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CONTRA SUPRA G7#a-CONTINUOUS FUNCTION
IN SUPRA TOPOLOGICAL SPACES
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ABSTRACT. In this paper, we introduce the concept of contra supra g# o -continuous
functions and contra supra g7 a-irresolute function. We obtain the basic proper-
ties and their relationship with other forms of contra supra continuous functions

in supra topological spaces.

1. INTRODUCTION

In 1983, A.S.Mashhour et al [5] introduced the supra topological spaces and
studied continuous functions and sx-continuous functions. In 1996, Dontchev
[4] presented a new notion of continuous function called contra-continuity in
topological spaces.

The purpose of this paper is to introduce the concept of contra supra g*
-continuous functions and contra supra ¢”a-irresolute and study its basic prop-
erties. Also we defined almost contra supra g#«a -continuous function, perfectly
contra supra g¥ « -irresolute function and investigated their relationship to other
functions in supra topological spaces.
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2. PRELIMINARIES

Definition 2.1. [5] A subfamily u of X is said to be a supra topology on X, if

1) X,0ecpu
(2) If A; € pforalli € J then UA; € p.

The pair (X, 1) is called supra topological space. The elements of 1 are called
supra open sets in (X, 1) and complement of a supra open set is called a supra
closed set.

Definition 2.2. [5]
(1) The supra closure of a set A is denoted by cl*(A) and is defined as
cl*(A) =n{B : Bis a supra closed set and A C B}.
(2) The supra interior of a set A is denoted by int*(A) and defined as
int*(A) = U{B : Bis a supra open set and A O B}.

Definition 2.3. [5] Let (X, 7) be a topological space and p be a supra topology on
X. We call i a supra topology associated with 7 if 7 C pu.

Definition 2.4. [1] Let (X, ) be a supra topological space. A subset A of X is
called supra a-open set if A C int*(cl”(int" (A)) . The complement of supra a-open
set is supra a-closed set.

Definition 2.5. [6] Let (X, i) be a supra topological space. A subset A of X is
called supra g*-closed set if cl*(A) C U whenever A C U and U is supra g-open set
of X. The complement of supra g-closed set is supra g-open set.

Definition 2.6. [6] Let (X, ) be a supra topological space. A subset A of X is

called a supra g*-closed set if cI*(A) C U, whenever A C U and U is ag-open set
of X.

Definition 2.7. [4] Let (X, ) be a supra topological space. A subset A of X is
called supra g#a-closed set if acl*(A) C U, whenever A C U and U is supra g-
open set of X. The complement of supra g” - closed set is called supra g* a-open
set.

Definition 2.8. Let (X, i) and (Y, o) be two topological spaces and T C p. A map
f (X, 1) — (Y,0) is called
(1) supra continuous if the inverse image of each open set of Y is a supra open
setin X [5].
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(2) supra a-continuous if the inverse image of each open set of Y is a supra
a-open setin X [1].

(3) supra g-continuous if the inverse image of each closed set of Y is a supra
g-closed set in X [3].

(4) supra g*-continuous if the inverse image of each closed set of Y is a supra
g -closed set in X [6].

Definition 2.9. Let (X, i) and (Y, o) be two topological spaces and T C p. A map
f:(X,7)— (Y,0) is called
(1) supra closed if the image of each closed set of X is a supra closed set in
Y [5].
(2) supra a-closed if the image of each closed set of X is a supra a-closed set in
Y [1].
(3) supra g-closed if the image of each closed set of X is a supra g-closed set in
Y [3].
(4) supra g*-closed if the image of each closed set of X is a supra g*-closed set
inY [6].

Definition 2.10. Let (X, u) and (Y, o) be two topological spaces and T C u. A
map f: (X,7) — (Y, 0) is called
(1) supra irresolute if f~1(V) is supra closed in X for every supra closed set V
of Y [5].
(2) supra a-irresolute if f~1(V) is supra a-closed in X for every supra a-closed
set Vof Y [1].
(3) supra g-irresolute if f~(V) is supra g*-closed in X for every supra g*-
closed set V of Y [3].
(4) supra g*-irresolute if f~1(V) is supra g#-closed in X for every supra g*-
closed set V of Y [6].

Definition 2.11. Amap f : (X,7) — (Y, 0) is said to be
(1) Supra g*a-continuous if f~(V) is supra g*a-closed in (X, 1) for every
supra closed set V of (Y, o) [4].
(2) Supra g*a-irresolute if f~1(V) is supra g*a-closed in (X,7) for every
supra g a-closed set V of (Y, o) [4].
(3) Contra continuous if f~(V) is closed in (X, 7) for every open set V of
(Y, o) [2].
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Definition 2.12. [2] A function [ : (X,7) — (Y, 0) is called contra-continuous
functions if f~(V) is supra-closed in (X, T) for every supra open set V of (Y, o).

