ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2827–2833 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.44

ON CONTRA- $I\pi G * \beta$ -CONTINUOUS FUNCTIONS IN IDEAL TOPOLOGICAL SPACES

G. RAMKUMAR¹ AND M. VIJAYASANKARI

ABSTRACT. In this paper we have investigated the properties of contra- $I\pi g * \beta$ continuous functions in ideal topological spaces. Also, we have introduced the graph via $I\pi g * \beta$ -closed sets. Relationships between the new classes and other classes of functions are established and some characterizations of their new classes of functions are studied.

1. INTRODUCTION

An ideal *I* on a topological space (X, τ) is a non-empty collection of subsets of *X* satisfying the following properties:

- (1) $A \in I$ and $B \subseteq A$ imply $B \in I$ (heredity);
- (2) $A \in I$ and $B \in I$ imply $A \cup B \in I$ (finite additivity).

A topological space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by (X, τ, I) . For a subset $A \subseteq X$, $A * (I) = \{x \in X : U \cap A / \in I \text{ for every } U \in \tau(x)\}$, is called the local function [9] of A with respect to I and τ . We simply write A* in case there is no chance for confusion. A Kuratowski closure operator cl * (.) for a topology $\tau * (I)$, called the *-topology finer than τ , is defined by $cl * (A) = A \cup A*$ [17]. Let (X, τ) denote a topological space on which no separation axioms are assumed unless explicitly stated. In a

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. ideal topological spaces, contra- $I\pi g * \beta$ continuous functions, $I\pi g * \beta$ -interior, graph via $I\pi g * \beta$ -closed sets.

G. RAMKUMAR AND M. VIJAYASANKARI

topological space (X, τ) , the closure and the interior of any subset A of X will be denoted by cl(A) and int(A), respectively. The kernel [10] of A, denoted by ker(A), is the intersection of all open supersets of A. A subset A of a topological space (X, τ) is said to be pre-open [11] if $A \subseteq cl(int(cl(A)))$.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies the following conditions: $A \in I$ and $B \subset A$ implies $B \in I$; $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a topological space (X, τ) with an ideal I on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(.)*: \mathcal{P}(X) \to \mathcal{P}(X)$, called a local function of A with respect to τ and I is defined as follows: for $A \subseteq X$, $A * (I, \tau) = \{x \in X : U \cap A \notin I$, for every $U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau | x \in U\}$. A Kuratowski closure operator is $cl * (x) = A \cup A*$ for $\tau*$. When there is no chance for confusion, we will simply write A for $A(I, \tau)$. X* is often a proper subset of X.

2. PRELIMINARIES

Lemma 2.1. [7] The following properties hold for subsets A, B of a topological space (X, τ) :

- (1) $x \in ker(A)$ if and only if any closed set F of X contains x;
- (2) $A \subset ker(A)$ and A = ker(A) if A is open in X;
- (3) If $A \subset B$ then $ker(A) \subset ker(B)$.

Definition 2.1. A topological space (X, τ) is said to be:

- extremally disconnected [15] if the closure of every open set of X is open in X;
- (2) submaximal [14] if every dense set of X is open in X, equivalently if every preopen set is open.

Definition 2.2. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be

- (1) almost pre-continuous [13] if for each $x \in X$ and each open neighbourhood V of f(x), there exists $U \in PO(X)$ containing x such that $f(U) \subset cl(int(cl(V));$
- (2) πg * β-continuous if f⁻¹(V) is πg * β-closed in (X, τ) for every closed set V of (Y, σ);
- (3) contra-continuous [4] (briefly c-c) if $f^{-1}(V)$ is closed set in X for every open set V of Y;

2828

- (4) contra-pre-continuous [8] (briefly c-pre-c) if $f^{-1}(V)$ is a preclosed set in X for every open set V of Y;
- (5) contra- β -continuous [3] (briefly c- β -c) if $f^{-1}(V)$ is β -closed set in X for every open set V of Y.

Definition 2.3. A subset A of an ideal topological space (X, τ, I) is said to be

- (1) pre-I-open if $A \subseteq cl(int(cl * (A)))$;
- (2) semi-I-open [5] if $A \subseteq cl * (int(A))$;
- (3) α -*I*-open [5] if $A \subseteq cl(int(cl * (int(A))));$
- (4) β -*I*-open [5] if $A \subseteq cl(cl(int(cl * (A)));$
- (5) strong β -I-open [6] if $A \subseteq cl * (cl(int(cl * (A)));$
- (6) δ -*I*-open [1] if $cl(int(cl * (A)) \subseteq cl * (int(A))$.

