

Advances in Mathematics: Scientific Journal **9** (2020), no.5, 2843–2852 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.5.46

CONTRA SUPRA $G^{\#}\alpha$ -CONTINUOUS FUNCTION IN SUPRA TOPOLOGICAL SPACES

N. R. BHUVANESWARI ¹ AND V. KOKILAVANI

ABSTRACT. In this paper, we introduce the concept of contra supra $g^{\#}\alpha$ -continuous functions and contra supra $g^{\#}\alpha$ -irresolute function. We obtain the basic properties and their relationship with other forms of contra supra continuous functions in supra topological spaces.

1. INTRODUCTION

In 1983, A.S.Mashhour et al [5] introduced the supra topological spaces and studied continuous functions and *s**-continuous functions. In 1996, Dontchev [4] presented a new notion of continuous function called contra-continuity in topological spaces.

The purpose of this paper is to introduce the concept of contra supra $g^{\#}\alpha$ -continuous functions and contra supra $g^{\#}\alpha$ -irresolute and study its basic properties. Also we defined almost contra supra $g^{\#}\alpha$ -continuous function, perfectly contra supra $g^{\#}\alpha$ -irresolute function and investigated their relationship to other functions in supra topological spaces.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54B05.

Key words and phrases. contra supra $g^{\#}\alpha$ -continuous function, contra supra $g^{\#}\alpha$ -irresolute function, almost contra supra $g^{\#}\alpha$ -continuous function, perfectly contra supra $g^{\#}\alpha$ -irresolute function.

N. R. BHUVANESWARI AND V. KOKILAVANI

2. PRELIMINARIES

Definition 2.1. [5] A subfamily μ of X is said to be a supra topology on X, if

- (1) $X, \emptyset \in \mu$
- (2) If $A_i \in \mu$ for all $i \in J$ then $\cup A_i \in \mu$.

The pair (X, μ) is called supra topological space. The elements of μ are called supra open sets in (X, μ) and complement of a supra open set is called a supra closed set.

Definition 2.2. [5]

- (1) The supra closure of a set A is denoted by $cl^{\mu}(A)$ and is defined as $cl^{\mu}(A) = \cap \{B : B \text{ is a supra closed set and } A \subseteq B\}.$
- (2) The supra interior of a set A is denoted by $int^{\mu}(A)$ and defined as $int^{\mu}(A) = \bigcup \{B : B \text{ is a supra open set and } A \supseteq B \}.$

Definition 2.3. [5] Let (X, τ) be a topological space and μ be a supra topology on *X*. We call μ a supra topology associated with τ if $\tau \subset \mu$.

Definition 2.4. [1] Let (X, μ) be a supra topological space. A subset A of X is called supra α -open set if $A \subseteq int^{\mu}(cl^{\mu}(int^{\mu}(A)))$. The complement of supra α -open set is supra α -closed set.

Definition 2.5. [6] Let (X, μ) be a supra topological space. A subset A of X is called supra g^* -closed set if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra g-open set of X. The complement of supra g-closed set is supra g-open set.

Definition 2.6. [6] Let (X, μ) be a supra topological space. A subset A of X is called a supra $g^{\#}$ -closed set if $cl^{\mu}(A) \subseteq U$, whenever $A \subseteq U$ and U is αg -open set of X.

Definition 2.7. [4] Let (X, μ) be a supra topological space. A subset A of X is called supra $g^{\#}\alpha$ -closed set if $\alpha cl^{\mu}(A) \subseteq U$, whenever $A \subseteq U$ and U is supra g-open set of X. The complement of supra $g^{\#}\alpha$ - closed set is called supra $g^{\#}\alpha$ -open set.

Definition 2.8. Let (X, μ) and (Y, σ) be two topological spaces and $\tau \subset \mu$. A map $f : (X, \tau) \to (Y, \sigma)$ is called

(1) supra continuous if the inverse image of each open set of Y is a supra open set in X [5].

