semigroups. Throughout this paper by X, we mean a Γ -near subtraction semigroup.

1. INTRODUCTION

 Γ -near subtraction semigroup was introduced by Dr. S. J. Alandkar [1]. For basic terminology in near subtraction semigroup, we refer to Dheena [2] and for Γ -near subtraction semigroup, we refer to Dr. S. J. Alandkar [1].

M. Kaliselvi, N. Meenakumari and T. Tamizh Chelvam [3] introduced the notion of generalized right permutable Γ -near-ring. In this paper we introduce the notion of generalized right permutable in Γ -near subtraction semigroups by admiring the concepts of generalized right permutable Γ -near-ring.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 18B40, 20M75.

Key words and phrases. right permutable, regular, invariant, Boolean, radical, principal Χ-Γsubalgebra, regular GRPΓ-near subtraction semigroup.

2. Preliminaries

Definition 2.1. A Γ -near subtraction semigroup is a triple $(X, -, \gamma)$, for all $\gamma \in \Gamma$, where Γ is a non-empty set of binary operators on X, such that $(X, -, \gamma)$ is a near-subtraction semigroup for all $\gamma \in \Gamma$. In practice, we called simply Γ -nearsubtraction semigroup instead of right Γ -near- subtraction semigroup. Similarly we can define a Γ -near- subtraction semigroup (left).

Definition 2.2. An element $0 \neq a \in X$ is called nilpotent if there exists a positive integer $n \geq 1$ such that $(a\gamma)^n a = 0$ for each $\gamma \in \Gamma$.

Definition 2.3. *X* is called reduced if it has no nonzero nilpotent elements.

Proposition 2.1. *X* has no non-zero nilpotent elements if and only if $a\gamma a = 0$ implies a = 0 for all $\gamma \in \Gamma$.

Definition 2.4. An element $a \in X$ is called Boolean if $a\gamma a = a$ for all $\gamma \in \Gamma$.

Definition 2.5. *X* is said to have strong *IFP* if for all ideals *I* of *X* and for all $a, b, x \in X$, $a\gamma b \in I$ for all $\gamma \in \Gamma$ implies $a\gamma_1 x \gamma_2 b \in I$ for every pair of non-zero elements $\gamma_1, \gamma_2 \in \Gamma$.

Definition 2.6. X is said to fulfil the insertion-of-factors property(IFP) provided that for all $a, b, x \in X$, $a\gamma b = 0$ for all $\gamma \in \Gamma$ implies $a\gamma_1 x \gamma_2 b = 0$ for every pair of non-zero elements $\gamma_1, \gamma_2 \in \Gamma$.

Definition 2.7. *X* is said to have *IFP if *X* has IFP and $x\gamma y = 0$ implies $y\gamma x = 0$ for every $x, y \in X$ and $\gamma \in \Gamma$.

Definition 2.8. Let P be an ideal of X. If P has strong IFP then the ideal P is called IFP-ideal of X.

Definition 2.9. An ideal P of X is called a completely semi prime if $a^2(=a\Gamma a) \subseteq P$ implies $a \in P$.

Definition 2.10. A non-empty subset A of X is called a left $X - \Gamma$ -subalgebra (or simply X-subalgebra) of X if A is a subalgebra of (X, -) and $X\Gamma A \subseteq A$, i.e. $X\gamma A \subseteq A$ for all $\gamma \in \Gamma$.

Definition 2.11. A non-empty subset I of X is called:

(i) a left ideal of X if $y-y' \in I$ for every $y \in I$, $y' \in X$ and $x\gamma i - x\gamma(x'-i) \in I$, for all $x, x' \in X$ and $i \in I$;

(ii) a right ideal of X if $x - y \in I$ for every $x \in I$ and $y \in X$ and $I \cap X \subseteq I$; (iii) an ideal of X if I is both left and right ideal of X.

Definition 2.12. Let X and Y be two Γ -Near Subtraction Semigroups. A map $f: X \to Y$ is said to be Γ -Near Subtraction Semigroup homomorphism if:

- (i) f(a-b) = f(a) f(b)
- (ii) $f(a\gamma b) = f(a) \gamma f(b)$ for all $a, b \in X, \gamma \in \Gamma$.

3. A study on regularities in Γ -near subtraction semigroups

Definition 3.1. *X* is called regular if for each $a \in X$ and for every non-zero elements $\gamma \in \Gamma$, $a = a\gamma b\gamma a$ for some $b \in X$.

