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HOP DOMINATION NUMBER OF CATERPILLAR GRAPHS

P. GETCHIAL PON PACKIAVATHI1, S. BALAMURUGAN, AND R. B. GNANAJOTHI

ABSTRACT. Let G = (V,E) be a graph. A set S ⊂ V (G) is a hop dominating
set of G if for every v ∈ V S, there exists u ∈ S such that d(u, v) = 2. The
minimum cardinality of a hop dominating set of G is called a hop dominator
number of G and it is denoted by γh(G). A caterpillar is a graph denoted by
Pk(x1, x2, ...xk), where xi is the number of leaves attached to the ith vertex
of the path Pk. In this paper the domination numbers are determined for the
hop graphs of Pn(1, 1, 1) and Pn(2, 2, 2) and hop domination number of such
caterpillars have been derived.

1. INTRODUCTION

The following two defintions are given in [1,2].

Definition 1.1. A set S ⊂ V of a graph G is a hop dominating set of G if for every
v ∈ V − S, there exists u ∈ S such that d(u, v) = 2. The minimum cardinality of
a hop dominating set of G is called the hop domination number and is denoted by
γh(G).

Definition 1.2. The hop graph H(G) of a graph G is the graph obtained from G
by taking V(H(G)) = V(G) and joining two vertices u,v in H(G) iff they are at a
distance 2 in G.
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Definition 1.3. [4], A caterpillar is a graph which can be obtained from the path
on k vertices by appending xi pendant vertices to the ith vertex of the path Pk.
The caterpillar with parameters k, x1, x2, ...xk where x1, xk 6= 0, will be denoted by
Pk(x1, x2, ...xk).

A caterpillar is a tree with the property that the removal of its leaves and
incident edges results in a path Pk called the spine of the caterpillar. We say a
caterpillar is complete if every vertex on the spine of the caterpillar is adjacent
to at least one leaf.

In section 2 we discuss domination number of special types of snake graphs
which occur as hop graphs of Pn(1, 1, 1) and Pn(2, 2, 2), [3, 5, 6]. In section 3,
hop domination number of Pn(1, 1, 1) and Pn(2, 2, 2) are determined.

2. DOMINATION NUMBER OF SOME SPECIAL SNAKES GRAPH

Let (SN)nK4
denote the snake graph with n copies of K4, (SN)nK4,K3

denote
the snake graph with n copies of K4 followed by one K3 and (SN)nK4,2K3

denote
the snake graph with n copies of K4 starting and ending with K ′

3s and (TSN)
n
K3

denote the triangular snake graph with n copies of K3, (TSN)
n
K3,P1

denote the
triangular snake graph with n copies of K3 followed by 1-pendant vertex and
(TSN)

n
K3,2P1

denote the triangular snake graph with n copies of K3 starting and
ending with 1-pendant vertex.

Theorem 2.1. γ((SN)nK4
) =

⌈
n
2

⌉
.

Proof. Let V((SN)nK4
)= {ui, wi/i = 1, 2...n}∪{vi/i = 1, 2...n+ 1} and

E((SN)nK4
)= {vivi+1/i = 1, 2...n}∪{viui, vi+1ui/i = 1, 2...n}∪

{viwi, vi+1wi/i = 1, 2...n}∪{uiwi/i = 1, 2...n}

Take D =

{v2, v4...vn} if n is even

{v2, v4vn−1, vn+1} if n is odd.

Clearly D is a minimal dominating set of (SN)nK4
and hence |D| =

⌈
n
2

⌉
.

Therefore γ((SN)nK4
)≤
⌈
n
2

⌉
and maxv∈(SN)nK4

d(v) = 6.
So any vertex can dominate at most six vertices apart from it. For any two K4,
atleast one vertex is needed. Hence γ((SN)nK4

)≥
⌈
n
2

⌉
. Hence γ((SN)nK4

) =
⌈
n
2

⌉
.
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Illustration1 : Let us consider (SN)8K4
.