Definition 2.4. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be pre-I-continuous [?] (resp. semi-I-continuous [5], α -I-continuous [5], β -I-continuous [5]) if for each open set V of (Y, σ) , $f^{-1}(V)$ is a pre-I-open (resp. semi-I-open, α -I-open, β -I-open) set in (X, τ, I) .

Definition 2.5. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be:

- (1) contra semi-I-continuous [12] (briefly c-semi-I-c) if $f^{-1}(V)$ is semi-I-open in (X, τ, I) for every closed set V of (Y, σ) .
- (2) contra α -I-continuous [16] (briefly c- α -I-c) if $f^{-1}(V)$ is α -I-open in (X, τ, I) for every closed set V of (Y, σ) .
- (3) contra β -I-continuous [2] (briefly c- β -I-c) if $f^{-1}(V)$ is β -I-open in (X, τ, I) for every closed set V of (Y, σ) .

Definition 2.6. [?] A subset A of an ideal topological space (X, τ, I) is called $I\pi g * \beta$ -closed if β - $Icl(A) \subseteq U$ whenever $A \subseteq U$ and U is πg -open in X.

Definition 2.7. [?] A function $f : (X, \tau, I) \to (Y, \sigma)$ is called $I\pi g * \beta$ -continuous if $f^{-1}(V)$ is $I\pi g * \beta$ -closed in (X, τ, I) for every closed set V of (Y, σ) .

3. Contra $I\pi g^*\beta$ -continuous functions

Definition 3.1. A function $f : (X, \tau, I) \to (Y, \sigma)$ is called contra $I\pi$ generalized $*\beta$ -continuous (briefly c- $I\pi g^*\beta$ -c) if $f^{-1}(V)$ is $I\pi g^*\beta$ -open in (X, τ, I) for every closed set V of (Y, σ) .

Theorem 3.1. The following statements hold for a function $f : (X, \tau, I) \to (Y, \sigma)$

- (1) Every contra-continuous function is contra $I\pi g^*\beta$ -continuous.
- (2) Every contra α -I-continuous function is contra $I\pi g^*\beta$ -continuous.
- (3) Every contra $I\pi g^*\beta$ -continuous function is contra $\pi g^*\beta$ -continuous.

Remark 3.1. We have the following implications: contra-continuous \rightarrow contra- αI -continuous \rightarrow contra-semi-I-continuous $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ contra-pre-I-continuous \rightarrow contra $I\pi g^*\beta$ -continuous \rightarrow contra $\pi g^*\beta$ -cont.

Example 1. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$, $\sigma = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\}$ and $I = \{\emptyset, \{a\}, \{a, b\}\}$. Let f(a) = b, f(b) = a, f(c) = c. Then f is $I\pi g * \beta$ -continuous function but not contra-semi-I-continuous (resp. contra-pre-I-continuous) function.

Theorem 3.2. For a function $f : (X, \tau, I) \to (Y, \sigma)$, the following are equivalent:

- (1) f is contra $I\pi g^*\beta$ -continuous.
- (2) For every closed subset F of Y, $f^{-1}(F) \in I\pi g^*\beta O(X)$.
- (3) For each $x \in X$ and each closed set F of Y containing f(x), there exists $U \in I\pi g^*\beta O(X)$ such that $f(U) \subset F$.
- (4) $f(I\pi g^*\beta cl(A)) \subset ker(f(A))$ for every subset A of X.
- (5) $I\pi g^*\beta cl(f^{-1}(B)) \subset f^{-1}(ker(B))$ for every subset B of Y.

Proof. The implications $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (2): Let *F* be any closed set of *Y* and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in I\pi g^*\beta O(X)$ containing *x* such that $f(U_x) \subset F$. Therefore, we obtain $f^{-1}(F) = \bigcup \{U_x | x \in f^{-1}(F)\}$. Hence $f^{-1}(F) \in I\pi g^*\beta O(X)$.

(2) \Rightarrow (4): Let *A* be any subset of *X*. Suppose that $y \notin ker(f(A))$. Then by Lemma 1.1, there exists a closed set *F* of *Y* containing *y* such that $f(A) \subset F = \emptyset$. Thus, we have $A \cap f^{-1}(F) = \emptyset$ and $I\pi g^*\beta cl(A) \cap f^{-1}(F) = \emptyset$. Therefore, we obtain $f(I\pi g^*\beta cl(A)) \cap F = \emptyset$ and $y \notin f(I\pi g^*\beta cl(A))$. This implies that $f(I\pi g^*\beta cl(A)) \subset ker(f(A))$.

