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COMMON FIXED POINT THEOREMS USING
CLR AND E.A. PROPERTIES IN COMPLEX PARTIAL B-METRIC SPACE

A. LEEMA MARIA PRAKASAM1 AND M. GUNASEELAN

ABSTRACT. In this paper, we prove a existence and uniqueness of common fixed
point theorems using (CLR) and (E.A.) properties in complex partial b-metric
space. The proved results generalize and extend some of the well known results
in the literature. An example to support our result is presented.

1. INTRODUCTION

In many branches of science, economics, computer science, engineering and
the development of nonlinear analysis, the fixed point theory is one of the most
important tool. In 1989, Backhtin in [1] introduced the concept of b-metric
space. In 1993, Czerwik in [2] extended the results of b-metric spaces. Azam
et al. in [3] introduced new spaces called complex valued metric spaces and es-
tablished the existence of fixed point theorems under the contraction condition.
Rao et al. in [5] introduced the concept of complex valued b-metric space which
was more general than the well known complex valued metric space. P. Dhivya
and M. Marudai in [6] introduced new spaces called complex partial metric
space and established the existence of common fixed point theorems under the
contraction condition of rational expression. M.Gunaseelan in [4] introduced
new spaces called complex partial b-metric space and established the existence
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of fixed point theorem under the contractive condition. In this paper, we prove
a existence and uniqueness of common fixed point theorems using (CLR) and
(E.A.) properties in complex partial b-metric space.

2. PRELIMINARIES

Let C be the set of complex numbers and d1, d2 ∈ C. Define a partial order �
on C as follows:
d1 � d2 if and only if Re(d1) ≤ Re(d2),Im(d1) ≤ Im(d2).
Consequently, one can infer that d1 � d2 if one of the following conditions is
satisfied:

(i) Re(d1) = Re(d2), Im(d1) < Im(d2),
(ii) Re(d1) < Re(d2), Im(d1) = Im(d2),

(iii) Re(d1) < Re(d2), Im(d1) < Im(d2),
(iv) Re(d1) = Re(d2), Im(d1) = Im(d2).

In particular,we write d1 � d2 if d1 6= d2 and one of (i), (ii) and (iii) is satisfied
and we write d1 ≺ d2 if only (iii) is satisfied. Notice that:

(a) If 0 � d1 � d2,then |d1| < |d2|,
(b) If d1 � d2 and d2 ≺ d3 then d1 ≺ d3,
(c) If e, f ∈ R and e ≤ f then ec1 � fc1 for all c1 ∈ C.

Definition 2.1. [6] A complex partial metric on a non-empty set Q is a function
ϑc : Q×Q→ C+ such that for all p, r, s ∈ Q:

(i) 0 � ϑc(p, p) � ϑc(p, r)(small self − distances)
(ii) ϑc(p, r) = ϑc(r, p)(symmetry)

(iii) ϑc(p, p) = ϑc(p, r) = ϑc(r, r) if and only if p = r(equality)

(iv) ϑc(p, r) � ϑc(p, s) + ϑc(s, r)− ϑc(s, s)(triangularity).
A complex partial metric space is a pair (Q, ϑc) such that Q is a non empty set and
ϑc is complex partial metric on Q.

Definition 2.2. [4] A complex partial b-metric on a non-empty set Q is a function
κcb : Q×Q→ C+ such that for all x, y, z ∈ Q:

(i) 0 � κcb(x, x) � κcb(x, y)(small self − distances)
(ii) κcb(x, y) = κcb(y, x)(symmetry)

(iii) κcb(x, x) = κcb(x, y) = κcb(y, y)⇔ x = y(equality)
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(iv) ∃ a real number s ≥ 1 such that κcb(x, y) � s[κcb(x, z) + κcb(z, y)] −
κcb(z, z)(triangularity).

A complex partial b-metric space is a pair (Q, κcb) such that Q is a non empty set
and κcb is complex partial b-metric on Q. The number s is called the coefficient of
(Q, κcb).

Remark 2.1. [4] In a complex partial b-metric space (Q, κcb) if x, y ∈ Q and
κcb(x, y) = 0, then x = y, but the converse may not be true.

Remark 2.2. [4] It is clear that every complex partial metric space is a complex
partial b-metric space with coefficient s = 1 and every complex valued b-metric is
a complex partial b-metric space with the same coefficient and zero self-distance.
However, the converse of this fact need not hold.