V = {v1, v2, v3...v9} ∪{u1, u2, u3...u8}∪{w1, w2, v3...w8}
D = {v2, v4, v6, v8} is a minimal dominating set of (SN)8K4

.
Illustration 2 : Let us consider (SN)7K4

V = {v1, v2, v3...v8} ∪{u1, u2, u3...u7}∪{w1, w2, v3...w7}
D = {v2, v4, v6, v8} is a minimal dominating set of (SN)7K4

. �

Theorem 2.2. γ((SN)nK4,K3
) =

⌈
n
2

⌉
.

Proof. Let V ((SN)nK4,K3
)= {ui, vi, wi/i = 1, 2...n+ 1} and

E((SN)nK4,K3
)={vivi+1/i = 1, 2...n}∪{viui, viwi, uiwi/i = 1, 2...n+ 1}∪

{viui+1, viwi+1/i = 1, 2...n}

Take D =

{v1, v3..., vn+1} if n is even

{v1, v3..., vn} if n is odd.

Clearly D is a minimal dominating set of (SN)nK4,K3
and |D| =

⌈
n
2

⌉
.

Therefore γ((SN)nK4,K3
)≤
⌈
n
2

⌉
As in theorem 2.1, γ((SN)nK4,K3

)≥
⌈
n
2

⌉
.

Hence γ((SN)nK4,K3
) =

⌈
n
2

⌉
.
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Illustration 1 : Let us consider (SN)7K4,K3
.

V = {v1, v2, v3...v8} ∪{u1, u2, u3...u8}∪{w1, w2, v3...w8}
D = {v1, v3, v5, v7} is a minimal dominating set of (SN)7K4,K3

.
Illustration 2 : Let us consider (SN)6K4,K3

.

V = {v1, v2, v3...v7} ∪{u1, u2, u3...u7} ∪ {w1, w2, v3...w7}
D = {v1, v3, v5, v7} is a minimal dominating set of (SN)6K4,K3

.
�

Theorem 2.3. γ((SN)nK4,2K3
) =

⌈
n
2

⌉
+ 1.

Proof. Let V ((SN)nK4,2K3
)= {vi/i = 1, 2...n+ 1} and {ui, wi/i = 1, 2...n+ 2}

E((SN)nK4,2K3
)={vivi+1/i = 1, 2...n} ∪{viui, viwi, viui+1viwi+1, ui+1wi+1/

i = 1, 2, ..., n+ 1}. Take D =

{v1, v3...vn+1} if n is even

{v1, v3...vn, wn+2} if n is odd.
Clearly D is a minimal dominating set of (SN)nK4,2K3

and
γ((SN)nK4,2K3

)≤
⌈
n
2

⌉
+1; |D| =

⌈
n
2

⌉
+1. There are n+ 2 compartments and hence

γ((SN)nK4,2K3
)≥
⌈
n+2
2

⌉
+1=

⌈
n
2

⌉
+ 1.

Hence γ((SN)nK4,2K3
) =

⌈
n
2

⌉
+ 1.
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Illustration 1 : Let us consider (SN)7K4,2K3
.

V = {v1, v2, v3...v8} ∪{u1, u2, u3.....u8, u9}∪{w1, w2, v3...w8, w9}
D = {v1, v3, v5, v7, w9} is a dominating set of (SN)7K4,2K3

.
Illustration 2 : Let us consider (SN)6K4,2K3

.

V = {v1, v2, v3...v7} ∪{u1, u2, u3...u7, u8} ∪ {w1, w2, w3...w7, w8}
D = {v1, v3, v5, v7} is a dominating set of (SN)6K4,2K3

. �

Theorem 2.4. γ((TSN)
n
K3
) =

⌈
n
2

⌉
Proof. Let V ((TSN)

n
K3

)= {vi/i = 1, 2...n+ 1}∪{ui/i = 1, 2...n} and
E((TSN)

n
K3

)= {vivi+1/i = 1, 2...n}∪{viui, vi+1ui/i = 1, 2...n}

Take D =

{v2, v4...vn+1} if n is odd

{v2, v4...vn} if n is even.
Clearly D is a minimal dominating set of (TSN)

n
K3

and
γ((TSN)

n
K3
)≤
⌈
n
2

⌉
; |D| =

⌈
n
2

⌉
.

