
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.5, 2809–2815
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.5.42

A COMPARATIVE STUDY ON THE LOGISTIC REGRESSION
AND NAÏVE BAYES MODELS UPON MEDICAL DATA

THROUGH A MACHINE LEARNING APPROACH

S. PARTHASARATHY1 AND V. MADHU

ABSTRACT. Machine learning models plays a vital role in medical data analysis.
This article deals with the comparison of two machine learning models for med-
ical data. Based on the precision, recall, f-score we estimated model accuracy
and identified best model among Logistic Regression and Naive Bayes.

1. INTRODUCTION

Machine Learning in medicine has been reliably hopeful, backed by constantly
available and ever-flourishing data. “Disease identification and diagnosis of ail-
ments are at the forefront of ML research in medicine, [1]. It is no surprise that
large players were some of the first to jump on the bandwagon, particularly in
high-need areas like cancer identification and treatment. In Gregorian calendar
month 2016, IBM Watson Health announced IBM Watson Genomics which aims
to make strides in precision medicine by integrating cognitive computing and ge-
nomic tumor sequencing. Current analysis comes current include dosage trials
for blood vessel tumour treatment and detection and management of prostate
cancer”- says Daniel Faggella, a sought-after expert on the competitive strategy
implications of AI for business and government leaders.
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2. MODELS

Data analysis ways is also delineated by their areas of applications, except for
this text, i.e. exploitation definitions that area unit strictly methods-oriented,
[8].

A Statistical Model (SM) may be a data model that comes with possibilities for
the information generating mechanism and has identified unknown parameters
that are sometimes explainable and of interest, e.g., effects of predictor vari-
ables and spacing parameters regarding the result variable, [1]. The foremost
normally used SMs are regression models, that probably leave a separation of
the results of competitor predictor variables, [7].

SMs embrace standard regression, Bayesian regression, semiparametric mod-
els, generalized additive models, longitudinal models, time-to-event models,
penalised regression, and others. penalised regression includes ridge regres-
sion, lasso, and elastic net. Contrary to what some Machine Learning (ML)
researchers believe, SMs simply leave quality (nonlinearity and second-order
interactions) and a limitless range of candidate options, [4]. It’s particularly
simple, exploitation regression splines, to permit each continuous predictor to
possess a sleek nonlinear result, [5]. It assumes that every one, predictor have
a linear result on the result, which the model is absolutely additive. This can be
as SM in concert can get, [8,9].

ML sometimes doesn’t decide to isolate the result of any single variable. ML
doesn’t model the information generating method however rather makes an at-
tempt to be told from the dataset at hand. ML is additional a neighbourhood of
technology than it’s a part of statistics. Maybe the only thanks to distinguish ML
kind SMs is that SMs favour additivity of predictor effects whereas ML some-
times doesn’t, [3].

In this article we are using the Melanoma data to compare two statistical
model Logistic regression and Naive Bayes.

2.1. Logistic Regression. In statistics, multinomial logistic regression is a clas-
sification approach that generalizes logistic regression to multiclass problems,
that is with more than two viable discrete results. That is, it is a model which is
used to predict the possibilities of the different possible results of a categorically
distributed dependent variable, given a fixed of unbiased variables, [2].
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The multinomial logistic model assumes that information are case specific;
that is, every impartial variable has a single price for every case. The multino-
mial logistic version additionally assumes that the established variable cannot
be perfectly predicted from the impartial variables for any case. As with other
kinds of regression, there is no need for the independent variables to be statis-
tically independent from each other (unlike, for example, in a naive Bayes clas-
sifier); however, collinearity is assumed to be rather low, as it becomes tough to
distinguish between the effect of numerous variables if this is not the case.

If the multinomial logit is used to version choices, it relies on the idea of
independence of irrelevant alternatives, which isn’t continually desirable. This
assumption states that the percentages of who prefer one class over some other
do not depend upon the presence or absence of other “irrelevant” alternatives.

When using multinomial logistic regression, one category of the structured
variable is chosen because the reference category. Separate odds ratios are de-
termined for all impartial variables for each class of the established variable
excluding the reference class, which is omitted from the analysis. The expo-
nential beta coefficient represents the alternate within the odds of the based
variable being in a particular class vis-a-vis the reference category, related to a
one unit alternate of the corresponding unbiased variable.

As in other forms of linear regression, multinomial logistic regression uses a
linear predictor function C(n, i) to predict the probability that observation i has
outcome ′n′, of the form

C(n, i) = δ0,n + δ1,nx1,i + . . . δM,nxM,i

where δM,n is a regression coefficient associated with the M th explanatory
variable and the nth outcome.

