ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2739–2748 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.36

HOP DOMINATION NUMBER OF CATERPILLAR GRAPHS

P. GETCHIAL PON PACKIAVATHI¹, S. BALAMURUGAN, AND R. B. GNANAJOTHI

ABSTRACT. Let G = (V, E) be a graph. A set $S \subset V(G)$ is a hop dominating set of G if for every $v \in VS$, there exists $u \in S$ such that d(u, v) = 2. The minimum cardinality of a hop dominating set of G is called a hop dominator number of G and it is denoted by $\gamma_h(G)$. A caterpillar is a graph denoted by $P_k(x_1, x_2, ..., x_k)$, where x_i is the number of leaves attached to the ith vertex of the path P_k . In this paper the domination numbers are determined for the hop graphs of $P_n(1, 1, 1)$ and $P_n(2, 2, 2)$ and hop domination number of such caterpillars have been derived.

1. INTRODUCTION

The following two definitons are given in [1,2].

Definition 1.1. A set $S \subset V$ of a graph G is a hop dominating set of G if for every $v \in V - S$, there exists $u \in S$ such that d(u, v) = 2. The minimum cardinality of a hop dominating set of G is called the hop domination number and is denoted by $\gamma_h(G)$.

Definition 1.2. The hop graph H(G) of a graph G is the graph obtained from G by taking V(H(G)) = V(G) and joining two vertices u,v in H(G) iff they are at a distance 2 in G.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C69.

Key words and phrases. dominating set, hop dominating set, hop domination number.

2740 P. G. P. PACKIAVATHI, S. BALAMURUGAN, AND R. B. GNANAJOTHI

Definition 1.3. [4], A caterpillar is a graph which can be obtained from the path on k vertices by appending x_i pendant vertices to the ith vertex of the path P_k . The caterpillar with parameters $k, x_1, x_2, ... x_k$ where $x_1, x_k \neq 0$, will be denoted by $P_k(x_1, x_2, ... x_k)$.

A caterpillar is a tree with the property that the removal of its leaves and incident edges results in a path P_k called the spine of the caterpillar. We say a caterpillar is complete if every vertex on the spine of the caterpillar is adjacent to at least one leaf.

In section 2 we discuss domination number of special types of snake graphs which occur as hop graphs of $P_n(1,1,1)$ and $P_n(2,2,2)$, [3,5,6]. In section 3, hop domination number of $P_n(1,1,1)$ and $P_n(2,2,2)$ are determined.

2. Domination number of some special snakes graph

Let $(SN)_{K_4}^n$ denote the snake graph with *n* copies of K_4 , $(SN)_{K_4,K_3}^n$ denote the snake graph with *n* copies of K_4 followed by one K_3 and $(SN)_{K_4,2K_3}^n$ denote the snake graph with *n* copies of K_4 starting and ending with K'_3 's and $(TS_N)_{K_3}^n$ denote the triangular snake graph with *n* copies of K_3 , $(TS_N)_{K_3,P_1}^n$ denote the triangular snake graph with *n* copies of K_3 followed by 1-pendant vertex and $(TS_N)_{K_3,2P_1}^n$ denote the triangular snake graph with *n* copies of K_3 starting and ending with 1-pendant vertex.

Theorem 2.1. $\gamma((SN)_{K_4}^n) = \left\lceil \frac{n}{2} \right\rceil$.

Proof. Let
$$V((SN)_{K_4}^n) = \{u_i, w_i/i = 1, 2...n\} \cup \{v_i/i = 1, 2...n + 1\}$$
 and
 $E((SN)_{K_4}^n) = \{v_i v_{i+1}/i = 1, 2...n\} \cup \{v_i u_i, v_{i+1} u_i/i = 1, 2...n\} \cup \{v_i w_i, v_{i+1} w_i/i = 1, 2...n\} \cup \{u_i w_i/i = 1, 2...n\}$
Take $D = \begin{cases} \{v_2, v_4...v_n\} & \text{if n is even} \\ \{v_2, v_4 v_{n-1}, v_{n+1}\} & \text{if n is odd.} \end{cases}$