Example 1. [4] Let Q = R+, q > 1 a constant and κcb : Q × Q → C+ be defined
by κcb(x, y) = [max{x, y}]q + |x − y|q + i{[max{x, y}]q + |x − y|q} ∀ x, y ∈ Q.
Then (Q, κcb) is a complex partial b-metric space with coefficient s = 2q > 1, but it
is neither a complex valued b-metric nor a complex partial metric. Indeed, for any
x > 0 we have κcb(x, x) = xp(1 + i) 6= 0. Therefore, κcb is not a complex valued
b-metric on Q. Also, for x = 6, y = 2, z = 5,

κcb(x, y) = (6q + 5q)(1 + i),

κcb(x, z) + κcb(z, y)− κcb(z, z) = (6q + 1q)(1 + i) + (5q + 3q)(1 + i)− 5q(1 + i)

= (6q + 1 + 3q)(1 + i) .

So,κcb(x, y) > κcb(x, z)+κcb(z, y)−κcb(z, z) ∀ q > 1. Therefore κcb is not a complex
partial metric on Q.

Proposition 2.1. [4] Let Q be a non-empty set such that ϑc is a complex partial
and d is a complex valued b-metric with coefficient s > 1 on Q. Then the function
κcb : Q×Q→ C+ defined by κcb(x, y) = ϑc(x, y) + d(x, y) ∀ x, y ∈ Q is a complex
partial b-metric on Q, that is, (Q, κcb) is a complex partial b-metric space.

Proposition 2.2. [4] Let (Q, ϑc) be a complex partial metric space, r ≥ 1, then
(Q, κcb) is a complex partial b-metric space with coefficient s = 2r−1,where κcb is
defined by κcb(x, y) = [ϑc(x, y)]

r.

Every complex partial b-metric κcb on a non-empty set Q generates a topology
τcb on Q whose base is the family of open κcb-balls Bκcb(x, ε) where
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τcb = {Bκcb(x, ε) : x ∈ Q, ε > 0} and Bκcb(x, ε) = {y ∈ Q : κcb(x, y) <

ε+ κcb(x, x)}.
Obviously, the topological space (Q, τcb) is T0, but need not be T1.
Now, we define Cauchy sequence and convergent sequence in complex partial
b-metric spaces.

Definition 2.3. [4] Let (Q, κcb) be a complex partial b-metric space with coefficient
s. Let {xn} be any sequence in Q and x ∈ Q. Then

(i) The sequence {xn} is said to be convergent with respect to τcb and converges
to x, if limn→∞ κcb(xn, x) = κcb(x, x).

(ii) The sequence {xn} is said to be Cauchy sequence in (Q, κcb) if
limn,m→∞ κcb(xn, xm) exists and is finite.

(iii) (Q, κcb) is said to be a complete complex partial b-metric space if for every
Cauchy sequence {xn} in Q there exists x ∈ Q such that
limn,m→∞ κcb(xn, xm) = limn→∞ κcb(xn, x) = κcb(x, x).

(iv) A mappings R : Q → Q is said to be continuous at x0 ∈ Q if for every
ε > 0, there exists δ > 0 such that R(Bκcb(x0, δ)) ⊂ Bκcb(R(x0, ε)).

Let Q be a complex partial b-metric space and A ⊆ Q. A point x ∈ Q is called
an interior of set A, if there exists 0 < r ∈ C such that Bκcb(x, r) = {y ∈ Q :

κcb(x, y) < κcb(x, x) + r} ⊆ A. A subset A is called open, if each point of A is
an interior point of A. A point x ∈ Q is said to be a limit point of A, for every
0 < r ∈ C, Bκcb(x, r) ∩ (A − {x}) 6= φ. A subset B ⊆ Q is called closed, B
contains all its limit points.

Example 2. [4] Let Q = R+, a > 0 be any constant and define κcb : Q×Q→ C+

by κcb(x, y) = (max{x, y}+ a)(1 + i) ∀ x, y ∈ Q.
Then (Q, κcb) is a complex partial b-metric space with arbitrary coefficient s ≥ 1.
Now, define a sequence {xn} in Q by xn = 1 for all n ∈ N. Note that, if y ≥ 1, we
have κcb(xn, y) = (y+a)(1+ i) = κcb(y, y). Therefore limn→∞ κcb(xn, y) = κcb(y, y)

for all y ≥ 1. Thus, the limit of convergent sequence in complex partial b-metric
space need not be unique.

Example 3. [4] Let Q = [0,∞) endowed with complex partial b-metric κcb : Q ×
Q→ C+ with κcb = (max{x, y})2 + i(max{x, y})2 ∀ x, y ∈ Q.

It is easy to verify that (Q, κcb) is a complex partial b-metric space and note
that self distance need not be zero, for example κcb(1, 1) = 1 + i 6= 0. Now the
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complex valued b-metric is not induced by κcb is follows, dκcb(x, y) = 2κcb(x, y)−
κcb(x, x) − κcb(y, y) without loss of generality suppose x ≥ y then dκ(x, y) =

2[(max{x, y})2 + i(max{x, y})2] − (x2 + ix2) − (y2 + iy2). Therefore, dκ(x, y) =

x2 − y2 + i(x2 − y2).
Therefore, we have the following proposition.