2844

- (2) supra α-continuous if the inverse image of each open set of Y is a supra α-open set in X [1].
- (3) supra *g*-continuous if the inverse image of each closed set of *Y* is a supra *g*-closed set in *X* [3].
- (4) supra g[#]-continuous if the inverse image of each closed set of Y is a supra g[#]-closed set in X [6].

Definition 2.9. Let (X, μ) and (Y, σ) be two topological spaces and $\tau \subset \mu$. A map $f : (X, \tau) \to (Y, \sigma)$ is called

- (1) supra closed if the image of each closed set of X is a supra closed set in Y [5].
- (2) supra α -closed if the image of each closed set of X is a supra α -closed set in Y [1].
- (3) supra g-closed if the image of each closed set of X is a supra g-closed set in Y [3].
- (4) supra g[#]-closed if the image of each closed set of X is a supra g[#]-closed set in Y [6].

Definition 2.10. Let (X, μ) and (Y, σ) be two topological spaces and $\tau \subset \mu$. A map $f : (X, \tau) \to (Y, \sigma)$ is called

- (1) supra irresolute if $f^{-1}(V)$ is supra closed in X for every supra closed set V of Y [5].
- (2) supra α-irresolute if f⁻¹(V) is supra α-closed in X for every supra α-closed set V of Y [1].
- (3) supra g-irresolute if f⁻¹(V) is supra g[#]-closed in X for every supra g[#]-closed set V of Y [3].
- (4) supra g[#]-irresolute if f⁻¹(V) is supra g[#]-closed in X for every supra g[#]-closed set V of Y [6].

Definition 2.11. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be

- (1) Supra $g^{\#}\alpha$ -continuous if $f^{-1}(V)$ is supra $g^{\#}\alpha$ -closed in (X, τ) for every supra closed set V of (Y, σ) [4].
- (2) Supra $g^{\#}\alpha$ -irresolute if $f^{-1}(V)$ is supra $g^{\#}\alpha$ -closed in (X, τ) for every supra $g^{\#}\alpha$ -closed set V of (Y, σ) [4].
- (3) Contra continuous if $f^{-1}(V)$ is closed in (X, τ) for every open set V of (Y, σ) [2].

Definition 2.12. [2] A function $f : (X, \tau) \to (Y, \sigma)$ is called contra-continuous functions if $f^{-1}(V)$ is supra-closed in (X, τ) for every supra open set V of (Y, σ) .

3. Contra supra $g^{\#}\alpha$ -continuous function

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called contra supra $g^{\#}\alpha$ -continuous function if $f^{-1}(V)$ is supra $g^{\#}\alpha$ -closed in (X, τ) for every supra open set V of (Y, σ) .

Theorem 3.1. Every contra continuous function is contra supra $g^{\#}\alpha$ -continuous.

Proof. Let $f : X \to Y$ be contra continuous. Let V be any supra open in Y. Then the inverse image $f^{-1}(V)$ is supra closed in X. Since every supra closed is supra $g^{\#}\alpha$ -closed, $f^{-1}(V)$ is supra $g^{\#}\alpha$ -closed in X. Therefore f is contra supra $g^{\#}\alpha$ -continuous.

Remark 3.1. The converse of the above theorem is not true and it is shown by the following example.

Example 1. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \emptyset, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{a\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Here f is contra supra $g^{\#}\alpha$ continuous function and not contra continuous. Since $V = \{a\}$ is supra open set in (Y, σ) , $f^{-1}(\{a\}) = \{a\}$ is not supra closed in (X, τ) .

Remark 3.2. The composition of two contra supra $g^{\#}\alpha$ -continuous mappings need not be contra supra $g^{\#}\alpha$ -continuous. Let us prove the remark by the following example.

