ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2817–2825 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.43

DECOMPOSITIONS OF πg -CONTINUITY VIA IDEAL NANO TOPOLOGICAL SPACES

O. NETHAJI¹, R. ASOKAN, AND I. RAJASEKARAN

ABSTRACT. In this paper, we introduce and discuss some notions of $I_{n\pi g}$ -closed sets, $I_{n\pi g}$ -continuity in ideal nano spaces.

1. INTRODUCTION AND PRELIMINARIES

According to [14], an ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following conditions.

- (i) $A \in I$ and $B \subseteq A$ imply $B \in I$ and
- (ii) $A \in I$ and $B \in I$ imply $A \cup B \in I$.

Given a topological space (X, τ) with an ideal I on X. If $\wp(X)$ is the family of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function of A with respect to τ and I is defined as follows: for $A \subset X$, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$, [3].

The closure operator defined by $cl^*(A) = A \cup A^*(I, \tau)$, [13] is a Kuratowski closure operator which generates a topology $\tau^*(I, \tau)$ called the *-topology finer than τ . The topological space together with an ideal on X is called an ideal topological space or an ideal space denoted by (X, τ, I) . We will simply write A^* for $A^*(I, \tau)$ and τ^* for $\tau^*(I, \tau)$.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54A10, 54C08, 54C10.

Key words and phrases. nano πg -closed sets, $I_{n\pi q}$ -closed sets and $I_{n\pi q}$ -continuity.

In this paper, we introduce and discuss some notions of $I_{n\pi g}$ -closed sets, $I_{n\pi g}$ continuity in ideal nano spaces.

We denote a nano topological space by (U, \mathcal{N}) , where $\mathcal{N} = \tau_R(X)$. The nanointerior, nano-closure and nano α -closure of a subset A of U are denoted by $I_n(A)$, $C_n(A)$ and $C_{n\alpha}(A)$, respectively.

An ideal nanotopological space is denoted by (U, \mathcal{N}, I) . The nano-interior and nano-closure of a subset A of U are denoted by $I_n^*(A)$ and $C_n^*(A)$, respectively.

Definition 1.1. A subset A of a space (U, \mathcal{N}) is called

- (i) nano α -open if $A \subseteq I_n(C_n(I_n(A)))$, [4];
- (ii) nano semi-open if $A \subseteq C_n(I_n(A))$, [4];
- (iii) nano pre-open if $A \subseteq I_n(C_n(A))$, [4];
- (iv) nano b-open if $A \subseteq I_n(C_n(A)) \cup C_n(I_n(A))$, [5];
- (v) nano β -open if $A \subseteq C_n(I_n(C_n(A)))$, [12].

The complements of the above mentioned sets are called their respective closed sets.

Definition 1.2. [4] A subset A of a nano space (U, \mathcal{N}) is called nano regularopen(written in short as nr-open) $A = I_n(C_n(A))$.

The complement of *nr*-open set is said to be a *nr*-closed set.

Definition 1.3. [1] Let A be a subset of a space (U, \mathcal{N}) is nano π -open(written in short as $n\pi$ -open) if the finite union of nr-open sets.

The complement of $n\pi$ -open set is said to be a $n\pi$ -closed set.

Definition 1.4. A subset A of a space (U, \mathcal{N}) is called

- (i) nano g-closed (written in short as ng-closed) if $C_n(A) \subseteq B$, whenever $A \subseteq B$ and B is n-open, [2];
- (ii) nano πg -closed (written in short as $n\pi g$ -closed) if $C_n(A) \subseteq B$, whenever $A \subseteq B$ and B is $n\pi$ -open, [9];
- (iii) nano αg -closed (written in short as $n\alpha g$ -closed) if $C_{n\alpha}(A) \subseteq B$, whenever $A \subseteq B$ and B is n-open, [9];
- (iv) nano $\pi g \alpha$ -closed (written in short as $n \pi g \alpha$ -closed) if $C_{n\alpha}(A) \subseteq B$ whenever $A \subseteq B$ and B is $n \pi$ -open, [10].

The complements of the above mentioned sets are called their respective open sets.

Definition 1.5. [6] A subset A of a space (U, \mathcal{N}, I) is $n\star$ -dense in itself (resp. $n\star$ -perfect and $n\star$ -closed) if $A \subseteq A_n^{\star}$ (resp. $A = A_n^{\star}, A_n^{\star} \subseteq A$).

The complement of a $n\star$ -closed set is said to be a $n\star$ -open set.