Proposition 2.3. [4] Every complex partial b-metric κcb is not defines complex
b-metric dκcb, where dκcb(x, y) = 2κcb(x, y)− κcb(x, x)− κcb(y, y) ∀ x, y ∈ Q.

So, we introduce the new notion generalized complex partial b-metric space.

Definition 2.4. [4] A generalized complex partial b-metric on a non-empty set Q
is a function κcb : Q×Q→ C+ such that for all x, y, z ∈ Q:

(i) 0 � κcb(x, x) � κcb(x, y)(smallself − distances)
(ii) κcb(x, y) = κcb(y, x)(symmetry)

(iii) κcb(x, x) = κcb(x, y) = κcb(y, y)⇔ x = y(equality)

(iv) ∃ a real number s ≥ 1 such that κcb(x, y) � s[κcb(x, z) + κcb(z, y) −
κcb(z, z)] + (1−s

2
)(κcb(x, x)− κcb(y, y))(triangularity).

A generalized complex partial b-metric space is a pair (Q, κcb) such that Q is a non
empty set and κcb is generalized complex partial b-metric on Q. The number s is
called the coefficient of (Q, κcb).

Since s ≥ 1, from (iv) from the previous definition we have:
κcb(x, y) ≤ s[κcb(x, z) + κcb(z, y)− κcb(z, z)] ≤ s[κcb(x, z) + κcb(z, y)]− κcb(z, z).
Hence, a complex partial b-metric space is also a generalized complex partial
b-metric space.

Proposition 2.4. [4] Every generalized complex partial b-metric κcb is defines com-
plex b-metric dκcb, where dκcb(x, y) = 2κcb(x, y)− κcb(x, x)− κcb(y, y) ∀ x, y ∈ Q.

Definition 2.5. Let G and F be self maps on a set Q, if t = Fq = Gq for some
q in Q, then q is called coincidence point of F and G and t is called a point of
coincidence of F and G.

Definition 2.6. Let F and G be two self maps defined on a set Q, then F and G
are said to be weakly compatible if they commute at coincidence points.

Definition 2.7. Let L,M : D → D be two self mappings of a complex partial b-
metric space (D, κcb). The pair (L,M) is said to satisfy (E.A) property if there
exists a sequence {pn} in D such that lim

n→∞
Mpn = lim

n→∞
Lpn = t, for some t ∈ D.
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Definition 2.8. The self mappings L and M from D to D are said to satisfy the
common limit in the range of M property (CLRs property) if
lim
n→∞

Lpn = lim
n→∞

Mpn =Mp, for some p ∈ D.

3. MAIN RESULTS

3.1. Common Fixed Point Theorem. In this section, we prove common fixed
point theorem in the complex partial b-metric space.

Theorem 3.1. Let (Q, κcb) be a complete complex partial b-metric space with coef-
ficient s ≥ 1 and let F,G, L andM are four self maps ofQ such thatM(Q) ⊆ F (Q)

and L(Q) ⊆ G(Q) and satisfying

κcb(Lp,Mq) � aκcb(Fp,Gq) + b[κcb(Fp, Lp) + κcb(Gq,Mq)]

+ c[κcb(Fp,Mq) + κcb(Gq, Lp)]

for all p, q ∈ Q where a, b, c ≥ 0 and a + 2sb + 2sc < 1. Suppose that the pairs
{F,L} and {G,M} are weakly compatible. Then F,G,L and M have a unique
common fixed point.

Proof. Suppose p0 is an arbitrary point of Q. Define the sequence {qn} in Q such
that

q2n = Lp2n = Gp2n+1

q2n+1 =Mp2n+1 = Fp2n+2.

Now,

κcb(q2n, q2n+1) = κcb(Lp2n,Mp2n+1)

� aκcb(Fp2n, Gp2n+1) + b[κcb(Fp2n, Lp2n) + κcb(Gp2n+1,Mp2n+1)]

+ c[κcb(Fp2n,Mp2n+1) + κcb(Gp2n+1, Lp2n)]

� aκcb(q2n−1, q2n) + b[κcb(q2n−1, q2n) + κcb(q2n, q2n+1)]

+ c[κcb(q2n−1, q2n+1) + κcb(q2n, q2n)]

� aκcb(q2n−1, q2n) + b[κcb(q2n−1, q2n) + κcb(q2n, q2n+1)]

+ c[sκcb(q2n−1, q2n) + sκcb(q2n, q2n+1)− κcb(q2n, q2n) + κcb(q2n, q2n)]

� a+ b+ sc

1− b− sc
κcb(q2n−1, q2n),
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which implies that

|κcb(q2n, q2n+1)| ≤ k|κcb(q2n−1, q2n)|,

where k =
a+ b+ sc

1− b− sc
< 1. Similarly, we can prove that

|κcb(q2n+1, q2n+2)| ≤ k|κcb(q2n, q2n+1)|.