As in theorem 2.1, γ((TSN)
n
K3
)≥
⌈
n
2

⌉
Hence γ((TSN)

n
K3
) =

⌈
n
2

⌉
.
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Illustration 1 : Let us consider (TSN)
7
K3

.

V = {v1, v2, v3...v8} ∪{u1, u2, u3...u7}
D = {v2, v4, v6, v8} is a minimal dominating set of (TSN)

7
K3

.
Illustration 2 : Let us consider (TSN)

6
K3

, when n is even.

V = {v1, v2, v3...v7} ∪ {u1, u2, u3.....u6}
D = {v2, v4, v6} is a dominating set of (TSN)

6
K3

. �

Theorem 2.5. γ((TSN)
n
K3,P1

) =
⌈
n
2

⌉
.

Proof. Let V ((TSN)
n
K3,P1

)= {vi, ui/i = 1, 2...n+ 1}nd
E((TSN)

n
K3,P1

)={vivi+1, viui+1/i = 1, 2...n}∪{viui/i = 1, 2...n + 1} Take D ={v1, v3...vn} if n is even

{v1, v3...vn} if n is odd.
Clearly D is a minimal dominating set of (SN)nK4,K3

and
γ((TSN)

n
K3,P1

)≤
⌈
n
2

⌉
; |D| =

⌈
n
2

⌉
.

As in previous theorems, γ((TSN)
n
K3,P1

)≥
⌈
n
2

⌉
Hence γ((TSN)

n
K3,P1

) =
⌈
n
2

⌉
.
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Illustration 1 : Let us consider (TSN)
7
K3,P1

.

V={v1, v2, v3...v8} ∪{u1, u2, u3...u8}
D={v1, v3, v5, v7} is a minimal dominating set of (TSN)

7
K3,P1

.
Illustration 2 : Let us consider (TSN)

6
K3,P1

.

V = {v1, v2, v3...v7} ∪{u1, u2, u3...u7}D = {v1, v3, v5, v7} is a minimal dominating
set of (TSN)

6
K3,P1

. �

Theorem 2.6. γ((TSN)
n
K3,2P1

) =
⌈
n
2

⌉
+ 1.

Proof. Let V((TSN)
n
K3,2P1

)= {vi/i = 1, 2...n+ 1}∪{ui/i = 1, 2...n+ 2} and
E((TSN)

n
K3,2P1

)={vivi+1/i = 1, 2...n}∪{viuiviui+1/i = 1, 2...n+ 1}

Take D =

{v2, v4...vn} if n is even

{v2, v4vn+1} if n is odd.
Clearly D is a minimal dominating set of (TSN)

n
K3,2P1

) and
γ((TSN)

n
K3,2P1

)≤
⌈
n
2

⌉
+1 ; |D| =

⌈
n
2

⌉
+1.

As in previous theorems, γ((TSN)
n
K3,P1

)≥
⌈
n
2

⌉
+ 1.

Hence γ((TSN)
n
K3,2P1

) =
⌈
n
2

⌉
+1.
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Illustration 1 : Let us consider (TSN)
7
K3,2P1

.

V = {v1, v2, v3...v8} ∪{u1, u2, u3...u8, u9}
D = {v1, v3, v5, v7, u9} is a minimal dominating set of (TSN)

7
K3,2P1

.

Illustration 2 : Let us consider (TSN)
6
K3,2P1

.

V = {v1, v2, v3...v7} ∪ {u1, u2, u3...u7, u8}.
D = {v1, v3, v5, v7} is a minimal dominating set of (TSN)

6
K3,2P1

. �

Theorem 2.7. γh(Pn(1, 1, ..., 1)) =

2r + 3 if n=2r+1

2r if n=2r.