Definition 1.6. [7] An ideal I in a space (U, \mathcal{N}, I) is called \aleph -codense ideal if $\aleph \cap I = \{\phi\}.$

Definition 1.7. [11] A subset A of space (U, \mathcal{N}, I) is said to be

- (i) nano α -*I*-open (written in short as α -*nI*-open) if $A \subseteq I_n(C_n^{\star}(I_n(A)))$,
- (ii) nano semi-I-open (written in short as semi-nI-open) if $A \subseteq C_n^{\star}(I_n(A))$,
- (iii) nano pre-*I*-open (written in short as pre-*nI*-open) if $A \subseteq I_n(C_n^{\star}(A))$,
- (iv) nano b-I-open (written in short as b-nI-open) if $A \subseteq I_n(C_n^{\star}(A)) \cup C_n^{\star}(I_n(A))$,
- (v) nano β -*I*-open (written in short as β -*nI*-open) if $A \subseteq C_n^*(I_n(C_n^*(A)))$.

The complements of the above mentioned sets are called their respective closed sets.

Definition 1.8. A subset A of a space (U, \mathcal{N}, I) is called a

- (i) nano I_g-closed (written in short as I_{ng}-closed) if A^{*}_n ⊆ B whenever A ⊆ B and B is n-open, [6];
- (ii) nano I_{ω} -closed (or) nano $I_{\hat{g}}$ -closed(written in short as $I_{n\omega}$ -closed) if $A_n^{\star} \subseteq B$ whenever $A \subseteq B$ and B is ns-open, [8].

The complements of the above mentioned sets are called their respective open sets.

2. πg -Closed sets in ideal nanotopological spaces

Definition 2.1. A subset A of an ideal nano space (U, \mathcal{N}, I) is called a nano $I_{\pi g}$ closed (written in short as $I_{n\pi g}$ -closed) if $A \subseteq H$, $H \in n\pi$ -open $\Longrightarrow A_n^* \subseteq H$.

Nano $I_{\pi g}$ -open (written in short as $I_{n\pi g}$ -open) if $\mathcal{A} = H - A$ (where \mathcal{A} denotes the complement operator and A is $I_{n\pi g}$ -closed).

Definition 2.2. A subset A of an ideal nano space (U, \mathcal{N}, I) is called a

- (i) nano \mathfrak{D}_I -set if $A = H \cap V$, where H is a $n\pi$ -open set and V is a $n\star$ -perfect set.
- (ii) nano \mathfrak{B}_I -set if $A = H \cap V$, where H is a $n\pi$ -open set and V is a $n\star$ -closed set.

Theorem 2.1. Each $n\pi g$ -closed set is $I_{n\pi g}$ -closed.

Proof. Let A be a every $n\pi g$ - closed set. Then $A \subseteq H$, $H \in n\pi$ -open $\Longrightarrow C_n(A) \subseteq H$. Since $A_n^* \subseteq C_n(A) \subseteq H$, we have $A_n^* \subseteq H$ and hence A is $I_{n\pi g}$ -closed. \Box

Theorem 2.2. If (U, \mathcal{N}, I) is any ideal nano space and $A \subseteq U$, then the following hold.

- (i) If $I = \phi$, then A is $I_{n\pi q}$ -closed \iff A is $n\pi g$ -closed.
- (ii) If $I = \aleph$, then A is $I_{n\pi q}$ -closed $\iff A$ is $n\pi g\alpha$ -closed.

Proof. The proof follows from the fact that $A_n^*(\{\phi\}) = C_n(A)$ and $A_n^*(\aleph) = C_{n\alpha}(A)$.

Theorem 2.3. If A and B is $I_{n\pi q}$ -closed then $A \cup B$ is $I_{n\pi q}$ -closed.

Proof. Suppose that $A \cup B \subseteq H$ and H is $n\pi$ -open, then $A, B \subseteq H$. Since A and B are $I_{n\pi g}$ -closed, $A_n^* \subseteq H$ and $B_n^* \subseteq H$. $(A \cup B)_n^* = A_n^* \subseteq B_n^*$, $(A \cup B)_n^* = A_n^* \cup B_n^* \subseteq H$. Thus, $A \cup B$ is also $I_{n\pi g}$ -closed.

Theorem 2.4. If a subset A of (U, \mathcal{N}, I) is $I_{n\pi g}$ -closed, then $C_n^*(A) - A$ contains no nonempty $n\pi$ -closed set.