Clearly *D* is a minimal dominating set of $(SN)_{K_4}^n$ and hence $|D| = \lceil \frac{n}{2} \rceil$. Therefore $\gamma((SN)_{K_4}^n) \leq \lceil \frac{n}{2} \rceil$ and $\max_{v \in (SN)_{K_4}^n} d(v) = 6$. So any vertex can dominate at most six vertices apart from it. For any two K_4 ,

at least one vertex is needed. Hence $\gamma((SN)_{K_4}^n) \ge \lceil \frac{n}{2} \rceil$. Hence $\gamma((SN)_{K_4}^n) = \lceil \frac{n}{2} \rceil$.

Illustration 1 : Let us consider $(SN)_{K_4}^8$.

$$\begin{split} V &= \{v_1, v_2, v_3 ... v_9\} \cup \{u_1, u_2, u_3 ... u_8\} \cup \{w_1, w_2, v_3 ... w_8\}\\ D &= \{v_2, v_4, v_6, v_8\} \text{ is a minimal dominating set of } (SN)_{K_4}^8.\\ \text{Illustration 2 : Let us consider } (SN)_{K_4}^7 \end{split}$$

$$V = \{v_1, v_2, v_3...v_8\} \cup \{u_1, u_2, u_3...u_7\} \cup \{w_1, w_2, v_3...w_7\}$$
$$D = \{v_2, v_4, v_6, v_8\} \text{ is a minimal dominating set of } (SN)_{K_4}^7.$$

Theorem 2.2. $\gamma((SN)_{K_4,K_3}^n) = \lceil \frac{n}{2} \rceil$.

Proof. Let
$$V((SN)_{K_4,K_3}^n) = \{u_i, v_i, w_i/i = 1, 2...n + 1\}$$
 and
 $E((SN)_{K_4,K_3}^n) = \{v_i v_{i+1}/i = 1, 2...n\} \cup \{v_i u_i, v_i w_i, u_i w_i/i = 1, 2...n + 1\} \cup \{v_i u_{i+1}, v_i w_{i+1}/i = 1, 2...n\}$
Take $D = \begin{cases} \{v_1, v_3..., v_{n+1}\} & \text{if n is even} \\ \{v_1, v_3..., v_n\} & \text{if n is odd.} \end{cases}$
Clearly D is a minimal dominating set of $(SN)_{K_4,K_3}^n$ and $|D| = \lceil \frac{n}{2} \rceil$.
Therefore $\gamma((SN)_{K_4,K_3}^n) \le \lceil \frac{n}{2} \rceil$
As in theorem 2.1, $\gamma((SN)_{K_4,K_3}^n) \ge \lceil \frac{n}{2} \rceil$.
Hence $\gamma((SN)_{K_4,K_3}^n) = \lceil \frac{n}{2} \rceil$.

Illustration 1 : Let us consider $(SN)_{K_4,K_3}^7$.

 $V = \{v_1, v_2, v_3...v_8\} \cup \{u_1, u_2, u_3...u_8\} \cup \{w_1, w_2, v_3...w_8\}$ $D = \{v_1, v_3, v_5, v_7\} \text{ is a minimal dominating set of } (SN)_{K_4, K_3}^7.$ Illustration 2 : Let us consider $(SN)_{K_4, K_3}^6.$

 $V = \{v_1, v_2, v_3...v_7\} \cup \{u_1, u_2, u_3...u_7\} \cup \{w_1, w_2, v_3...w_7\}$ D = { v_1, v_3, v_5, v_7 } is a minimal dominating set of $(SN)_{K_4, K_3}^6$.