Definition 3.2. For $A \subseteq X$, we define the radical \sqrt{A} of A to be $\{a \in X/a^k \in A, for some k > 0\}$. Obviously $A \subseteq \sqrt{A}$.

Definition 3.3. *X* is said to be right permutable if a $\gamma(b\gamma c) = a\gamma(c\gamma b)$ for all $a,b,c \in X$ and for all $\gamma \in \Gamma$.

Proposition 3.1. Let X be without non-zero nilpotent elements. Then X has IFP.

Proof. If $x\gamma y = 0$ for $x, y \in X$ and $\gamma \in \Gamma$, then $(y\gamma x)^2 = y\gamma x\gamma y\gamma x = y\gamma 0 = 0$. This implies that $y\gamma x = 0$. For every pair of non-zero elements $\gamma_1, \gamma_2 \in \Gamma$ and $x \in X$, $(a\gamma_1 x\gamma_2 b)^2 = (a\gamma_1 x\gamma_2 b)\gamma (a\gamma_1 x\gamma_2 b) = a\gamma_1 x\gamma_2 (b\gamma a)\gamma_1 x\gamma_2 b = a\gamma_1 x\gamma_2 0\gamma_1 x\gamma_2 b = a\gamma_1 x\gamma_2 0$ and hence a $\gamma_1 x\gamma_2 y = 0$. Therefore X has IFP.

Lemma 3.1. If X is a zero-symmetric, then for any ideal I of X, $X \Gamma I \Gamma X \subseteq I$.

Proof. For any I, x, $x' \in X$ and $\gamma \in \Gamma$, $x\gamma i - x\gamma(x' - i) \in I$. Substituting x' = 0, we get $X\Gamma I \subseteq I$. Also, $I\Gamma X \subseteq I$. Hence $X\Gamma I\Gamma X \subseteq I$.

Definition 3.4. Let A and B be any two subsets of X. Let $\gamma \in \Gamma$, then $(A : B)_{\gamma} = \{x \in X/x\gamma B \subseteq A\}.$

Proposition 3.2. Let X be regular, $a \in X$ and $a = a\gamma_1 x \gamma_2 a$ for $x \in X$ and for every pair of non-zero elements $\gamma_1, \gamma_2 \in \Gamma$. Then for all $\gamma \in \Gamma$

- (i) $a\gamma_1 x$, $x\gamma_2 a$ are idempotent elements in X for every pair of γ_1 , $\gamma_2 \in \Gamma$;
- (ii) $a\gamma_1 x \gamma_2 X = a\gamma_1 X$ and $X\gamma_1 x \gamma_2 a = X\gamma_2 a$ for every pair of non-zero elements $\gamma_1, \gamma_2 \in \Gamma$.

P. MEENAKSHI AND N. MEENAKUMARI

Proof.

- (i) $(x\gamma_2 a)^2 = (x\gamma_2 a)\gamma_1(x\gamma_2 a) = x\gamma_2(a\gamma_1 x\gamma_2 a) = x\gamma_2 a$. Similarly, $(a\gamma_1 x)^2 = (a\gamma_1 x)\gamma_2(a\gamma_1 x) = (a\gamma_1 x\gamma_2 a)\gamma_1 x = a\gamma_1 x$.
- (ii) Trivially $X\gamma_2 a = X\gamma_2 a\gamma_1 x\gamma_2 a \subseteq X\gamma_1 x\gamma_2 a \subseteq X\gamma_2 a$. Similarly, $a\gamma_1 X = a\gamma_1 x\gamma_2 a\gamma_1 X \subseteq a\gamma_1 x\gamma_2 X \subseteq a\gamma_1 X$. Therefore $\gamma_1 x\gamma_2 X = a\gamma_1 X$.

Proposition 3.3. Let X be reduced. For any $a, b \in X$, and e an idempotent, $a\gamma_1 x \gamma_2 e = a\gamma_2 e \gamma_1 b$ for every pair of non-zero elements $\gamma_1, \gamma_2 \in \Gamma$.

Proof. Let *e* be an idempotent in *X*, *a*, *b* \in *X* and γ_1 , γ_2 a pair of non-zero elements in Γ . Since $(a - a\gamma_2 e)\gamma_2 e = 0$, we have $(a - a\gamma_2 e)\gamma_1 b\gamma_2 e = 0$ so that $a\gamma_1 b\gamma_2 e = a\gamma_2 e\gamma_1 b\gamma_2 e$. Since $(e\gamma_1 b - e\gamma_1 b\gamma_2 e)\gamma_2 e = 0$, we have $e\gamma_1 b\gamma_2 (e\gamma_1 b - e\gamma_1 b\gamma_2 e)\gamma_2 e = 0$ so that $(e\gamma_1 b - e\gamma_1 b\gamma_2 e)^2 = 0$. Hence $e\gamma_1 b = e\gamma_1 b\gamma_2 e$. Thus, $a\gamma_1 x\gamma_2 e = a\gamma_2 e\gamma_1 b$.