Proof. Suppose that A is $I_{n\pi g}$ -closed and F be a $n\pi$ -closed subset of $C_n^*(A) - A$. Then $A \subseteq U - F$. Since U - F is $n\pi$ -open and A is $I_{n\pi g}$ -closed, $C_n^*(A) \subseteq U - F$.

Consequently, $F \subseteq U - C_n^*(A)$. We have $F \subseteq C_n^*(A)$. Thus, $F \subseteq C_n^*(A) \cap (U - C_n^*(A)) = \phi$ and so $C_n^*(A) - A$ contains no nonempty $n\pi$ -closed set. \Box

Corollary 2.1. Let (U, \mathcal{N}, I) be an ideal nano space and A be an $I_{n\pi g}$ -closed set. Then the following are equivalent.

- (i) A is a $n \star$ -closed set.
- (ii) $C_n^{\star}(A) A$ is a $n\pi$ -closed set.
- (iii) $A_n^{\star} A$ is a $n\pi$ -closed set.

Proof. (i) \implies (ii) : If A is $n\star$ -closed set, then $C_n^{\star}(A) - A = \phi$ and so $C_n^{\star}(A) - A$ is $n\pi$ -closed.

(ii) \implies (i) : suppose $C_n^{\star}(A) - A$ is $n\pi$ -closed. Since A is $I_{n\pi g}$ -closed, By Theorem 2.4 $C_n^{\star}(A) - A = \phi$ and so A is $n\star$ -closed.

(ii) \Leftrightarrow (iii) : Follows from the fact that $C_n^*(A) - A = A_n^* - A$.

Theorem 2.5. In a space (U, \mathcal{N}, I) , every subset is $I_{n\pi g}$ -closed \iff every $n\pi$ -open set is $n\star$ -closed.

Proof. Suppose every subset of U is $I_{n\pi g}$ -closed. If H is $n\pi$ -open then by hypothesis, H is $I_{n\pi g}$ -closed and so $H_n^* \subseteq H$. Hence, H is n*-closed.

Conversely, suppose every $n\pi$ -open set is $n\star$ -closed. Let A be a subset of U. If H is a $n\pi$ -open set such that $A \subseteq H$ then $A_n^* \subseteq H_n^* \subseteq H$ and so A is $I_{n\pi g}$ closed.

Remark 2.1. If A is $n\pi$ -open and $I_{n\pi g}$ -closed, then A is $n\star$ -closed.

Theorem 2.6. For each $x \in (U, \mathcal{N}, I)$ either $\{x\}$ is $n\pi$ -closed or $\{x\}^c$ is $I_{n\pi g}$ -closed.

Proof. Suppose that $\{x\}$ is not $n\pi$ -closed, then $\{x\}^c$ is not $n\pi$ -open and the only $n\pi$ -open set containing $\{x\}^c$ is the space (U, \mathcal{N}, I) itself.

Therefore, $C_n^{\star}(\{x\}^c) \subseteq U$ and so $\{x\}^c$ is $I_{n\pi g}$ -closed.

Theorem 2.7. If A is an $I_{n\pi g}$ -closed set such that $A \subseteq B \subseteq A_n^*$, then B is also an $I_{n\pi g}$ -closed set.

Proof. Let H be any $n\pi$ -open set such that $B \subseteq H$, then $A \subseteq H$. Since A is $I_{n\pi g}$ -closed, we have $A_n^* \subseteq H$. Now, $B_n^* \subseteq (A_n^*)_n^* \subseteq A_n^* \subseteq H$. Therefore, B is $I_{n\pi g}$ -closed.

Theorem 2.8. A subset A of an ideal nano space (U, \mathcal{N}, I) is $I_{n\pi g}$ -open $\iff F \subseteq I_n^*(A)$ whenever F is $n\pi$ -closed and $F \subseteq A$.

Proof. Suppose that $F \subseteq I_n^*(A)$ whenever F is $n\pi$ -closed and $F \subseteq A$. Let $A^c \subseteq H$, whenever H is $n\pi$ -open. Then $H^c \subseteq A$ and H^c is $n\pi$ -closed, therefore $H^c \subseteq I_n^*(A)$, which implies that $C_n^*(A^c) \subseteq H$. Hence, A^c is $I_{n\pi g}$ -closed and so A is $I_{n\pi g}$ -open. Conversely, suppose that A is $I_{n\pi g}$ -open, $F \subseteq A$ and F is $n\pi$ -closed. Then F^c is $n\pi$ -open and $A^c \subseteq F^c$. Therefore, $C_n^*(A^c) \subseteq F^c$ and so $F \subseteq I_n^*(A)$.