(4) \Rightarrow (5): Let *B* be any subset of *Y*. By (4) and 2.1, we have: $f(I\pi g^*\beta cl(f^{-1}(B))) \subset ker(f(f^{-1}(B))) \subset ker(B)$ and $I\pi g^*\beta cl(f^{-1}(B)) \subset f^{-1}(ker(B))$.

2830

(5) \Rightarrow (1): Let V be any open set of Y. Then by Lemma 2.1, we have $I\pi g^*\beta cl(f^{-1}(V)) \subset f^{-1}(ker(V)) = f^{-1}(V)$ and $I\pi g^*\beta cl(f^{-1}(V)) = f^{-1}(V)$. This shows that $f^{-1}(V)$ is $I\pi g^*\beta$ -closed in (X, τ, I) .

Theorem 3.3. If a function $f : (X, \tau, I) \to (Y, \sigma)$ is contra $I\pi g^*\beta$ -continuous and Y is regular, then f is $I\pi g^*\beta$ -continuous.

Proof. Let x be an arbitrary point of X and V be an open set of Y containing f(x). Since Y is regular, there exists an open set W in Y containing f(x) such that $cl(W) \subset V$. Since f is contra $I\pi g^*\beta$ -continuous, by Theorem 3.2 there exists $UI\pi g^*\beta O(X)$ containing x such that $f(U) \subset cl(W)$. Then $f(U) \subset cl(W) \subset V$. Hence, f is $I\pi g^*\beta$ -continuous.

Theorem 3.4. If a function $f : (X, \tau, I) \to (Y, \sigma)$ is contra $I\pi g^*\beta$ -continuous, then f is almost weakly-I-continuous.

Proof. Let V be any open set of Y. Since cl(V) is closed in Y, $f^{-1}(cl(V))$ is $I\pi g^*\beta$ -open in X and we have $f^{-1}(V) \subset f^{-1}(cl(V)) \subset int(cl^*(f^{-1}(cl(V))))$. This shows that f is almost weakly-*I*-continuous.

Definition 3.2. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to satisfy the $I\pi g^*\beta$ interiority condition if $I\pi g^*\beta Int(f^{-1}(cl(V))) \subset f^{-1}(V)$ for each open set V of (Y, σ) .

Theorem 3.5. If $f : (X, \tau, I) \to (Y, \sigma)$ is a contra- $I\pi g^*\beta$ -continuous function and satisfies the I-interiority condition, then f is $I\pi g^*\beta$ -continuous.

Proof. Let V be any open set of Y. Since f is contra- $I\pi g^*\beta$ -continuous and cl(V) is closed, $f^{-1}(cl(V))$ is $I\pi g^*\beta$ -open in X. By hypothesis of f, $f^{-1}(V) \subset f^{-1}(cl(V)) \subset I\pi g^*\beta Int(f^{-1}(cl(V))) \subset I\pi g^*\beta Int(f^{-1}(V)) \subset f^{-1}(V)$. Therefore, we obtain $f^{-1}(V) = I\pi g^*\beta Int(f^{-1}(V))$ and consequently $f^{-1}(V) \in \beta IO(X)$. This shows that f is a $I\pi g^*\beta$ -continuous function.

4. Graphs VIA $I\pi g * \beta$ -closed sets

Definition 4.1. The graph G(f) of a function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be contra $I\pi g * \beta$ -closed in $X \times Y$ if for each $(x, y) \in (X \times Y)G(f)$, there exists a $I\pi g * \beta$ -open set U in X containing x and a closed set V in Y containing y such that $(U \times V) \cap G(f) = \emptyset$. G. RAMKUMAR AND M. VIJAYASANKARI

Lemma 4.1. The graph G(f) of a function $f : (X, \tau, I) \to (Y, \sigma)$ is contra $I\pi g * \beta$ closed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y)G(f)$, there exists an $I\pi g * \beta$ -open set U in X containing x and a closed set V in Y containing y such that $f(U) \cap V = \emptyset$.

Theorem 4.1. If $f : (X, \tau, I) \to (Y, \sigma)$ is a contra $I\pi g * \beta$ -continuous function and Y is a Urysohn space, then G(f) is contra $I\pi g * \beta$ -closed in $X \times Y$.

Theorem 4.2. Let (X, τ, I) be any ideal topological space and let $f : (X, \tau, I) \rightarrow (Y, \sigma)$ be a function and $g : X \rightarrow X \times Y$ be the graph function, given by g(x) = (x, f(x)) for every $x \in X$. Then f is contra- $I\pi g^*\beta$ -continuous if and only if g is contra- $I\pi g^*\beta$ -continuous.