Example 2. Let $X = Y = \{a, b, c\}$. Let $\tau = \{X, \emptyset, \{b\}, \{a, b\}\}$, $\sigma = \{Y, \emptyset, \{a\}\}$ and $\nu = \{Z, \emptyset, \{b\}, \{a, b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \nu)$. Define f(a) = a, f(b) = b, f(c) = c and g(a) = c, g(b) = b, g(c) = a. Both f and g are contra supra $g^{\#}\alpha$ -continuous. Define $g \circ f : (X, \tau) \to (Z, \nu)$. Hence $\{b\}$ is a supra open set of (Z, ν) . Therefore $(g \circ f)^{-1} = (g \circ f)^{-1}(\{b\}) = g^{-1}(f^{-1}(\{b\})) = g^{-1}(\{b\}) = \{b\}$ is not a supra $g^{\#}\alpha$ -closed set of (X, τ) . Hence $(g \circ f)$ is not contra supra $g^{\#}\alpha$ -continuous.

Theorem 3.2. If $f : (X, \tau) \to (Y, \sigma)$ is contra supra $g^{\#}\alpha$ -continuous function and $g : (Y, \sigma) \to (Z, \nu)$ is supra continuous function then the composition $(g \circ f)$ is contra supra $g^{\#}\alpha$ -continuous function.

2846

Proof. Let V be supra open set in Z. Since g is supra continuous, then $g^{-1}(V)$ is supra open in Y. Since f is contra supra $g^{\#}\alpha$ -continuous function, then $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is supra $g^{\#}\alpha$ -closed in X. Therefore $(g \circ f)$ is contra supra $g^{\#}\alpha$ -continuous function.

Theorem 3.3. If $f : (X, \tau) \to (Y, \sigma)$ is supra $g^{\#}\alpha$ - irresolute function and $g : (Y, \sigma) \to (Z, \nu)$ is contra supra $g^{\#}\alpha$ -continuous function then the composition $(g \circ f)$ is contra supra $g^{\#}\alpha$ -continuous function.

Proof. Let V be supra open set in Z. Since g is contra supra $g^{\#}\alpha$ -continuous function, then $g^{-1}(V)$ is supra $g^{\#}\alpha$ -closed in Y. Since f is supra $g^{\#}\alpha$ -irresolute function, then $f^{-1}(g^{-1}(V))$ is supra $g^{\#}\alpha$ -closed in X. Therefore $(g \circ f)$ is contra supra $g^{\#}\alpha$ -continuous function.

Remark 3.3. The concept of supra $g^{\#}\alpha$ -continuity and contra supra $g^{\#}\alpha$ -continuity are independent as shown in the following example.

Example 3. Let $X = Y = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}, \sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. $f : (X, \tau) \to (Y, \sigma)$ be the function defined by f(a) = c, f(b) = b, f(c) = a. Here f is contra supra $g^{\#}\alpha$ -continuous but not supra $g^{\#}\alpha$ -continuous function, since $V = \{b, c\}$ is supra closed set in Y but $f^{-1}(\{b, c\}) = \{a, b\}$ is not supra $g^{\#}\alpha$ -closed set in X.

Theorem 3.4. If $f : (X, \tau) \to (Y, \sigma)$ is contra supra $g^{\#}\alpha$ -continuous function and X supra $g^{\#}\alpha Tc$ is -space, then f is contra supra continuous.

Proof. Let V be supra open set in Y. Since f is contra supra $g^{\#}\alpha$ -continuous function, then $f^{-1}(V)$ is supra $g^{\#}\alpha$ -closed in X. Since X is supra $g^{\#}\alpha$ Tc-space, we have every supra $g^{\#}\alpha$ -closed set is supra closed in X, then $f^{-1}(V)$ is supra closed in X. Therefore f is contra supra continuous function.

Definition 3.2. A map $f : (X, \tau) \to (Y, \sigma)$ is called almost contra supra $g^{\#}\alpha$ continuous function if $f^{-1}(V)$ is supra $g^{\#}\alpha$ -closed in (X, τ) for every supra regular open set V in (Y, σ) .