Therefore,

|κcb(qn+1, qn+2)| ≤ k|κcb(qn, qn+1)|+ · · ·+ kn+1|κcb(q0, q1)|

for n = 1, 2 · · · . For m ∈ N,

κcb(qn, qn+m) � s[κcb(qn, qn+1) + κcb(qn+1, qn+m)]− κcb(qn+1, qn+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� sknκcb(q0, q1) + s2kn+1κcb(q0, q1)

+ · · ·+ smkn+m−1κcb(q0, q1)− κcb(qn+1, qn+1)− sκcb(qn+2, qn+2)

− s2κcb(qn+3, qn+3)− · · · − sm−2κcb(qn+m−1, qn+m−1)

= [skn + s2kn+1 + · · ·+ smkn+m−1]κcb(q0, q1)

− [κcb(qn+1, qn+1) + sκcb(qn+2, qn+2)

+ s2κcb(qn+3, qn+3) + · · ·+ sm−2κcb(qn+m−1, qn+m−1)]

= skn[1 + (sk) + (sk)2 + · · ·+ (sk)m−1]κcb(q0, q1)

−
m−1∑
i=1

sm−1−iκcb(qn+m−i, qn+m−i)

|κcb(qn, qn+m)| ≤ skn|κcb(q0, q1)|(1 + (sk) + (sk)2 + · · ·+ (sk)m−1)

−
m−1∑
i=1

sm−1−i|κcb(qn+m−i, qn+m−i)|

≤ skn|κcb(q0, q1)|(1 + (sk) + (sk)2 + · · ·+ (sk)m−1)

≤ skn|κcb(q0, q1)|(1 + (sk) + (sk)2 + . . . )

≤ skn

1− sk
|κcb(q0, q1)|

Since k < 1, and s ≥ 1. Therefore, sk < 1. Taking limit n→∞, we have kn → 0.
This implies |κcb(qn, qn+m)| → 0 as n,m → ∞. Therefore, the sequence {qn} is
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Cauchy sequence in Q. Since Q is a complete complex partial b-metric. There-
fore, there exists z ∈ Q such that qn → z and κcb(z, z) = lim

n→∞
κcb(z, qn) =

lim
n→∞

κcb(qn, qn) = 0. Since M(Q) ⊆ F (Q), there exists a point u ∈ Q such that

z = Fu. Suppose that κcb(Lu, z) > 0. Then

κcb(Lu, z) � sκcb(Lu,Mp2n−1) + sκcb(Mp2n−1, z)− κcb(Mp2n−1,Mp2n−1)

� s[aκcb(Fu,Gp2n−1) + b(κcb(Fu, Lu) + κcb(Gp2n−1,Mp2n−1))

+ c(κcb(Fu,Mp2n−1) + κcb(Gp2n−1, Lu))] + sκcb(Mp2n−1, z) .

As n→∞,

|κcb(Lu, z)| ≤ sa|κcb(z, z)|+ sb|κcb(z, Lu)|+ sb|κcb(z, z)|

+ cs|κcb(z, z)|+ sc|κcb(z, Lu)|+ s|κcb(z, z)|

≤ (sb+ sc)|κcb(z, Lu)| .

Since a+2sb+2sc < 1. Therefore which is a contradiction. Hence Lu = Fu = z.
Since L(Q) ⊆ G(Q), there exists a point v ∈ q such that z = Gv. Suppose that
κcb(z,Mv) > 0. Then

κcb(z,Mv) � κcb(Lu,Mv)

� aκcb(Fu,Gv) + b[κcb(Fu, Lu) + κcb(Gv,Mv)]

+ c[κcb(Fu,Mv) + κcb(Gv,Lu)],

which implies that,

|κcb(z,Mv)| ≤ a|κcb(z, z)|+ b[|κcb(z, z)|+ |κcb(z,Mv)|]

+ c[|κcb(z,Mv)|+ |κcb(z, z)|]

≤ (b+ c)|κcb(z,Mv)| .

Since b + c < 1, which is a contradiction. Therefore Mv = Gv = z. Hence
= Lu = Fu = Mv = Gv = z. Since F and L are weakly compatible maps, then
LFu = FLu. Therefore Lz = Fz. Now we claim that z is a fixed point of L if



COMMON FIXED POINT THEOREMS. . . 2781

Lz 6= z. We have

κcb(Lz, z) � κcb(Lz,Mv)

� aκcb(Fz,Gv) + b[κcb(Fz, Lz) + κcb(Gv,Mv)]

+ c[κcb(Fz,Mv) + κcb(Gv,Lz)]

= aκcb(Lz, z) + b[κcb(Lz, Lz) + κcb(z, z)] + c[κcb(Lz, z) + κcb(z, Lz)]

� (a+ b+ 2c)κcb(Lz, z),

which implies that

|κcb(Lz, z)| ≤ (a+ b+ 2c)|κcb(Lz, z)|.