Proposition 3.4. Let X be with IFP property. Then $(0:S)_{\Gamma} = \{x \in X/x\Gamma S = \{0\}\}$ is an ideal where S is any non-empty subset of X.

Proof. Let $I = (0:S)_{\Gamma} = \{x \in X/x\Gamma S = \{0\}\}$. Let $y \in I$ and $y' \in X$, $(y - y')\Gamma S = y\Gamma S - y'\Gamma S = \{0\}$. For $i \in I$ and $x \in X$, since X has IFP, $i\gamma x\Gamma S = \{0\}$ implies $i\gamma x \in I$ implies $I\Gamma X \subseteq I$. For $x, x' \in X$ and $I \in I$, $(x\gamma i - x\gamma(x' - i))\Gamma S = x\gamma i\Gamma S - x\gamma(x' - i)\Gamma S = x\gamma i\Gamma S - x\gamma(x'\Gamma S - i\Gamma S) = x\gamma i\Gamma S - x\gamma(x'\Gamma S - 0) = x\gamma 0 - x\gamma 0 = \{0\}$. $x\gamma i - x\gamma(x' - i) \in I$. Hence I is a ideal. \Box

4. Generalized right permutable $\Gamma\text{-near}$ subtraction semigroups

Definition 4.1. X is said to be (GRP) generalized right permutable Γ -near subtraction semigroup if $X\Gamma a\Gamma b = X\Gamma b\Gamma a$ for all $a, b \in X$.

Proposition 4.1. Any homomorphic image of a GRP Γ -near subtraction semigroup is again a GRP Γ -near subtraction semigroup.

Proof. Let $f : X \to X'$ be a homomorphism and X be GRP Γ-near subtraction semigroup. Let X' = f(X). Then $X'\Gamma f(a)\Gamma f(b) = f(X)\Gamma f(a)\Gamma f(b) = f(X\Gamma a\Gamma b) = f(X\Gamma b\Gamma a) = f(X)\Gamma f(b)\Gamma f(b)\Gamma f(a) = X'\Gamma f(b)\Gamma f(a)$. Thus every homomorphic image of a GRP Γ-near subtraction semigroup is again a GRP Γ-near subtraction semigroup.

Proposition 4.2. Any right permutable Γ -near subtraction semigroup X is a GRP Γ -near subtraction semigroup.

Proof. Let $a, b \in X$. For $y \in X\Gamma a\Gamma b$, we have $y = x\gamma a\gamma b$ for some $x \in X$ and for all $\gamma \in \Gamma$. Since X is right permutable, $y = x\gamma b\gamma a \in X\Gamma b\Gamma a$. Therefore $X\Gamma a\Gamma b \subseteq X\Gamma b\Gamma a$. Similarly $X\Gamma b\Gamma a \subseteq X\Gamma a\Gamma b$. Hence $X\Gamma b\Gamma a = X\Gamma a\Gamma b$ for all $a, b \in X$. Thus X is a GRP Γ -near subtraction semigroup. \Box

Theorem 4.1. Let X be a GRP Γ -near subtraction semigroup. If X is regular, then we have the following:

- (1) For every $a \in X$, there exists $x \in X$, such that $a = a^2 \Gamma x$;
- (2) *X* has no non-zero nilpotent elements;
- (3) Any two principal $X \Gamma$ -subalgebra of X commute with each other;
- (4) $a\Gamma X \Gamma a = a\Gamma X$ for every $a \in X$.
- (5) $X\Gamma a = X\Gamma a^2$ for all $a \in X$.

Proof.