Theorem 2.9. A subset A of an ideal nano space (U, \mathcal{N}, I) is a nano \mathfrak{D}_I -set and a $I_{n\pi q}$ -closed set, then A is a n*-closed set.

Proof. Let A be a nano \mathfrak{D}_I -set and a $I_{n\pi g}$ -closed set. Since A is a nano \mathfrak{D}_I -set, $A = H \cap V$, where H is a $n\pi$ -open set and V is a $n\star$ -perfect set. Now, $A = H \cap V \subseteq H$ and A is a $I_{n\pi g}$ -closed set implies that $A_n^* \subseteq H$. Also, $A = H \cap V \subseteq V$ and V is $n\star$ -perfect set implies that $A_n^* \subseteq V$. Thus, $A_n^* \subseteq H \cap V = A$. Hence, A is a $n\star$ -closed set.

Theorem 2.10. For a subset A of an ideal nano space (U, \mathcal{N}, I) , A is a $n\star$ -closed set \iff A is a nano \mathfrak{B}_I -set and a $I_{n\pi g}$ -closed set.

Proof. Assuming that A is a $n\star$ -closed set and $A = U \cap V$, where U is $n\pi$ -open set and V is a $n\star$ -closed set. Hence, A is a nano \mathfrak{B}_I -set. Suppose that A is a $n\star$ -closed set and H is a $n\pi$ -open set such that $A \subseteq H$. Then $A_n^{\star} \subseteq H$ and hence A is a $I_{n\pi q}$ -closed set.

Conversely, let A be a nano \mathfrak{B}_I -set and a $I_{n\pi g}$ -closed set. Since A is a nano \mathfrak{B}_I -set, $A = H \cap V$, where H is a $n\pi$ -open set and V is a $n\star$ -closed set. Now, $A \subseteq H$ and A is a $I_{n\pi g}$ -closed set implies that $A_n^* \subseteq H$. Also, $A \subseteq V$ and V is a $n\star$ -closed set implies that $A_n^* \subseteq V$. Thus, $A_n^* \subseteq H \cap V = A$. Hence, A is a $n\star$ -closed set.

3. On NANO $I_{\pi q}$ -continuous maps

Definition 3.1. A map $f : (U, \mathcal{N}, I) \to (F, \mathcal{X})$ is called nano $I_{\pi g}$ -continuous (written in short as $I_{n\pi g}$ -continuous) if $f^{-1}(A)$ is $I_{n\pi g}$ -closed in (U, \mathcal{N}, I) for every n-closed set A of F.

Definition 3.2. A map $f : (U, \mathcal{N}) \to (F, \mathcal{X})$ is called a

- (i) a nano π-space (written in short as nπ-space) if f(A) is nπ-closed in (F, X) for every nπ-closed set A in (U, N).
- (ii) a nano regular map (written in short as nr-map) if $f^{-1}(A)$ is nr-closed in (U, \mathcal{N}) for every nr-closed set K of F.

Theorem 3.1. For a map $f : (U, \mathcal{N}, I) \to (F, \mathcal{X})$, the following hold.

- (i) f is $n\pi g$ -continuous $\Rightarrow f$ is $I_{n\pi q}$ -continuous.
- (ii) f is I_{ng} -continuous $\Rightarrow f$ is $I_{n\pi g}$ -continuous.

Definition 3.3. A map $f : (U, \mathcal{N}, I) \to (F, \mathcal{X}, I)$ is called nano $I_{\pi g}$ -irresolute (written in short as $I_{n\pi g}$ -irresolute) if $f^{-1}(A)$ is $I_{n\pi g}$ -closed in (U, \mathcal{N}, I) for every $I_{n\pi g}$ -closed set A of (F, \mathcal{X}, I) .

Theorem 3.2. If $f : (U, \mathcal{N}, I) \to (F, \mathcal{X}, I)$ is $I_{n\pi g}$ -continuous and $n\pi$ -space, then f is $I_{n\pi g}$ -irresolute.