Since a + b + 2c < 1, which is a contradiction. Therefore Lz = z. Hence Lz =

Fz = z. Similarly, G and M are weakly compatible maps, we have Mz = Gz.
Now we claim that z is a fixed point of M . Suppose that Mz 6= z. Then we have

κcb(z,Mz) � κcb(Lz,Mz)

� aκcb(Fz,Gz) + bκcb(Fz, Lz) + κcb(Gz,Mz)

+ c[κcb(Fz,Mz) + κcb(Gz, Lz)]

� aκcb(z,Mz) + bκcb(z, z) + κcb(Mz,Mz)

+ c[κcb(z,Mz) + κcb(z,Mz)]

� aκcb(z,Mz) + bκcb(z,Mz)

+ c[κcb(z,Mz) + κcb(z,Mz)]

= (a+ b+ 2c)κcb(z,Mz),

which implies that

κcb(z,Mz) ≤ (a+ b+ 2c)|κcb(z,Mz)|.

Since a + b + 2c < 1, which is a contradiction. Therefore Mz = z. Thus Mz =

Gz = z . Hence Mz = Gz = Fz = Gz = z and it follows that z is a common
fixed point of F,G,L and M . Next we claim that the uniqueness of z. Let z and
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w are distinct common fixed points of F,G,L and M . Suppose not, we have

κcb(z, w) = κcb(Lz,Mz)

� aκcb(Fz,Gw) + b[κcb(Fz, Lz) + κcb(Gw,Mw)]

+ c[κcb(Fz,Mw) + κcb(Gw,Lz)]

� aκcb(z, w) + b[κcb(z, z) + κcb(w,w)] + c[κcb(z, w) + κcb(w, z)]

= (a+ 2c)κcb(z, w),

which implies that

|κcb(z, w)| ≤ (a+ 2c)|κcb(z, w)|.

Since a + 2c < 1, which is a contradiction. Therefore z = w. Hence z is the
unique common fixed point of F,G,L and M . �

Corollary 3.1. Let (Q, κcb) be a complex partial b-metric space with coefficient
s ≥ 1 and let F,L and M are three self maps of Q such that M(Q) ⊆ F (Q) and
L(Q) ⊆ F (Q) and satisfying

κcb(Lp,Mq) � aκcb(Fp, Fq) + b[κcb(Fp, Lp) + κcb(Fq,Mq)]

+ c[κcb(Fp,Mq) + κcb(Fq, Lp)]

for all p, q ∈ Q where a, b, c ≥ 0 and a + 2sb + 2sc < 1. Suppose that the pairs
{F,L} and {F,M} are weakly compatible. Then F,G,L and M have a unique
common fixed point.

Proof. The result follows on putting F = G in Theorem 3.1. �

3.2. Common Fixed Point Theorem Using(E.A) Property. In this section, we
prove common fixed point theorems using (E.A.) property in the complex partial
b-metric space.

Theorem 3.2. Let F,G,L and M be four self mappings of a complex partial b-
metric space (Q, κcb) satisfying:

(i) F (Q) ⊆M(Q) and G(Q) ⊆ L(Q);
(ii) for all p, q ∈ Q and a, b ≥ 0, 4s(a+ b) < 1,

κcb(Fp,Gq) � a[κcb(Fp, Lp) + κcb(Gq,Mq)] + b[κcb(Fp,Mq) + κcb(Gq, Lp)]

(iii) the pairs (F,L) and (G,M) are weakly compatible;
(iv) one of the pairs (F,L) or (G,M) satisfies (E.A)-property.
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If the range of one of the mappings L(Q) or M(Q) is a closed subspace of Q, then
the mappings F,G,L and M have common fixed point in Q.

Proof. Suppose that the pair (G,M) satisfies (E.A.) property. Then, by defini-
tion, there exists a sequence {pn} in Q such that lim

n→∞
Gpn = lim

n→∞
Mpn = z

for some z ∈ Q. Since G(Q) ⊆ L(Q), there exists a sequence {qn} in Q such
that Gpn = Lqn. Hence, lim

n→∞
Lqn = z. We claim that lim

n→∞
Fqn = z. Let

lim
n→∞

Fqn = z1 6= z, then putting p = qn, q = pn in condition (ii), we have

κcb(Fqn, Gpn) � a[κcb(Fqn, Lqn) + κcb(Gpn,Mpn)]

+ b[κcb(Fqn,Mpn) + κcb(Gpn, Lqn)] .