- (1) Since X is a regular GRP Γ -near subtraction semigroup, $a = a\gamma x\gamma a \in X\Gamma x\Gamma a = X\Gamma a\Gamma x$ for all $\gamma \in \Gamma$. Therefore $a = x'\Gamma a\Gamma x$ for some $x' \in X$. This gives $x'\Gamma a = x'\Gamma (a\Gamma x\Gamma a) = (x'\Gamma a\Gamma x)\Gamma a = a\Gamma a = a^2$. In conclusion, we have $a = x'\Gamma a\Gamma x = a^2\Gamma x$.
- (2) Let $a \in X$. Suppose $a\Gamma a(=a^2) = 0$. By (1) there exists $x \in X$ such that $a = a^2\Gamma x$ and therefore a = 0. By Proposition 2.1, X has no non-zero nilpotent elements.
- (3) Let $y \in X\Gamma a\Gamma X$. Then $y = x\Gamma a\Gamma x'$ for some $x, x' \in X$. Since X is a GRP, $x\Gamma a\Gamma x' = x\Gamma x'\Gamma a$ for some $x \in X$. Hence $y = x\Gamma x'\Gamma a = (x\Gamma x')\Gamma a \in$ $X\Gamma a$. Also $X\Gamma a = X\Gamma a\Gamma x\Gamma a = X\Gamma a\Gamma (x\Gamma a) \subseteq X\Gamma a\Gamma X$. Therefore $X\Gamma a\Gamma X = X\Gamma a$. Let $b, c \in X$. Now $X\Gamma b\Gamma X\Gamma c = (X\Gamma b\Gamma X)\Gamma c =$ $(X\Gamma b)\Gamma c = X\Gamma c\Gamma b = (X\Gamma c)\Gamma b = (X\Gamma c\Gamma X)\Gamma b = X\Gamma c\Gamma X\Gamma b$. That is, $X\Gamma b\Gamma X\Gamma c = X\Gamma c\Gamma X\Gamma b$ and (3) follows.
- (4) Let $a \in X$. For any $y \in a\Gamma X$, there exists $x \in X$, such that $y = a\Gamma x = (a\Gamma x'\Gamma a)\Gamma x = a\Gamma(x'\Gamma a\Gamma x)$. Since X is a GRP, $x'\Gamma a\Gamma x = x'\Gamma x\Gamma a$. Hence $y = a\Gamma(x'\Gamma x\Gamma a) = a\Gamma(x'\Gamma x)\Gamma a \in a\Gamma X\Gamma a$ which implies that $a\Gamma X \subseteq a\Gamma X\Gamma a$. Clearly, $a\Gamma X\Gamma a \subseteq a\Gamma X$ and hence $a\Gamma X\Gamma a = a\Gamma X$.

P. MEENAKSHI AND N. MEENAKUMARI

(5) $X\Gamma a = X\Gamma(a\Gamma x\Gamma a) = (X\Gamma a\Gamma x)\Gamma a = (X\Gamma x\Gamma a)\Gamma a = X\Gamma x\Gamma(a\Gamma a) = X\Gamma x\Gamma a^2 \subseteq X\Gamma a^2$. Therefore, $X\Gamma a \subseteq X\Gamma a^2$ and consequently $X\Gamma a = X\Gamma a^2$.

Theorem 4.2. Let X be a GRP. If X is Boolean, then the following are true.

- (1) $X\Gamma a\Gamma X\Gamma b = X\Gamma a\Gamma b$ for all $a, b \in X$.
- (2) All principal X- Γ -subalgebras of X commute with one another.
- (3) Every ideal of X is a GRP.
- (4) Every X- Γ subalgebra of X is a GRP.
- (5) Every X- Γ -subalgebra of X is an invariant X- Γ subalgebra of X.

Proof.