Theorem 3.5. Every contra supra continuous function is almost contra supra $g^{\#}\alpha$ -continuous function.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a contra supra continuous function. Let V be a supra regular open set in (Y, σ) . We know that every supra regular open set is

supra open, then V is supra open in (Y, σ) . Since f is contra supra continuous function, $f^{-1}(V)$ is supra closed in (X, τ) . We know that every supra closed set is supra $q^{\#}\alpha$ -closed, which implies $f^{-1}(V)$ is supra $q^{\#}\alpha$ -closed in (X, τ) . Therefore *f* is almost contra supra $g^{\#}\alpha$ -continuous function. \square

The converse of the above theorem need not be true. It is shown by the following example.

Example 4. Let $X = Y = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}, \sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}.$ $f: (X, \tau) \to (Y, \sigma)$ be the identity. Here f is almost contra supra $g^{\#}\alpha$ -continuous but it is not contra supra continuous function, since $V = \{a\}$ is supra open in Y but $f^{-1}(\{a\}) = \{a\}$ is not supra closed set in X.

Theorem 3.6. Every contra supra $g^{\#\alpha}$ -continuous function is almost contra supra $g^{\#}\alpha$ -continuous function.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a contra supra $g^{\#\alpha}$ -continuous function. Let V be a supra regular open set in (Y, σ) . We know that every supra regular open set is supra open, then V is supra open in (Y, σ) . Since f is contra supra $g^{\#}\alpha$ continuous function, $f^{-1}(V)$ is supra $q^{\#}\alpha$ -closed in (X, τ) . Therefore f is almost contra supra $q^{\#}\alpha$ -continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 5. Let $X = Y = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}, \sigma = \{Y, \emptyset, \{a\}, \{a, b\}\}.$ $f: (X,\tau) \to (Y,\sigma)$ be the identity function. Here f is almost contra supra $g^{\#}\alpha$ continuous, but it is not contra supra $g^{\#}\alpha$ -continuous, since $V = \{a\}$ is open in Y but $f^{-1}(\{a\}) = \{a\}$ is not supra $g^{\#}\alpha$ closed in X.

Definition 3.3. A Space (X, τ) is supra $g^{\#}\alpha$ -locally indiscrete if every supra $g^{\#}\alpha$ open (supra $q^{\#}\alpha$ -closed) set is supra closed (supra open) in (X, τ) .

Theorem 3.7. If $f: (X, \tau) \to (Y, \sigma)$ is supra $q^{\#}\alpha$ -continuous function and X is supra $q^{\#}\alpha$ -locally indiscrete, then f is contra supra $q^{\#}\alpha$ -continuous.

Proof. Let V be supra open set in Y. Since f is supra $q^{\#}\alpha$ -continuous function, then $f^{-1}(V)$ is supra $g^{\#}\alpha$ -open in X. Since X is supra $g^{\#}\alpha$ -locally indiscrete, then $f^{-1}(V)$ is supra closed set in X. We know that every supra closed set is supra $g^{\#}\alpha$ -closed set . Therefore $f^{-1}(V)$ is supra $g^{\#}\alpha$ -closed set in X. Hence f is contra supra $q^{\#}\alpha$ -continuous function. \square

Theorem 3.8. Let $f : (X, \tau) \to (Y, \sigma)$ be a surjective supra $g^{\#}\alpha$ -irresolute. $g : (Y, \sigma) \to (Z, \nu)$ is a function such that $(g \circ f) : (X, \tau) \to (Z, \nu)$ is contra supra $g^{\#}\alpha$ -continuous function, iff g is contra supra $g^{\#}\alpha$ -continuous.