As n→∞, we have

κcb(z1, z) � a[κcb(z1, z) + κcb(z, z)]

+ b[κcb(z1, z) + κcb(z, z)]

� a[κcb(z1, z) + 2sκcb(z, z1)− κcb(z1, z1)]

+ b[κcb(z1, z) + 2sκcb(z, z1)− κcb(z1, z1)]

≺ a[κcb(z1, z) + 2sκcb(z, z1)]

+ b[κcb(z1, z) + 2sκcb(z, z1)].

Then, |κcb(z1, z)| < 0; hence, z1 = z and that is, lim
n→∞

Fqn = lim
n→∞

Gpn = z.

Now suppose that L(Q) is closed subspace of Q, then z = Lu for some u ∈ Q.
Consequently, we have

lim
n→∞

Fqn = lim
n→∞

Gpn = lim
n→∞

Mpn

= lim
n→∞

Lqn = z = Lu.

We claim that Fu = Lu. Put p = u and q = pn in contractive condition (ii), and
we have

κcb(Fu,Gpn) � a[κcb(Fu, Lu) + κcb(Gpn,Mpn)]

+ b[κcb(Fu,Mpn) + κcb(Gpn, Lu)] .
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As n→∞, we have

κcb(Fu, z) � a[κcb(Fu, z) + κcb(z, z)]

+ b[κcb(Fu, z) + κcb(z, z)]

� a[κcb(Fu, z) + 2sκcb(Fu, z)− κcb(Fu, Fu)]

+ b[κcb(Fu, z) + 2sκcb(Fu, z)− κcb(Fu, Fu)]

≺ a[κcb(Fu, z) + 2sκcb(Fu, z)]

+ b[κcb(Fu, z) + 2sκcb(Fu, z)].

Then, |κcb(Fu, z)| < 0, which is contradiction. Hence, u is a coincidence point
of (F,L). Now the weak compatibility of pair (F,L) implies that FLu = LFu

orFz = Lz.
On the other hand, since F (Q) ⊆M(Q), there exists v in Q such that Fu =Mv.
Thus, Fu = Lu = Mv = z. Now, we prove that v is a coincidence point of
(G,M); that is, Gv =Mv = t. put p = u,q = v in contractive condition (ii), and
we have

κcb(z,Gv) � a[κcb(z, z) + κcb(Gv, z)]

+ b[κcb(z, z) + κcb(Gv, z)]

� a[2sκcb(z,Gv)− κcb(Gv,Gv) + κcb(Gv, z)]

+ b[2sκcb(z,Gv)− κcb(Gv,Gv) + κcb(Gv, z)]

≺ a[2sκcb(z,Gv) + κcb(Gv, z)]

+ b[2sκcb(z,Gv) + κcb(Gv, z)].

Then, |κcb(z,Gv)| < 0, which is a contradiction. Thus, Gv = z. Hence, Gv =

Mv = z, and v is the coincidence point of G and M .
Further, the weak compatibility of pair (G,M) implies that GMv = MGv,or
Gz =Mz. Therefore, z is a common coincidence point of F,G, L and M .
Now, we prove that z is a common fixed point. Put p = u and q = z in contractive
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condition (ii), we have

κcb(z,Gz) � a[κcb(z, z) + κcb(Gz, z)]

+ b[κcb(z,Gz) + κcb(Gz, z)]

� a[2sκcb(z,Gz)− κcb(Gz,Gz) + κcb(Gz, z)]

+ b[κcb(z,Gz) + κcb(Gz, z)]

≺ a[2sκcb(z,Gz) + κcb(Gz, z)]

+ b[κcb(z,Gz) + κcb(Gz, z)],

which implies that

|κcb(z,Gz)| < 0.

This is a contradiction. Thus, Gz = z. Hence, Fz = Gz = Lz =Mz = z.
Similarly if we assume that M(Q) is closed subspace of Q and (E.A)-property of
the pair (F,L) will give a similar result.
We claim that uniqueness of the common fixed point. Let us assume that r
is another common fixed point of F,G,L and M . Then, put p = r,q = z in
contractive condition (ii), we have

κcb(r, z) = κcb(Fr,Gz) � a[κcb(Fr, Lr) + κcb(Gz,Mz)]

+ b[κcb(Fr,Mz) + κcb(Gz, Lr)]

� a[κcb(r, r) + κcb(z, z)]

+ b[κcb(r, z) + κcb(z, r)]

� a[2sκcb(r, z)− κcb(z, z) + 2sκcb(z, r)− κcb(r, r)]

+ b[κcb(r, z) + κcb(z, r)]

≺ a[2sκcb(r, z) + 2sκcb(z, r)]

+ b[κcb(r, z) + κcb(z, r)].