Theorem 2.3. $\gamma((SN)_{K_4,2K_3}^n) = \lceil \frac{n}{2} \rceil + 1.$

Proof. Let
$$V((SN)_{K_4,2K_3}^n) = \{v_i/i = 1, 2...n + 1\}$$
 and $\{u_i, w_i/i = 1, 2...n + 2\}$
 $E((SN)_{K_4,2K_3}^n) = \{v_iv_{i+1}/i = 1, 2...n\} \cup \{v_iu_i, v_iw_i, v_iu_{i+1}v_iw_{i+1}, u_{i+1}w_{i+1}/i\}$
 $i = 1, 2, ..., n + 1\}$. Take $D = \begin{cases} \{v_1, v_3...v_{n+1}\} & \text{if n is even} \\ \{v_1, v_3...v_n, w_{n+2}\} & \text{if n is odd.} \end{cases}$
Clearly D is a minimal dominating set of $(SN)^n$ and

Clearly D is a minimal dominating set of $(SN)_{K_4,2K_3}^n$ and $\gamma((SN)_{K_4,2K_3}^n) \leq \lfloor \frac{n}{2} \rfloor + 1; |D| = \lfloor \frac{n}{2} \rfloor + 1$. There are n + 2 compartments and hence $\gamma((SN)_{K_4,2K_3}^n) \geq \lfloor \frac{n+2}{2} \rfloor + 1 = \lfloor \frac{n}{2} \rfloor + 1$. Hence $\gamma((SN)_{K_4,2K_3}^n) = \lfloor \frac{n}{2} \rfloor + 1$.

Illustration 1 : Let us consider $(SN)_{K_4,2K_3}^7$.

 $V = \{v_1, v_2, v_3...v_8\} \cup \{u_1, u_2, u_3....u_8, u_9\} \cup \{w_1, w_2, v_3...w_8, w_9\}$ $D = \{v_1, v_3, v_5, v_7, w_9\} \text{ is a dominating set of } (SN)_{K_4, 2K_3}^7.$ Illustration 2 : Let us consider $(SN)_{K_4, 2K_3}^6.$

 $V = \{v_1, v_2, v_3...v_7\} \cup \{u_1, u_2, u_3...u_7, u_8\} \cup \{w_1, w_2, w_3...w_7, w_8\}$ $D = \{v_1, v_3, v_5, v_7\} \text{ is a dominating set of } (SN)_{K_4, 2K_3}^6.$

Theorem 2.4. $\gamma((TS_N)_{K_3}^n) = \left\lceil \frac{n}{2} \right\rceil$

Proof. Let $V((TS_N)_{K_3}^n) = \{v_i/i = 1, 2...n + 1\} \cup \{u_i/i = 1, 2...n\}$ and $E((TS_N)_{K_3}^n) = \{v_iv_{i+1}/i = 1, 2...n\} \cup \{v_iu_i, v_{i+1}u_i/i = 1, 2...n\}$ Take $D = \begin{cases} \{v_2, v_4...v_{n+1}\} & \text{if n is odd} \\ \{v_2, v_4...v_n\} & \text{if n is even.} \end{cases}$ Clearly D is a minimal dominating set of $(TS_N)_{K_3}^n$ and $\gamma((TS_N)_{K_3}^n) \leq \lceil \frac{n}{2} \rceil$; $|\mathbf{D}| = \lceil \frac{n}{2} \rceil$. As in theorem 2.1, $\gamma((TS_N)_{K_3}^n) \geq \lceil \frac{n}{2} \rceil$.

Illustration 1 : Let us consider $(TS_N)_{K_3}^7$.

$$\begin{split} V &= \{v_1, v_2, v_3 ... v_8\} \cup \{u_1, u_2, u_3 ... u_7\} \\ D &= \{v_2, v_4, v_6, v_8\} \text{ is a minimal dominating set of } (TS_N)_{K_3}^7 \text{ .} \\ \text{Illustration 2 : Let us consider } (TS_N)_{K_3}^6 \text{, when n is even.} \end{split}$$

 $V = \{v_1, v_2, v_3...v_7\} \cup \{u_1, u_2, u_3....u_6\}$ $D = \{v_2, v_4, v_6\} \text{ is a dominating set of } (TS_N)_{K_3}^6.$

Theorem 2.5. $\gamma((TS_N)_{K_3,P_1}^n) = \left\lceil \frac{n}{2} \right\rceil$.