3. CONTRA SUPRA ¢” -CONTINUOUS FUNCTION

Definition 3.1. A function f : (X, 7) — (Y, 0) is called contra supra g* a-continuous
function if f~4(V) is supra g* a-closed in (X, T) for every supra open set V of (Y, o).

Theorem 3.1. Every contra continuous function is contra supra g* a-continuous.

Proof. Let f : X — Y be contra continuous. Let VV be any supra open in Y.
Then the inverse image f~'(V/) is supra closed in X. Since every supra closed is
supra g*a-closed, f~1(V) is supra g#a-closed in X. Therefore f is contra supra
g™ a-continuous. O

Remark 3.1. The converse of the above theorem is not true and it is shown by the
following example.

Example 1. Let X =Y = {a,b,c} with T = {X,0,{b},{a,b}} and 0 = {Y, 0, {a}}.
Let f : (X,7) — (Y,0) be the identity function. Here f is contra supra g a-
continuous function and not contra continuous. Since V' = {a} is supra open set
in (Y,0), f~*({a}) = {a} is not supra closed in (X, 7).

Remark 3.2. The composition of two contra supra g* a-continuous mappings need
not be contra supra g*a-continuous. Let us prove the remark by the following
example.

Example 2. Let X =Y = {a,b,c}. Let 7 = {X,0,{b},{a,b}}, o = {V,0,{a}}
and v ={Z,0,{b},{a,b}}. Let f : (X,7) = (Y,0)and g : (Y,0) — (Z,v). Define
fla) = a, f(b) =05, f(c) =cand g(a) =¢ g(b) =0b g(c) = a. Both f and g
are contra supra g*a-continuous. Define go f : (X,7) — (Z,v). Hence {b} is a
supra open set of (Z,v). Therefore (go f)=' = (go f)7'({0}) = g7 (f 7' ({0})) =
g r({b}) = {b} is not a supra g* a-closed set of (X, 7). Hence (g o f) is not contra
supra g* a-continuous.

Theorem 3.2. If f : (X,7) — (Y, 0) is contra supra g* a-continuous function and
g : (Y,o) — (Z,v) is supra continuous function then the composition (g o f) is
contra supra g* a-continuous function.
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Proof. Let V be supra open set in Z. Since g is supra continuous, then g~ (V)
is supra open in Y. Since f is contra supra g a-continuous function, then
F g (V) = (go f)~" (V) is supra g*a-closed in X. Therefore (go f) is contra
supra g* a-continuous function. Il

Theorem 3.3. If f : (X,7) — (Y,0) is supra g% a- irresolute function and g :
(Y,o0) — (Z,v) is contra supra g*a-continuous function then the composition
(g o f) is contra supra g* a-continuous function.

Proof Let V be supra open set in Z. Since g is contra supra g a-continuous
function, then g~!(V) is supra g*«a-closed in Y. Since f is supra g a-irresolute
function, then f~!(g~1(V)) is supra g#a-closed in X. Therefore (g o f) is contra
supra g a-continuous function. U

Remark 3.3. The concept of supra g* a-continuity and contra supra g* a-continuity
are independent as shown in the following example.

Example 3. Let X =Y = {a,b,c} and T = {X,0,{a}}, 0 = {Y, 0, {a}, {b}, {a,b}}.
f:(X,7) = (Y, 0) be the function defined by f(a) = ¢, f(b) =b, f(c) = a. Here
f is contra supra g*a-continuous but not supra g a-continuous function, since
V = {b,c} is supra closed set in Y but f~1({b,c}) = {a, b} is not supra g*a-closed
setin X.

Theorem 3.4. If f : (X,7) — (Y, 0) is contra supra g* a-continuous function and
X supra g*oT'c is -space, then f is contra supra continuous.

Proof. Let V be supra open set in Y. Since f is contra supra g”a-continuous
function, then f~1(V) is supra g” a-closed in X. Since X is supra g# a7 c-space,
we have every supra g#a-closed set is supra closed in X, then f~!(V) is supra
closed in X. Therefore f is contra supra continuous function. O

Definition 3.2. A map f : (X,7) — (Y,0) is called almost contra supra g*a-
continuous function if f~1(V) is supra g* a-closed in (X, T) for every supra regular
open set Vin (Y, o).