Then, |κcb(r, z)| < 0, which is a contradiction. Thus r = z. Hence,Fz = Gz =

Lz =Mz = z, and z is the unique common fixed point of F,G,L and M . �

Remark 3.1. Completeness of Q is relaxed in Theorem 3.1.

If F = G and L =M in Theorem 3.1, we have the following result.

Corollary 3.2. Let F,M be the self mappings of a complex partial b-metric space
(Q, κcb) satisfying:
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(i) F (Q) ⊆M(Q);
(ii) for all p, q ∈ Q and a, b ≥ 0, 4s(a+ b) < 1,

κcb(Fp, Fq) � a[κcb(Fp,Mp) + κcb(Fq,Mq)]

+ b[κcb(Fp,Mq) + κcb(Fq,Mp)]

(iii) the pairs (F,M) is weakly compatible;
(iv) the pairs (F,M) satisfies (E.A)-property.

If the range of one of the mapping M(Q) is a closed subspace of Q, then the map-
pings F and M have common fixed point in Q.

Example 4. Let Q = {−1
3
} ∪ (0, 3] and κcb(u, v) =

{
max{u, v}

}2
(1 + i) where

u, v ∈ Q ; then (U, δcb) is a complex partial b-metric space. Let F,G, L,M : Q→ Q

be defined by

F (q) =

1 if q ∈ {−1
3
} ∪ [1, 3],

1
3

if q ∈ (0, 1).

G(q) =

1 if q ∈ {−1
3
} ∪ [1, 3],

1
2

if q ∈ (0, 1).

L(q) =


1 if q = 1,

3
2

if q ∈ (0, 1),
q−1
2

if q ∈ {−1
3
} ∪ (1, 3].

and

M(q) =


1 if q = 1,

4
3

if q ∈ (0, 1),
q+1
2

if q ∈ {−1
3
} ∪ (1, 3].

Then F (Q) = {1, 1
3
}, G(Q) = {1, 1

2
}, L(Q) = {−2

3
, 3
2
} ∪ (0, 1],M(Q) = {1

3
} ∪ [1, 2],

and

(i) F (Q) ⊆M(Q) and G(Q) ⊆ L(Q);
(ii) for all p, q ∈ Q and a, b ≥ 0, 4s(a+ b) < 1, one can verify that

κcb(Fp,Gq) � a[κcb(Fp, Lp) + κcb(Gq,Mq)]

+ b[κcb(Fp,Mq) + κcb(Gq, Lp)]

(iii) the pairs (F,L) and (G,M) are weakly compatible;
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(iv) let {qn} = {3− 1
n
}n≥1 be a sequence in Q.

Then

lim
n→∞

Fqn = lim
n→∞

Lqn = 1 ∈ Q,

and

lim
n→∞

Gqn = lim
n→∞

Mqn = 1 ∈ Q.

Therefore, one of the pairs (F,L) or (G,M) satisfies (E.A)-property.
(v) L(Q) or M(Q) is a closed subspace of Q. Hence by theorem 3.2, 1 is a unique
common fixed point of F,G,L and M .

3.3. Common Fixed Point Theorem Using (CLR) Property. In this section,
we prove common fixed point theorems using (CLR) property in the complex
partial b-metric space.

Theorem 3.3. Let F,G,L and M be four self mappings of a complex partial b-
metric space (Q, κcb) satisfying :

(i) F (Q) ⊆M(Q) and G(Q) ⊆ L(Q);
(ii) for all p, q ∈ Q and a, b ≥ 0, 4s(a+ b) < 1,

κcb(Fp,Gq) � a[κcb(Fp, Lp) + κcb(Gq,Mq)]

+ b[κcb(Fp,Mq) + κcb(Gq, Lp)]

(iii) the pairs (F,L) and (G,M) are weakly compatible.

If the pair (F,L) satisfies (CLRF ) property or (G,M) satisfies (CLRG) property,
then F,G,L and M have a unique common fixed point in Q.

Proof. Suppose that the pair (G,M) satisfies (CLRG) property. Then, by defini-
tion, there exists a sequence {pn} in Q such that

lim
n→∞

Gpn = lim
n→∞

Mpn = Gp,

for some p ∈ Q. Since G(Q) ⊆ L(Q), we have Gp = Lu, for some u ∈ Q. We
show that Fu = Lu = z (say). Put p = u and q = pn in contractive condition
(ii), we have

κcb(Fu,Gpn) � a[κcb(Fu, Lu) + κcb(Gpn,Mpn)]

+ b[κcb(Fu,Mpn) + κcb(Gpn, Lu)] .
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As n→∞, we have

κcb(Fu,Gp) � a[κcb(Fu,Gp) + κcb(Gp,Gp)]

+ b[κcb(Fu,Gp) + κcb(Gp,Gp)]

� a[κcb(Fu,Gp) + 2sκcb(Fu,Gp)− κcb(Fu, Fu)]

+ b[κcb(Fu,Gp) + 2sκcb(Fu,Gp)− κcb(Fu, Fu)]

≺ a[κcb(Fu,Gp) + 2sκcb(Fu,Gp)]

+ b[κcb(Fu,Gp) + 2sκcb(Fu,Gp)].