 $\begin{array}{l} \textit{Proof. Let } V((TS_N)_{K_3,P_1}^n) = \{v_i, u_i/i = 1, 2...n + 1\} \textit{nd} \\ E((TS_N)_{K_3,P_1}^n) = \{v_iv_{i+1}, v_iu_{i+1}/i = 1, 2...n\} \cup \{v_iu_i/i = 1, 2...n + 1\} \textit{ Take } D = \\ \left\{ \{v_1, v_3...v_n\} \quad \textit{if n is even} \\ \{v_1, v_3...v_n\} \quad \textit{if n is odd.} \\ \textit{Clearly } D \textit{ is a minimal dominating set of } (SN)_{K_4,K_3}^n \textit{ and} \\ \gamma((TS_N)_{K_3,P_1}^n) \leq \left\lceil \frac{n}{2} \right\rceil; \ |\mathsf{D}| = \left\lceil \frac{n}{2} \right\rceil. \\ \textit{As in previous theorems, } \gamma((TS_N)_{K_3,P_1}^n) \geq \left\lceil \frac{n}{2} \right\rceil. \end{array}$

Illustration 1 : Let us consider $(TS_N)_{K_3,P_1}^7$.

V={ $v_1, v_2, v_3...v_8$ } ∪{ $u_1, u_2, u_3...u_8$ } D={ v_1, v_3, v_5, v_7 } is a minimal dominating set of $(TS_N)^7_{K_3, P_1}$. Illustration 2 : Let us consider $(TS_N)^6_{K_3, P_1}$.

 $V = \{v_1, v_2, v_3 \dots v_7\} \cup \{u_1, u_2, u_3 \dots u_7\} D = \{v_1, v_3, v_5, v_7\} \text{ is a minimal dominating set of } (TS_N)_{K_3, P_1}^6.$

Theorem 2.6. $\gamma((TS_N)_{K_3,2P_1}^n) = \lceil \frac{n}{2} \rceil + 1.$

 $\begin{array}{l} \textit{Proof. Let } \mathsf{V}((TS_N)_{K_3,2P_1}^n) = \{v_i/i = 1, 2...n + 1\} \cup \{u_i/i = 1, 2...n + 2\} \text{ and } \\ E((TS_N)_{K_3,2P_1}^n) = \{v_iv_{i+1}/i = 1, 2...n\} \cup \{v_iu_iv_iu_{i+1}/i = 1, 2...n + 1\} \\ \text{Take } D = \begin{cases} \{v_2, v_4...v_n\} & \text{if n is even} \\ \{v_2, v_4v_{n+1}\} & \text{if n is odd.} \end{cases} \\ \text{Clearly D is a minimal dominating set of } (TS_N)_{K_3,2P_1}^n) \text{ and } \\ \gamma((TS_N)_{K_3,2P_1}^n) \leq \lceil \frac{n}{2} \rceil + 1 \text{ ; } |\mathsf{D}| = \lceil \frac{n}{2} \rceil + 1. \\ \text{As in previous theorems, } \gamma((TS_N)_{K_3,P_1}^n) \geq \lceil \frac{n}{2} \rceil + 1. \\ \text{Hence } \gamma((TS_N)_{K_3,2P_1}^n) = \lceil \frac{n}{2} \rceil + 1. \end{array}$

Illustration 1 : Let us consider $(TS_N)_{K_3,2P_1}^7$.

 $V = \{v_1, v_2, v_3...v_8\} \cup \{u_1, u_2, u_3...u_8, u_9\}$ $D = \{v_1, v_3, v_5, v_7, u_9\} \text{ is a minimal dominating set of } (TS_N)^7_{K_3, 2P_1}.$ Illustration 2 : Let us consider $(TS_N)^6_{K_3, 2P_1}.$

$$V = \{v_1, v_2, v_3 \dots v_7\} \cup \{u_1, u_2, u_3 \dots u_7, u_8\}.$$

$$D = \{v_1, v_3, v_5, v_7\} \text{ is a minimal dominating set of } (TS_N)^6_{K_3, 2P_1}.$$

Theorem 2.7. $\gamma_h(P_n(1, 1, ..., 1)) = \begin{cases} 2r+3 & \text{if } n=2r+1\\ 2r & \text{if } n=2r. \end{cases}$