Proof. Suppose $(g \circ f)$ is contra supra $g^{\#}\alpha$ -continuous. Let V be a supra closed set in Z, then $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is supra $g^{\#}\alpha$ -open in (X, τ) . Since f is surjective and supra $g^{\#}\alpha$ -irresolute, then $f((g \circ f)^{-1}) = f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is supra $g^{\#}\alpha$ -open in (Y, σ) . Hence g is contra supra $g^{\#}\alpha$ -continuous function.

Conversely, suppose g is contra supra $g^{\#}\alpha$ -continuous. Let V be supra closed in Z, then $g^{-1}(V)$ is supra $g^{\#}\alpha$ -open in Y. Since f is surjective and supra $g^{\#}\alpha$ irresolute, then $f^{-1}(g^{-1}(V))$ is supra $g^{\#}\alpha$ -open in X. Hence $(g \circ f)$ is contra supra $g^{\#}\alpha$ -continuous function.

Theorem 3.9. If $f : (X, \tau) \to (Y, \sigma)$ is a supra $g^{\#}\alpha$ -continuous and $g : (Y, \sigma) \to (Z, \nu)$ is contra supra $g^{\#}\alpha$ -continuous function and (Y, σ) is supra $g^{\#}\alpha Tc$ -space, then $(g \circ f) : (X, \tau) \to (Z, \nu)$ is contra supra $g^{\#}\alpha$ -continuous function.

Proof. Let V be any supra open set in Z, then $g^{-1}(V)$ is supra $g^{\#}\alpha$ -closed set in Y. Since Y is supra $g^{\#}\alpha Tc$ -space, $g^{-1}(V)$ is supra closed set in Y. Since f is supra $g^{\#}\alpha$ -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is supra $g^{\#}\alpha$ -closed set in X. Hence $(g \circ f)$ is contra supra $g^{\#}\alpha$ -continuous.

4. Contra supra $g^{\#}\alpha$ - irresolute function

Definition 4.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called contra supra $g^{\#}\alpha$ -irresolute function if $f^{-1}(V)$ is supra $g^{\#}\alpha$ -closed in (X, τ) for every supra $g^{\#}\alpha$ -open set V in (Y, τ) .

Definition 4.2. A function $f : (X, \tau) \to (Y, \sigma)$ is called perfectly contra supra $g^{\#}\alpha$ irresolute is function if $f^{-1}(V)$ supra $g^{\#}\alpha$ -closed and supra $g^{\#}\alpha$ -open in (X, τ) for
every supra $g^{\#}\alpha$ -open set V in (Y, σ) .

Theorem 4.1. Every contra supra $g^{\#}\alpha$ -irresolute function is contra supra $g^{\#}\alpha$ -continuous.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a contra supra $g^{\#}\alpha$ - irresolute function. Let V be a supra open set in (Y, σ) . We know that every supra open set is supra

 $g^{\#}\alpha$ -open set, then V is supra $g^{\#}\alpha$ -open in (Y, σ) . Since f is contra supra $g^{\#}\alpha$ irresolute function, $f^{-1}(V)$ is supra $g^{\#}\alpha$ -closed in (X, τ) . Therefore f is contra
supra $g^{\#}\alpha$ -continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 6. Let $X = Y = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}\}, \sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. A function $f : (X, \tau) \to (Y, \sigma)$ is defined by f(a) = c, f(b) = b, f(c) = a. Here f is contra supra $g^{\#}\alpha$ -continuous but not contra supra $g^{\#}\alpha$ -irresolute. Since $V = \{b, c\}$ is supra $g^{\#}\alpha$ -open set in (Y, σ) and $f^{-1}(\{b, c\}) = \{a, b\}$ is not in supra $g^{\#}\alpha$ -closed set $in(X, \tau)$.

Theorem 4.2. If $f : (X, \tau) \to (Y, \sigma)$ is a supra $g^{\#}\alpha$ -irresolute and $g : (Y, \sigma) \to (Z, \nu)$ is contra supra $g^{\#}\alpha$ -irresolute function, then $(g \circ f) : (X, \tau) \to (Z, \nu)$ is contra supra $g^{\#}\alpha$ -irresolute function.