Proof. Let $x \in X$ and let W be a closed subset of $X \times Y$ containing g(x). Then $W \cap (\{x\} \times Y)$ is closed in $\{x\} \times Y$ containing g(x). Also $\{x\} \times Y$ is homeomorphic to Y. Hence $\{y \in Y | (x, y) \in W\}$ is a closed subset of Y. Since f is contra- $I\pi g^*\beta$ -continuous, $\cup \{f^{-1}(y) \in Y | (x, y) \in W\}$ is a $I\pi g^*\beta$ -open subset of (X, τ, I) . Further, $x \in \cup \{f^{-1}(y) | (x, y) \in W\} \subset g^{-1}(W)$. Hence $g^{-1}(W)$ is $I\pi g^*\beta$ -open. Then g is contra- $I\pi g^*\beta$ -continuous.

Conversely, let F be a closed subset of Y. Then $X \times F$ is a closed subset of $X \times Y$. Since g is contra- $I\pi g^*\beta$ -continuous, $g^{-1}(X \times F)$ is a $I\pi g^*\beta$ -open subset of X. Also, $g^{-1}(X \times F) = f^{-1}(F)$. Hence f is contra- $I\pi g^*\beta$ -continuous. \Box

REFERENCES

- [1] A. ACIKGOZ, T. NOIRI, S. YUKSEL: On δ -I-open sets and decomposition of α -I-continuity, Acta Math.Hungar., **102**(4) (2004), 349–357.
- [2] J. BHUVANESWARI, A. KESKIN, N. RAJESH: Contra-continuity via topological ideals, J. Adv. Res. Pure Math., **3**(1) (2011), 40–52.
- [3] M. CALDAS, S. JAFARI: Some properties of contra-β-continuous functions, Mem. Fac. Sci. Kochi Univ. (Math.), 22 (2001), 19–28.
- [4] A. DEVIKA, R. VANI: On $\pi g * \beta$ -closed sets in Topological Spaces, Journal of Applied and Computational Mathematics, 7(3), (2018), 18–25.
- [5] J. DONTCHEV: On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2 (1996), 33–44.
- [6] J. DONTCHEV: Idealization of Ganster-Reilly decomposition theorems, arXiv:math/9901017 (1999), 1–13.

2832

- [7] E. HATIR, T. NOIRI: On decompositions of continuity via idealization, Acta Math. Hungar., **96** (2002), 341–349.
- [8] E. HATIR, A. KESKIN, T. NOIRI: On a new decomposition of continuity via idealization, JP Jour. Geometry and Topology, 1 (2003), 53–64.
- [9] S. JAFARI, T. NOIRI: Contra-super-continuous functions, Ann. Univ. Sci. Budapest, 42 (1999), 27–34.
- [10] S. JAFARI, T. NOIRI: Contra-precontinuous functions, Bull. Malaysian Math. Sci. Soc., (Second series) 25 (2002), 115–128.
- [11] K. KURATOWSKI: Topology, Vol. I, Academic press, New York, 1966.
- [12] H. MAKI: Generalized λ -sets and the associated closure operator, The special issue in commemoration of Prof. Kazusada IKEDA's retirement (1986), 139–146.
- [13] A. S. MASHHOUR, M. E. A. EL-MONSEF, S. N. EL-DEEP: On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47–53.
- [14] A. NASEF, T. NOIRI: Some weak forms of almost continuity, Acta Math. Hungar., 74 (1997), 211–219.
- [15] T. SOUNDARARAJAN: Weakly Hausdorff spaces and the cardinality of topological spaces, General Topology and its Relations to Modern Analysis and Algebra, Praha: Academia Publishing House of the Czechoslovak Academy of Sciences (1971), 301–306.
- [16] L. A. STEEN, J. A. SEEBACH: Counterexamples in topology, Holt, Rinehart and Wiston, New York, 1970.
- [17] M. STONE: Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374–482.

DEPARTMENT OF MATHEMATICS ARUL ANANDAR COLLEGE, KARUMATHUR MADURAI, TAMIL NADU, INDIA *E-mail address*: ramg.phd@gmail.com

DEPARTMENT OF MATHEMATICS HAJEE KARUTHA ROWTHER HOWDIA COLLEGE UTHAMAPALAYAM, THENI, TAMIL NADU, INDIA *E-mail address*: vijayasankariumarani1985@gmail.com