Proof. Assume that A is $I_{n\pi g}$ -closed in F. Let $f^{-1}(A) \subseteq H$, where H is $n\pi$ -open in U. Then $(U - H) \subseteq f^{-1}(F - A)$ and hence $f(U - H) \subseteq F - A$. Since f is $n\pi$ -space, f(U - H) is $n\pi$ -closed. Then, since F - A is $I_{n\pi g}$ -open. By Theorem 2.8, $f(U - H) \subseteq I_n^*(F - A) = F - C_n^*(A)$. Thus, $f^{-1}(C_n^*(A)) \subseteq H$. Since f is $I_{n\pi g}$ -continuous, $f^{-1}(C_n^*(A))$ is $I_{n\pi g}$ -closed. Therefore, $C_n^*(f^{-1}(C_n^*(A))) \subseteq H$

and hence $C_n^{\star}(f^{-1}(A)) \subseteq C_n^{\star}(f^{-1}(C_n^{\star}(A))) \subseteq H$ which proves that $f^{-1}(A)$ is $I_{n\pi g}$ closed and therefore f is $I_{n\pi g}$ -irresolute.

Definition 3.4. A map $f : (U, \mathcal{N}, I) \to (F, \mathcal{X})$ is called almost nano $I_{\pi g}$ -continuous (written in sort as almost $I_{n\pi g}$ -continuous) if $f^{-1}(A)$ is $I_{n\pi g}$ -closed in (U, \mathcal{N}, I) for every A is n-regular closed in F.

Theorem 3.3. For a map $f : (U, \mathcal{N}, I) \to (F, \mathcal{X})$, the following are equivalent.

(i) f is almost I_{nπg}-continuous.
(ii) f⁻¹(A) ∈ I_{nπg}-open for every A is nr-open in F.
(iii) f⁻¹(I^{*}_n(C^{*}_n(A))) ∈ I_{nπg}-open for every A ∈ X.
(iv) f⁻¹(C^{*}_n(I^{*}_n(A))) ∈ I_{nπg}-closed for every n-closed set A of F.

Proof. (i) \iff (ii) : Obvious.

(ii) \iff (iii) : Assuming that A is n-regular open in F, we have $A = I_n(C_n(A))$ and $f^{-1}(I_n(C_n(A))) \in I_{n\pi g}$ -open. Conversely, suppose $A \in \mathcal{X}$, we have $I_n(C_n(A)) \in$ n-regular open (F) and $f^{-1}(I_n(C_n(A))) \in I_{n\pi g}$ -open.

(iii) \iff (iv) : Let A be a n-closed set in F. Then $F - A \in \mathcal{X}$. We have $f^{-1}(I_n(C_n(F-A))) = f^{-1}(F - (C_n(I_n(A)))) = U - f^{-1}(C_n(I_n(A))) \in I_{n\pi g}$ -open. Hence, $f^{-1}(I_n(C_n(A))) \in I_{n\pi g}$ -closed. Converse can be obtained similarly. \Box

Theorem 3.4. The following hold for the maps $f : (U, \mathcal{N}, I) \to (F, \mathcal{X}, J)$ and $g : (F, \mathcal{X}, J) \to (G, \mathcal{M})$,

- (i) $g \circ f$ is $I_{n\pi g}$ -continuous, if f is almost $I_{n\pi g}$ -continuous and g is completely nano continuous.
- (ii) $g \circ f$ is $I_{n\pi q}$ -continuous, if f is $I_{n\pi q}$ -continuous and g is nano continuous.
- (iii) $g \circ f$ is $I_{n\pi g}$ -continuous, if f is $I_{n\pi g}$ -irresolute and g is $I_{n\pi g}$ -continuous.
- (iv) $g \circ f$ is almost $I_{n\pi g}$ -continuous, if f is almost $I_{n\pi g}$ -continuous and g is nano nr-map.
- (v) $g \circ f$ is almost $I_{n\pi g}$ -continuous, if f is $I_{n\pi g}$ -irresolute and g is almost $I_{n\pi g}$ continuous.
- (vi) $g \circ f$ is almost $I_{n\pi g}$ -continuous, if f is $I_{n\pi g}$ -continuous and g is almost $I_{n\pi g}$ -continuous.

Definition 3.5. A map $f : (U, \mathcal{N}, I) \to (F, \mathcal{X})$ is called nano \mathfrak{B}_I -continuous (written in sort as \mathfrak{B}_{nI} -continuous) if $f^{-1}(A)$ is nano \mathfrak{B}_I -set in (U, \mathcal{N}, I) for every *n*-closed set A of F.

Theorem 3.5. A map $f : (U, \mathcal{N}, I) \to (F, \mathcal{X})$ is *n**-continuous $\iff \mathfrak{B}_{nI}$ continuous and $I_{n\pi q}$ -continuous.