Then, |κcb(Fu,Gp)| < 0, which is a contradiction. Thus, Fu = Lu.
Hence, Fu = Lu = Gp = t.
Now, the weak compatibility of pair (F,L) implies that, FLu = LFu or Fz = Lz.
Since F (Q) ⊆ M(Q), there exists v in Q such that Fu = Mv. Thus, Fu = Lu =

Mv = z.
Next, we claim that v is a coincidence point of (G,M) that is, Gv = Mv = z.
Put p = u, q = v in contractive condition (ii), we have

κcb(z,Gv) = κcb(Fu,Gv) � a[κcb(Fu, Lu) + κcb(Gv,Mv)]

+ b[κcb(Fu,Mv) + κcb(Gv,Lu)]

� a[κcb(z, z) + κcb(Gv, z)]

+ b[κcb(z, z) + κcb(Gv, z)]

� a[2sκcb(z,Gz)− κcb(Gz,Gz) + κcb(Gv, z)]

+ b[2sκcb(z,Gz)− κcb(Gz,Gz) + κcb(Gv, z)]

≺ a[2sκcb(z,Gz) + κcb(Gv, z)]

+ b[2sκcb(z,Gz) + κcb(Gv, z)].

Then, |κcb(z,Gv)| < 0, which is a contradiction. Thus, Bv = z. Hence, Bv =

Mv = z, and v is coincidence point of B and M .
Further, the weak compatibility of pair (G,M) implies that GMv = MGv or
Gz = Mz. Therefore, z is a common coincidence point of F,G, L and M . Now,
we claim that z is a common fixed point. Put p = u and q = z in contractive
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condition (ii), we have

κcb(z,Gz) � a[κcb(z, z) + κcb(Gz, z)]

+ b[κcb(z, z) + κcb(Gz, z)]

� a[2sκcb(Gz, z)− κcb(Gz,Gz) + κcb(Gz, z)]

+ b[2sκcb(Gz, z)− κcb(Gz,Gz) + κcb(Gz, z)]

≺ a[2sκcb(Gz, z) + κcb(Gz, z)]

+ b[2sκcb(Gz, z) + κcb(Gz, z)] .

Then, |κcb(z,Gz)| < 0, which is a contradiction. Thus, Gz = z. Hence, Fz =

Gz = Lz =Mz = z. Easy to verify, uniqueness of the common fixed point .
In a similar way, the argument that the pair (F,L) satisfies property (CLRF ) will
also give the unique common fixed point of F,G,L and M .

Example 5. Let Q = (0, 3] and κcb(u, v) =
{
max{u, v}

}2
(1 + i) where u, v ∈ Q;

then (U, δcb) is a complex partial b-metric space. Let F,G, L,M : Q→ Q be defined
by

F (q) =

1 if q ∈ [1, 3],

2
3

if q ∈ (0, 1).

G(q) =

1 if q ∈ [1, 3],

1
2

if q ∈ (0, 1).

L(q) =


1 if q = 1,

3
2

if q ∈ (0, 1),
q
3

if q ∈ (1, 3].

and

M(q) =


1 if q = 1,

4
3

if q ∈ (0, 1),
q
2

if q ∈ (1, 3].

Then F (Q) = {1, 2
3
}, G(Q) = {1, 1

2
}, L(Q) = (1

3
, 1] ∪ {3

2
}, M(Q) = (1

2
, 3
2
], and

(i) F (Q) ⊆M(Q) and G(Q) ⊆ L(Q);
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(ii) for all p, q ∈ Q and a, b ≥ 0, 4s(a+ b) < 1, one can verify that

κcb(Fp,Gq) � a[κcb(Fp, Lp) + κcb(Gq,Mq)]

+ b[κcb(Fp,Mq) + κcb(Gq, Lp)]

(iii) the pairs (F,L) and (G,M) are weakly compatible.
(iv) let {qn} = {3− 1

n
}n≥1 be a sequences in Q. Then

lim
n→∞

Fqn = lim
n→∞

Lqn = 1 = F (1)

Therefore, the pair (F,L) satisfies (CLRF ) property or (G,M) satisfies (CLRG)

property. Hence, by theorem 3.3, 1 is a unique common fixed point of F,G,L and
M . Note that L(Q) or M(Q) are not closed subspace of Q.

�
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