Z =
N∑
n=1

eδnXi

where z represents the output of the linear model, where Xi is the vector of
explanatory variables describing observation i, δn is a vector of weights corre-
sponding to outcome n, and score(Xi, n) is the score associated with assigning
observation i to category n.

2.2. Naive Bayes. The Naive Bayes (NB) model - is a simple but surprisingly
powerful algorithm for predictive modeling. In machine learning, we are often
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interested in selecting the best hypothesis (h) given data (d).
In a classification drawback, our hypothesis (h) may be the class to assign for a
new data instance (d).
Bayes Theorem is stated as:

P (h|d) = (P (d|h) ∗ P (h))

P (d)

Naive Thomas Bayes could be a classification rule for binary (two-class) and
multi-class classification issues, [4]. The technique is best to grasp once repre-
sented exploitation binary or categorical input values.

The representation of naive Bayes is probabilities. A list of probabilities is
stored to file for a learned Naive Bayes model.
This includes: class probabilities: the possibilities of every category within the
training dataset; conditional probabilities: the conditional probabilities of each
input value given each class value. On account of discrete data sources, Naive
Bayes classifiers structure a generative-discriminative pair with Logistic regres-
sion classifiers: each Naive Bayes classifier can be viewed as a method for fitting
a likelihood p(H, d) model that upgrades the joint probability while calculated
relapse fits a similar likelihood model to enhance the contingent P (H|d).

The connection between the two can be seen by seeing that the choice ca-
pacity for Naive Bayes can be modified as “anticipate class H1 if the chances of
p(H1, d) surpass those of p(H2, d). Communicating this in log-space gives:

log
p(H1/d)

p(H2/d)
= logp (H1/d)− log(H2/d) > 0

The left-hand side of this condition is the log-chances, or logit, the amount
anticipated by the linear model that underlies calculated relapse. Since Naive
Bayes is likewise a direct model for the two “discrete” event models, it very well
may be reparametrized as a linear function a + BT

k x > 0, where a = log p (Hk)

and Bk = logpki.
Discriminative classifiers have lower asymptotic mistake than generative ones;

nonetheless, look into by Ng and Jordan has indicated that in some down to
earth cases Naive Bayes can outperform Logistic regression since it arrives at its
asymptotic error faster, [6].
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3. DATA BASE

In this section we have considered the ’Survival from Malignant Melanoma’
data for comparison of Logistic Regression and Naive Bayes model. We have
analyzed the data using Python software for our calculations’.

The Melanoma data involves 205 rows and 7 columns. The following vari-
ables are considered for modelling whose descriptions are given below in the
table 3.0

Table 3.0: List of Variable names
Time Survival time in days since the operation, possibly censored
Status 1. Indicates that they had died from melanoma

2. Indicates that they were still alive
3. Indicates that they had died from causes

unrelated to their melanoma.
Sex 1- Male, 0- Female
Age Age in years at the time of the operation
Year Year of operation
Thickness Tumour thickness in millimeter
Ulcer 1-Present, 0- Absent

4. DISCUSSION AND CONCLUSION

This comparative study on the accuracy of the models in the analysis of med-
ical data would let us conclude that the LR model is more accurate or the NB
model.

For this, we consider medical data on people affected by melanoma - a tumor
of melanin-forming cells, especially a malignant tumor associated with skin can-
cer, considering different parameters like the patient‘s age, gender, the state of
their ulcer, the thickness to classify the status of the patient under the distinct
classifications dead, alive and dead but not out of melanoma. The results of this
analysis their accuracy decides which model from among the LR and NB, is the
better one.

From table 3.0, we used the Melanoma data frame, it shows that, it has 205
rows and 7 columns. The data consist of measurements made on patients with
malignant melanoma. Each patient had their tumour removed by surgery at the
Department of Plastic Surgery, University Hospital of Odense, Denmark during
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the period 1962 to 1977, [1]. When we analyzed under both the models, with
25% and 40% of the point from the data set being considered, to obtain the
accuracy of the model, [3,4].

Courtesy: Andersen, P.K., Borgan, O., Gill, R.D. and Keiding, N. (1993) Statisti-
cal Models Based on Counting Processes. Springer-Verlag.
Table 3.1: Comparison of Logistic and Naive Bayes Model

From table 3.1 LR Model and NB models exhibited accuracy at 25% testing set
respectively 92.3 and 86.53. When compared to NB model LR model gives best
accuracy. Similarly increase the testing set size from 25% to 40%, we can see
the LR model gives more accuracy than NB model. This concludes that when
we increase the testing set size LR models perform well than the NB model.
And thus, the LR model could be used to deliver comparatively more accurate
analysis results on the statuses of patients suffering from melanoma.
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