Proof. This is an immediate consequence of Theorem 2.10.

Remark 3.1. The concepts of \mathfrak{B}_{nI} -continuity and the concepts of $I_{n\pi g}$ -continuity are independent of each other as shown in the following Example.

Example 1. Let $U = \{a, b, c\}$ be a non empty finite set with

- (i) $U/R = \{\{a\}, \{b\}, \{c\}\} \text{ and } X = \{a, b\} \text{ then } \mathcal{N} = \{\phi, U, \{a\}, \{b\}, \{a, b\}\}.$
- (ii) $U/R = \{\{a, b\}, \{c\}\}$ and $X = \{b, c\}$ then $\mathcal{X} = \{\phi, U, \{c\}, \{a, b\}\}$.
- (iii) $U/R = \{\{b, c\}, \{a\}\}$ and $X = \{b, c\}$ then $\mathcal{M} = \{\phi, U, \{b, c\}\}$.

And let ideal be $I = \{\phi, \{c\}\}.$

In the ideal nano space (U, \mathcal{N}, I) , then

- (i) the identity function $F : (U, \mathcal{N}, I) \to (U, \mathcal{M})$ is \mathfrak{B}_{nI} -continuous but not -continuous.
- (ii) the identity function $G : (U, \mathcal{X}, I) \to (U, \mathcal{M})$ is $I_{n\pi g}$ -continuous but not \mathfrak{B}_{nI} -continuous.

REFERENCES

- A. C. UPADHYA: On quasi nano p-normal spaces, International Journal of Recent Scientific Research, 8(6) (2017), 17748–17751.
- [2] K. BHUVANESHWARI, K. M. GNANAPRIYA: Nano generalized closed sets, International Journal of Scientific and Research Publications, 4(5) (2014),1–3.
- [3] K. KURATOWSKI: Topology, Vol I. Academic Press, New York, 1966.
- [4] M. L. THIVAGAR, C. RICHARD: On nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1) (2013), 31–37.
- [5] M. PARIMALA, C. INDIRANI, S. JAFARI: On nano b-open sets in nano topological spaces, Jordan Journal of Mathematics and Statistics, **9**(3) (2016), 173–184.
- [6] M. PARIMALA, S. JAFARI, S. MURALI: Nano ideal generalized closed sets in nano ideal topological spaces, Annales Univ. Sci. Budapest., 60 (2017), 3–11.
- [7] M. PARIMALA, T. NOIRI, S. JAFARI: New types of nano topological spaces via nano ideals (to appear).
- [8] I. RAJASEKARAN, O. NETHAJI: On ω-closed sets in ideal nanotopological spaces, Communicated.
- [9] I. RAJASEKARAN, O. NETHAJI: On some new subsets of nanotopological spaces, Journal of New Theory, 16 (2017), 52–58.

- [10] I. RAJASEKARAN, O. NETHAJI: On nano $\pi g\alpha$ -closed sets, Journal of New Theory, 22 (2018), 66–72.
- [11] I. RAJASEKARAN, O. NETHAJI: Simple forms of nano open sets in an ideal nanotopological spaces, Journal of New Theory, **24** (2018), 35–43.
- [12] A. REVATHY, G. ILANGO: On nano β-open sets, Int. Jr. of Engineering, Contemporary Mathematics and Sciences, 1(2) (2015), 1–6.
- [13] R. VAIDYANATHASWAMY: The localization theory in set topology, Proc. Indian Acad. Sci., 20 (1945), 51–61.
- [14] R. VAIDYANATHASWAMY: Set topology, Chelsea Publishing Company, New York, 1946.

SCHOOL OF MATHEMATICS, MADURAI KAMARAJ UNIVERSITY, MADURAI-21, TAMIL NADU, INDIA *E-mail address*: jionetha@yahoo.com

DEPARTMENT OF MATHEMATICS SCHOOL OF MATHEMATICS, MADURAI KAMARAJ UNIVERSITY, MADURAI-21, TAMIL NADU, INDIA *E-mail address*: rasoka_mku@yahoo.co.in

DEPARTMENT OF MATHEMATICS TIRUNELVELI DAKSHINA MARA NADAR SANGAM COLLEGE, T. KALLIKULAM - 627 113 TIRUNELVELI DISTRICT, TAMIL NADU, INDIA *E-mail address*: sekarmelakkal@gmail.com