 $\begin{array}{l} \textit{Proof. Let } P_n(1,1,...,1) \text{ be the complete caterpillar with} \\ V(P_n(1,1,...,1)) = \{u_i \cup v_i/1 \leq i \leq n\} \text{ and } E(P_n(1,1,...,1)) = \{v_i u_i/1 \leq i \leq n\}. \\ \textit{Hop graph } H(P_n(x_1,x_2...x_n)) \text{ will be the disjoint union of } (TS_N)_{K_3}^{\left\lceil \frac{n}{2} \right\rceil} \text{ and } (TS_N)_{K_3,2P_1}^{\left\lceil \frac{n}{2} \right\rceil-1} \\ \textit{if } n \text{ is odd and the disjoint union of two } (TS_N)_{K_3,P_1}^{\left\lceil \frac{n}{2} \right\rceil} \text{ if } n \text{ is even.} \\ \textit{When } n \text{ is odd} \\ \textit{H}(P_n(1,1,...,1)) = (TS_N)_{K_3}^{\left\lceil \frac{n}{2} \right\rceil} \cup (TS_N)_{K_3,2P_1}^{\left\lceil \frac{n}{2} \right\rceil-1} \\ \gamma(H(P_n(1,1,...,1))) = \gamma((TS_N)_{K_3}^{\left\lceil \frac{n}{2} \right\rceil-1}) + \gamma((TS_N)_{K_3,2P_1}^{\left\lceil \frac{n}{2} \right\rceil-1}) = \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{n}{2} \right\rceil + 1 = 2\left\lceil \frac{n}{2} \right\rceil + 1. \\ \textit{If } n = 2r + 1 \text{ , then } \gamma(H(P_n(1,1,...,1))) = 2\left\lceil \frac{2r+1}{2} \right\rceil + 1 = 2(r+1) + 1 = 2r + 3. \end{array}$

When *n* is even $H(P_n(1, 1, ..., 1)) = (TS_N)_{K_3, P_1}^{\left\lceil \frac{n}{2} \right\rceil} \cup (TS_N)_{K_3, P_1}^{\left\lceil \frac{n}{2} \right\rceil}$ $\gamma(H(P_n(1, 1, ..., 1))) = \gamma((TS_N)_{K_3, P_1}^{\left\lceil \frac{n}{2} \right\rceil}) + \gamma((TS_N)_{K_3, P_1}^{\left\lceil \frac{n}{2} \right\rceil}) \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{n}{2} \right\rceil = 2 \left\lceil \frac{n}{2} \right\rceil.$ If n = 2r, then $\gamma(H(P_n(1, 1, ..., 1))) = 2 \left\lceil \frac{2r}{2} \right\rceil = 2r$ $\gamma_h(P_n(1, 1, ..., 1)) = \gamma(HP_n(1, 1, ..., 1)).$ Hence

$$\gamma_h(P_n(1,1,...,1)) = \begin{cases} 2r+3 & \text{if } n = 2r+1\\ 2r & \text{if } n = 2r. \end{cases}$$

Theorem 2.8.
$$\gamma_h(P_n(2, 2, ..., 2)) = \begin{cases} 2r+3 & \text{if } n = 2r+1 \\ 2r & \text{if } n = 2r. \end{cases}$$