- (1) Let $a, b \in X$. Since X is Boolean, $a = a\Gamma a \in a\Gamma X$, which implies $X\Gamma a \subseteq X\Gamma a\Gamma X$. Hence $X\Gamma a\Gamma b \subseteq X\Gamma a\Gamma X\Gamma b$. Then $y \in X\Gamma a\Gamma X\Gamma b$. Then $y = x\Gamma a\Gamma x'\Gamma b$ for some $x, x' \in X$. Since X is a GRP, we get that $x\Gamma a\Gamma x' = x\Gamma x'\Gamma a$. Thus $y = (x\Gamma x'\Gamma a)\Gamma b = (x\Gamma x')\Gamma a\Gamma b \in X\Gamma a\Gamma b$.
- (2) For $a, b \in X$, we have $X\Gamma a\Gamma X\Gamma b = X\Gamma a\Gamma b = X\Gamma b\Gamma x\Gamma a$.
- (3) Let *I* be any ideal of *X* and *a*, $b \in I$. Now $I\Gamma a\Gamma b = I\Gamma a^2\Gamma b = (I\Gamma a)((I\Gamma b) \subseteq I\Gamma(X\Gamma a\Gamma b) = I\Gamma(X\Gamma b\Gamma a) \subseteq I\Gamma b\Gamma a$. That is $I\Gamma a\Gamma b \subseteq I\Gamma b\Gamma a$. Similarly, we get $I\Gamma b\Gamma a \subseteq I\Gamma a\Gamma b$ and therefore *I* is a GRP.
- (4) For any *X*- Γ -subalgebra *A* of *X*, we have $X\Gamma A \subseteq A$. Let $x, y \in A$. Now, $A\Gamma x\Gamma y \subseteq X\Gamma x\Gamma y = X\Gamma y\Gamma x = X\Gamma y^2\Gamma x = (X\Gamma y)\Gamma y\Gamma x \subseteq (X\Gamma A)\Gamma y\Gamma x \subseteq$ $A\Gamma y\Gamma x$. Similarly we get $A\Gamma y\Gamma x \subseteq A\Gamma x\Gamma y$. Consequently, *A* is a GRP.
- (5) Let A be an X- Γ -Subalgebra of X. For $z \in A(\Gamma X)$, $z = a\Gamma x$ for some $a \in A$, $x \in X$ which implies that $z = a^2(\Gamma x) = a\Gamma a\Gamma x = a\Gamma x\Gamma a$. Therefore $z = a\Gamma x\Gamma a \in X\Gamma A \subseteq A$ and hence $A\Gamma X \subseteq A$, i.e. A is an invariant X- Γ -subalgebra.

Proposition 4.3. Let X be a Boolean regular GRP and A an X- Γ - subalgebra of X. Then $A = \sqrt{A}$ where \sqrt{A} is radical of A.

Proof. Let $a \in \sqrt{A}$. There exists some positive integer k such that $a^k \in A$. By (1) of Theorem 4.1, $a = a^2 \Gamma x$ for every $x \in X$. Now $a = a \Gamma a \Gamma x = a \Gamma (a^2 \Gamma x) \Gamma x = a^3 \Gamma x^2 = \dots = a^k \Gamma x^{k-1} \in A \Gamma X \subset A$, by (5) of Theorem 4.1. Therefore $\sqrt{A} \subset A$. Obviously $A \subseteq \sqrt{A}$.

Proposition 4.4. Let X be a zero symmetric regular GRP. Then the following are true.

- (1) X has IFP.
- (2) Any ideal of X is semi completely prime.
- (3) For any ideal I of X, X has the property that for $a, b \in X$, if $a\Gamma b \subseteq I$, then $b\Gamma a \subseteq I$.
- (4) For every ideal I of X, and $x_1, x_2, ..., x_n \in X$ if $x_1 \Gamma x_2 \Gamma ..., \Gamma x_n \subseteq I$, then $\langle x_1 \rangle \Gamma \langle x_2 \rangle ..., \Gamma \langle x_{n-1} \rangle \Gamma \langle x_n \rangle \subseteq I$.

Proof.

- (1) It follows from Theorem 4.1 (2) and Proposition 3.4.
- (2) Let I be an ideal of X and $a^2 \in I$ for $a \in X$. By Theorem 4.1 (1), for $a \in X$, there exists $x \in X$ such that $a = a^2 \Gamma x$. Here we have $a = a^2 \Gamma x \in I \Gamma X \subseteq I$. Therefore I is semi completely prime.
- (3) Let *I* be an ideal of *X* and $a\Gamma b \subseteq I$ for *a*, $b \in X$. We have $(b\Gamma a)^2 = (b\Gamma a)\Gamma(b\Gamma a) = b\Gamma(a\Gamma b)\Gamma a \subseteq X\Gamma I\Gamma X$. By Lemma 3.1, $X\Gamma I\Gamma X \subseteq I$ and hence by (2) $(b\Gamma a) \subseteq I$.
- (4) Let $x_1\Gamma x_2\Gamma \ldots \Gamma x_n \subseteq I$. It can be easily verified that $(I:S)_{\Gamma}$ is an ideal for any subset S of X. Since $x_1 \in (I:x_2\Gamma \ldots \Gamma x_n)_{\Gamma}$ we have $\langle x_1 \rangle \subseteq$ $(I:x_2\Gamma \ldots \Gamma x_n)_{\Gamma}$ so that $\langle x_1 \rangle \Gamma x_2\Gamma \ldots \Gamma x_n \subseteq I$. By (3) we have $x_2\Gamma \ldots \Gamma x_n\Gamma \langle x_1 \rangle \subseteq I$. Now $x_2 \in (I:x_3\Gamma \ldots \Gamma x_n)_{\Gamma}$ which implies that $\langle x_2 \rangle \Gamma(I:x_3\Gamma \ldots \Gamma x_n)_{\Gamma}$ and hence $\langle x_2 \rangle \Gamma x_3 \ldots \Gamma x_n\Gamma \langle x_1 \rangle \subseteq I$. This implies that $x_3 \ldots \Gamma x_n\Gamma \langle x_1 \rangle \Gamma \langle x_2 \rangle \subseteq I$. Continuing this process, we get $\langle x_1 \rangle \Gamma \langle x_2 \rangle \ldots \Gamma \langle x_{n-1} \rangle \Gamma \langle x_n \rangle \subseteq I$.