Proof. Let Pn(1, 1, ..., 1) be the complete caterpillar with
V (Pn(1, 1, ..., 1))={ui ∪ vi/1 ≤ i ≤ n} and E(Pn(1, 1, ..., 1))={viui/1 ≤ i ≤ n}.
Hop graphH(Pn(x1, x2...xn)) will be the disjoint union of (TSN)

[n
2
]

K3
and (TSN)

[n
2
]−1

K3,2P1

if n is odd and the disjoint union of two (TSN)
dn2 e
K3,P1

if n is even.
When n is odd
H(Pn(1, 1, ..., 1))= (TSN)

[n
2
]

K3
∪(TSN)

[n
2
]−1

K3,2P1

γ(H(Pn(1, 1, ..., 1))) = γ((TSN)
[
K3

n
2
])+ γ((TSN)

[n
2
]−1

K3,2P1
) =

⌈
n
2

⌉
+
⌈
n
2

⌉
+ 1 =

2
⌈
n
2

⌉
+ 1.

If n = 2r + 1 , then γ(H(Pn(1, 1, ..., 1))) = 2
⌈
2r+1
2

⌉
+ 1 = 2(r + 1) + 1 = 2r + 3.
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When n is even
H(Pn(1, 1, ..., 1))= (TSN)

dn2 e
K3,P1

∪(TSN)
dn2 e
K3,P1

γ(H(Pn(1, 1, ..., 1)))=γ((TSN)
dn2 e
K3,P1

) + γ((TSN)
dn2 e
K3,P1

)
⌈
n
2

⌉
+
⌈
n
2

⌉
= 2

⌈
n
2

⌉
.

If n = 2r, then γ(H(Pn(1, 1, ..., 1))) = 2
⌈
2r
2

⌉
= 2r

γh(Pn(1, 1, ..., 1))=γ(HPn(1, 1, ..., 1)).

Hence

γh(Pn(1, 1, ..., 1)) =

2r + 3 if n = 2r + 1

2r if n = 2r.
�

Theorem 2.8. γh(Pn(2, 2, ..., 2)) =

2r + 3 if n = 2r + 1

2r if n = 2r.

Proof. Let Pn(2, 2, ...2) be a complete caterpillar with
V (Pn(2, 2, ...2))={ui, vi, wi/1 ≤ i ≤ n} and
E(Pn(2, 2, ...2))={vivi+1/1 ≤ i ≤ n− 1}∪{uivi/i = 1, 2...n} ∪{wivi/i = 1, 2...n}.
Hop graph H(Pn(2, 2, ...2)) will be the disjoint union of (SN)

[n
2
]

K4
and (SN)

[n
2
]−1

K4,2K3

if n is odd and the disjoint union of two (SN)
dn2 e
K4,K3

if n is even .
When n is odd:
H(Pn(2, 2, ...2))= (SN)

[n
2
]

K4
∪ (SN)

[n
2
]−1

K4,2K3

γ(H(Pn(2, 2, ...2))) = γ((SN)
[n
2
]

K4
) + γ((SN)

[n
2
]−1

K4,2K3
) =

⌈
n
2

⌉
+
⌈
n
2

⌉
+ 1 = 2

⌈
n
2

⌉
+ 1.

If n = 2r + 1, then γ(H(Pn(2, 2, ...2))) = 2
⌈
2r+1
2

⌉
+ 1 = 2(r + 1) + 1 = 2r + 3.

When n is even
H(Pn(2, 2, ...2))= (SN)

dn2 e
K4,K3

∪ (SN)
dn2 e
K4,K3

.

γ(H(Pn(2, 2, ...2)))=γ((SN)
dn2 e
K4,K3

)+ γ((SN)
dn2 e
K4,K3

) =
⌈
n
2

⌉
+
⌈
n
2

⌉
= 2

⌈
n
2

⌉
.

If n = 2r , then γ(HPn(2, 2, ...2)) = 2
⌈
2r
2

⌉
= 2r

γh(Pn(2, 2, ...2))=γ(H(Pn(2, 2, ...2)))

Hence γh(Pn(2, 2, ..., 2)) =

2r + 3 if n = 2r + 1

2r if n = 2r.
�
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3. CONCLUSION

While working on combs Pn(1, 1, ..., 1) and twigs Pn(2, 2, ...2) it is strongly
sensed that the results can be generalized to Pn(r, r, ....r) and even to any cater-
pillar. Our next paper will attempt the generalization process.
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