$$\begin{array}{l} \text{Proof. Let } P_n(2,2,...2) \text{ be a complete caterpillar with} \\ V(P_n(2,2,...2)) = \{u_i, v_i, w_i/1 \leq i \leq n \} \text{ and} \\ E(P_n(2,2,...2)) = \{v_i v_{i+1}/1 \leq i \leq n-1\} \cup \{u_i v_i/i = 1, 2...n\} \cup \{w_i v_i/i = 1, 2...n\}. \\ \text{Hop graph } H(P_n(2,2,...2)) \text{ will be the disjoint union of } (SN)_{K_4}^{\left\lceil \frac{n}{2} \right\rceil} \text{ and } (SN)_{K_4,2K_3}^{\left\lceil \frac{n}{2} \right\rceil-1} \\ \text{ fn is odd and the disjoint union of two } (SN)_{K_4,K_3}^{\left\lceil \frac{n}{2} \right\rceil} \text{ if } n \text{ is even }. \\ \text{When } n \text{ is odd:} \\ H(P_n(2,2,...2)) = (SN)_{K_4}^{\left\lceil \frac{n}{2} \right\rceil} \cup (SN)_{K_4,2K_3}^{\left\lceil \frac{n}{2} \right\rceil-1} \\ \gamma(H(P_n(2,2,...2))) = \gamma((SN)_{K_4}^{\left\lceil \frac{n}{2} \right\rceil} + \gamma((SN)_{K_4,2K_3}^{\left\lceil \frac{n}{2} \right\rceil-1}) = \lceil \frac{n}{2} \rceil + \lceil \frac{n}{2} \rceil + 1 = 2 \lceil \frac{n}{2} \rceil + 1. \\ \text{ If } n = 2r + 1, \text{ then } \gamma(H(P_n(2,2,...2))) = 2 \lceil \frac{2r+1}{2} \rceil + 1 = 2(r+1) + 1 = 2r + 3. \\ \text{ When } n \text{ is even} \\ H(P_n(2,2,...2)) = (SN)_{K_4,K_3}^{\left\lceil \frac{n}{2} \right\rceil} \cup (SN)_{K_4,K_3}^{\left\lceil \frac{n}{2} \right\rceil} \\ \gamma(H(P_n(2,2,...2))) = \gamma((SN)_{K_4,K_3}^{\left\lceil \frac{n}{2} \right\rceil}) + \gamma((SN)_{K_4,K_3}^{\left\lceil \frac{n}{2} \right\rceil}) = \lceil \frac{n}{2} \rceil + \lceil \frac{n}{2} \rceil = 2 \lceil \frac{n}{2} \rceil . \\ \text{ If } n = 2r \text{ , then } \gamma(HP_n(2,2,...2)) = 2 \lceil \frac{2r}{2} \rceil = 2r \\ \gamma_h(P_n(2,2,...2)) = \gamma(H(P_n(2,2,...2))) \\ \text{Hence } \gamma_h(P_n(2,2,...2)) = \left\{ \begin{array}{ll} 2r + 3 & \text{ if } n = 2r + 1 \\ 2r & \text{ if } n = 2r. \end{array} \right. \\ \square \end{array} \right.$$

P. G. P. PACKIAVATHI, S. BALAMURUGAN, AND R. B. GNANAJOTHI

3. CONCLUSION

While working on combs $P_n(1, 1, ..., 1)$ and twigs $P_n(2, 2, ...2)$ it is strongly sensed that the results can be generalized to $P_n(r, r, ..., r)$ and even to any caterpillar. Our next paper will attempt the generalization process.

References

- [1] S. K. AYYASWAMY, C. NATARAJAN: *Hop domination in graphs*, Submitted to Discussions Mathematicae Graph Theory.
- [2] S. K. AYYASWAMY, C. NATARAJAN: *Hop domination in graphs II*, An.St.Univ.Ovidius Constanta, **23**(2) (2015),187–199.
- [3] S. BALAMURUGAN, R. B. GNANAJOTHI, P. G. P. PACKIAVATHI: *Hop Excellent Graphs*, Mathematical Sciences International Research Journal, **6** Special Issue (2017), 275–279.
- [4] P. CHUKWUKERE: *The 2- Domination Number of a Caterpillar*, Electronic Theses and Dissertations, Paper 3456, 2018.
- [5] P. G. P. PACKIAVATHI, S. BALAMURUGAN, R. B. GNANAJOTHI: Hop Excellence of Paths, International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(10S) (2019), 275–279.
- [6] S. M. MEENARANI, T. HEMALATHA: Hop Graph of a Graph, International Journal of Informative and futuristic Research, 3(9) (2016), 3375–3384.

V. V. VANNIAPERUMAL COLLEGE FOR WOMEN VIRUDHUNAGAR

GOVERNMENT ARTS COLLEGE MELUR

2748

V. V. VANNIAPERUMAL COLLEGE FOR WOMEN VIRUDHUNAGAR