Theorem 3.5. Every contra supra continuous function is almost contra supra g* a-
continuous function.

Proof. Let f : (X,7) — (Y, 0) be a contra supra continuous function. Let V' be a
supra regular open set in (Y, o). We know that every supra regular open set is
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supra open, then V' is supra open in (Y, o). Since f is contra supra continuous
function, f~!(V) is supra closed in (X, 7). We know that every supra closed set is
supra g a-closed, which implies f~1(V') is supra g#a-closed in (X, 7). Therefore
f is almost contra supra g* a-continuous function. U

The converse of the above theorem need not be true. It is shown by the
following example.

Example 4. Let X =Y = {a,b,c}and 7 = {X, 0, {a}}, 0 = {V,0,{a}, {b}, {a,b}}.
f:(X,7) — (Y,0) be the identity. Here f is almost contra supra g* a-continuous
but it is not contra supra continuous function, since V = {a} is supra open in Y’
but f~'({a}) = {a} is not supra closed set in X.

Theorem 3.6. Every contra supra g* a-continuous function is almost contra supra
g" a-continuous function.

Proof. Let f : (X,7) — (Y,0) be a contra supra g a-continuous function. Let V'
be a supra regular open set in (Y, o). We know that every supra regular open
set is supra open, then V is supra open in (Y, o). Since f is contra supra g*a-
continuous function, f~!(V) is supra g* a-closed in (X, 7). Therefore f is almost
contra supra g* «-continuous function. O

The converse of the above theorem need not be true. It is shown by the
following example.

Example 5. Let X =Y = {a,b,c} and 7 = {X,0,{a}}, o = {Y,0,{a}, {a,b}}.
f: (X,7) = (Y, 0) be the identity function. Here f is almost contra supra g*a-
continuous, but it is not contra supra g* a-continuous, since V = {a} is open in Y
but f~'({a}) = {a} is not supra g« closed in X.

Definition 3.3. A Space (X, 7) is supra g a-locally indiscrete if every supra g* -
open (supra g a-closed) set is supra closed (supra open) in (X, 7).

Theorem 3.7. If f : (X,7) — (Y,0) is supra g*a-continuous function and X is
supra g7 a-locally indiscrete, then f is contra supra g a-continuous.

Proof. Let V be supra open set in Y. Since f is supra g#a-continuous function,
then f~1(V) is supra g#a-open in X. Since X is supra g#a-locally indiscrete,
then f~!(V) is supra closed set in X. We know that every supra closed set is
supra g*a-closed set . Therefore f~1(V) is supra g#a-closed set in X. Hence f
is contra supra ¢* a-continuous function. O
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Theorem 3.8. Let f : (X,7) — (Y,0) be a surjective supra g*a-irresolute. g :
(Y,o0) — (Z,v) is a function such that (go f) : (X,7) = (Z,v) is contra supra
g” a-continuous function, iff g is contra supra g* o -continuous.

Proof. Suppose (g o f) is contra supra g” a-continuous. Let V be a supra closed
set in Z, then (go f)"%(V) = f~*(¢g~*(V)) is supra g*a-open in (X, 7). Since
f is surjective and supra g*a-irresolute , then f((go f)™%) = f(f (g~ Y(V))) =
g~*(V) is supra g*a-open in (Y,o). Hence g is contra supra g*a-continuous
function.

Conversely, suppose g is contra supra g*«a-continuous. Let V' be supra closed
in Z, then g~1(V) is supra g#«-open in Y. Since f is surjective and supra g a-
irresolute, then f~!(g~'(V)) is supra g*a-open in X. Hence (g o f) is contra
supra g* a-continuous function. U

Theorem 3.9. If f : (X,7) — (Y,0) is a supra g%« -continuous and g : (Y,0) —
(Z,v) is contra supra g*« -continuous function and (Y, o) is supra g#oT'c-space,
then (go f) : (X,7) — (Z,v) is contra supra g* a-continuous function.

Proof Let V be any supra open set in Z, then g~1(V/) is supra g7 a-closed set in
Y. Since Y is supra g#aT'c-space, g~*(V) is supra closed set in Y. Since f is
supra g# a-continuous, f (g~ (V) = (go f)~1(V) is supra g#a-closed set in X.
Hence (g o f) is contra supra g a-continuous. U

4. CONTRA SUPRA g¥ - IRRESOLUTE FUNCTION

Definition 4.1. A function f : (X, 7) — (Y, o) is called contra supra g* a-irresolute
function if f~Y(V) is supra g* a-closed in (X, T) for every supra g a-open set V in
(Y, 7).