Lemma 4.1. Let X be a zero-symmetric reduced. If X is regular, then every X- Γ -subalgebra of X is an ideal.

Proof. Let $a \in X$. Since X is regular, for each $a \in X$ and for every pair of non-zero elements $\gamma_1, \gamma_2 \in \Gamma$, $a = a\gamma_1b\gamma_2a$ for some $b \in X$. By (i) of Proposition 3.2, $b\gamma_2a$ is an idempotent. Let $b\gamma_2a = e$. By (ii) of Proposition 3.2, $X\gamma_1e = X\gamma_1b\gamma_2a = X\gamma_2a$ for all $\gamma_1, \gamma_2 \in \Gamma$. Therefore, $X\Gamma e = X\Gamma a$. Let $S = \{x - x\gamma e/x \in X, \gamma \in \Gamma\}$. Since $(x - x\gamma_1e)\gamma_1e = 0$ for all $x \in X$. $(x - x\gamma_1e)\gamma_1X\gamma_2e = 0$. This implies that $X\gamma_2e \subseteq (0 : S)$ for all $\gamma_2 \in \Gamma$ and so $X\Gamma e \subseteq (0 : S)$. Now let $y \in (0 : S)$. Since X is regular, $y = y\gamma_1x\gamma_2y$ for some $x \in X$, $\gamma_1, \gamma_2 \in \Gamma$

P. MEENAKSHI AND N. MEENAKUMARI

and so $y\gamma_1x - (y\gamma_1x)\gamma_2e \in S$. So, we have $(y\gamma_1x - (y\gamma_1x)\gamma_2e)\gamma_2y = 0$. Hence $y\gamma_1x\gamma_2y - y\gamma_1(x\gamma_2e\gamma_2y) = 0$, i.e. $y - y\gamma_1(x\gamma_2e\gamma_2y) = 0$ and by Proposition 3.3, $y - y\gamma_1(x\gamma_2y\gamma_2e) = 0$ implies $y - (y\gamma_1x\gamma_2y)\gamma_2e = 0$ implies $y - y\gamma_2e = 0$. Hence $y = y\gamma_2e \in X\Gamma e$. It follows that $(0:S) = X\Gamma e = X\Gamma a$. By Proposition 3.4, we get $X\Gamma a$ is an ideal of X. Now if Y is X- Γ -subalgebra of X, then $X = \sum_{a \in Y} X\Gamma a$. Thus Y is an ideal of X. \Box

REFERENCES

- S. J. ALANDKAR: A Note on Γ-near subtraction semigroups, Indian Streams Research Journal, 6(6) (2016), 1–5.
- [2] P. DHEENA, G. S. KUMAR: On strong regular near-subtraction semigroupsCommun, Korean Math.Soc., 22 (2007), 323–330.
- [3] M. KALAISELVI, N. MEENAKUMARI, T. T. CHELVAM: On generalized pseudo commutative gamma near-rings, International Journal of Mathematical Arhive, **4**(7) (2013), 174–177.

PG AND RESEARCH DEPARTMENT OF MATHEMATICS A. P. C. MAHALAXMI COLLEGE FOR WOMEN THOOTHUKUDI, TAMIL NADU, INDIA AFFILIATED TO MANONMANIAM SUNDARANARUNIVERSITY ABISHEKAPATTI, TIRUNELVELI- 627012, TAMIL NADU, INDIA *E-mail address*: meena.bushy@gmail.com

PG AND RESEARCH DEPARTMENT OF MATHEMATICS A. P. C. MAHALAXMI COLLEGE FOR WOMEN THOOTHUKUDI, TAMIL NADU, INDIA AFFILIATED TO MANONMANIAM SUNDARANARUNIVERSITY ABISHEKAPATTI, TIRUNELVELI- 627012, TAMIL NADU, INDIA *E-mail address*: meenakumari.n1230gmail.com