Definition 4.2. A function f : (X, 7) — (Y, 0) is called perfectly contra supra g* a-
irresolute is function if f~1(V') supra g a-closed and supra g* a-open in (X, 7) for
every supra g a-open set V in (Y, o).

Theorem 4.1. Every contra supra g*a-irresolute function is contra supra g*o-
continuous.

Proof Let f : (X,7) — (Y,0) be a contra supra g#«- irresolute function. Let
V' be a supra open set in (Y,0). We know that every supra open set is supra
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g a-open set, then V is supra g*a-open in (Y, o). Since f is contra supra g% -
irresolute function, f~'(V) is supra g*a-closed in (X, 7). Therefore f is contra
supra g# a-continuous function. O

The converse of the above theorem need not be true. It is shown by the
following example.

Example 6. Let X =Y = {a,b,c}, 7 ={X,0,{a}}, 0 = {Y,0,{a}, {b},{a,b}}. A
function f : (X,7) = (Y,0) is defined by f(a) = ¢, f(b) = b, f(c) = a. Here f is
contra supra g* a-continuous but not contra supra g* a-irresolute. Since V = {b, c}
is supra g* a-open set in (Y, o) and f=1({b,c}) = {a, b} is not in supra g* a-closed
set in(X, ).

Theorem 4.2. If f : (X,7) — (Y,0) is a supra g*a-irresolute and g : (Y,0) —
(Z,v) is contra supra g*a-irresolute function, then (go f) : (X,7) — (Z,v) is
contra supra g* a-irresolute function.

Proof Let V be any supra g*«a-open set in Z. Since g is contra supra g*a-
irresolute then g='(V) is supra g#a-closed set in Y. Since f is supra g*a-
irresolute, f~(g~Y(V)) = (g o f)~Y(V) is supra g*a-closed set in X. Hence
(g o f) is contra supra g#a-irresolute function. O

Theorem 4.3. If f : (X,7) — (Y,0) is a contra supra g*a-irresolute and g :
(Y,0) — (Z,v) is supra g a-irresolute function, then (go f) : (X,7) — (Z,v) is
contra supra g* a-irresolute function.

Proof Let V be any supra g*«a-open set in Z. Since g is supra g*a-irresolute
then ¢~1(V) is supra g# a-open set in Y. Since f is contra supra g” a-irresolute,
Y g (V) = (go f)~1(V) is supra g*a-closed set in X. Hence (go f) is contra
supra g* a-irresolute function. O

Theorem 4.4. Every perfectly contra supra g a-irresolute is contra supra g*a-
irresolute function.

Proof. Let f : (X,7) — (Y, o) be a perfectly contra supra g a-irresolute function.
Let V be a supra g#a-open set in (Y, o). Since f is perfectly contra supra g*c-
irresolute function, f~'(V) is supra g#a-closed and supra g#a-open in (X, 7).
Therefore f is contra supra g* a-irresolute function. O
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The converse of the above theorem need not be true. It is shown by the
following example.

Example 7. Let X =Y = {a,b,c}, 7 = {X,0,{a},{b},{a,b}}, 0 = {Y,0,{b},
{b,c},{a,b}} and let f : (X,7) — (Y,0) be a function defined by f(a) = a,
f(b) = ¢, f(c) =b. Here f is contra supra g* a-irresolute function but not perfectly
contra supra g*a-irresolute function. Since V = {a,c} is supra g”a-open set in
(Y,0), f~*({a,c}) = {a,b} is not supra g% a-closed and supra g*a-open set in
(X, 7).

Theorem 4.5. Every perfectly contra supra g*a-irresolute is contra supra g o-
irresolute function.

Proof Let f: (X,7) — (Y, o) be a perfectly contra supra g a-irresolute function.
Let V be a supra g*a-open set in (Y, o). Since f is perfectly contra supra g% «-
irresolute function, f~'(V) is supra g*a-closed and supra g#a-open in (X, 7).
Therefore f is supra g a-irresolute function. O

The converse of the above theorem need not be true. It is shown by the
following example.

Example 8. Let X =Y = {a,b,c} and 7 = {X,0,{a}}, 0 = {Y,0,{a},{a,b}}, [ :
(X,7) — (Y, 0) be a identity function. Here f is supra g a-irresolute function but
not perfectly contra supra g a-irresolute function. Since V = {a, c} is supra g*a-
opensetin (Y,o), f~'({a,c}) = {a, c} is not supra g* a-closed and supra g* a-open
set in (X, T).
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