Proof. Let V be any supra $g^{\#}\alpha$ -open set in Z. Since g is contra supra $g^{\#}\alpha$ irresolute then $g^{-1}(V)$ is supra $g^{\#}\alpha$ -closed set in Y. Since f is supra $g^{\#}\alpha$ irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is supra $g^{\#}\alpha$ -closed set in X. Hence $(g \circ f)$ is contra supra $g^{\#}\alpha$ -irresolute function.

Theorem 4.3. If $f : (X, \tau) \to (Y, \sigma)$ is a contra supra $g^{\#}\alpha$ -irresolute and $g : (Y, \sigma) \to (Z, \nu)$ is supra $g^{\#}\alpha$ -irresolute function, then $(g \circ f) : (X, \tau) \to (Z, \nu)$ is contra supra $g^{\#}\alpha$ -irresolute function.

Proof. Let V be any supra $g^{\#}\alpha$ -open set in Z. Since g is supra $g^{\#}\alpha$ -irresolute then $g^{-1}(V)$ is supra $g^{\#}\alpha$ -open set in Y. Since f is contra supra $g^{\#}\alpha$ -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is supra $g^{\#}\alpha$ -closed set in X. Hence $(g \circ f)$ is contra supra $g^{\#}\alpha$ -irresolute function.

Theorem 4.4. Every perfectly contra supra $g^{\#}\alpha$ -irresolute is contra supra $g^{\#}\alpha$ -irresolute function.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a perfectly contra supra $g^{\#}\alpha$ -irresolute function. Let V be a supra $g^{\#}\alpha$ -open set in (Y, σ) . Since f is perfectly contra supra $g^{\#}\alpha$ -irresolute function, $f^{-1}(V)$ is supra $g^{\#}\alpha$ -closed and supra $g^{\#}\alpha$ -open in (X, τ) . Therefore f is contra supra $g^{\#}\alpha$ -irresolute function. The converse of the above theorem need not be true. It is shown by the following example.

Example 7. Let $X = Y = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{Y, \emptyset, \{b\}, \{b, c\}, \{a, b\}\}$ and let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = a, f(b) = c, f(c) = b. Here f is contra supra $g^{\#}\alpha$ -irresolute function but not perfectly contra supra $g^{\#}\alpha$ -irresolute function. Since $V = \{a, c\}$ is supra $g^{\#}\alpha$ -open set in $(Y, \sigma), f^{-1}(\{a, c\}) = \{a, b\}$ is not supra $g^{\#}\alpha$ -closed and supra $g^{\#}\alpha$ -open set in (X, τ) .

Theorem 4.5. Every perfectly contra supra $g^{\#}\alpha$ -irresolute is contra supra $g^{\#}\alpha$ -irresolute function.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a perfectly contra supra $g^{\#}\alpha$ -irresolute function. Let V be a supra $g^{\#}\alpha$ -open set in (Y, σ) . Since f is perfectly contra supra $g^{\#}\alpha$ -irresolute function, $f^{-1}(V)$ is supra $g^{\#}\alpha$ -closed and supra $g^{\#}\alpha$ -open in (X, τ) . Therefore f is supra $g^{\#}\alpha$ -irresolute function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 8. Let $X = Y = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}, \sigma = \{Y, \emptyset, \{a\}, \{a, b\}\}, f : (X, \tau) \to (Y, \sigma)$ be a identity function. Here f is supra $g^{\#}\alpha$ -irresolute function but not perfectly contra supra $g^{\#}\alpha$ -irresolute function. Since $V = \{a, c\}$ is supra $g^{\#}\alpha$ -open set in $(Y, \sigma), f^{-1}(\{a, c\}) = \{a, c\}$ is not supra $g^{\#}\alpha$ -closed and supra $g^{\#}\alpha$ -open set in (X, τ) .

REFERENCES

- R.DEVI, S.SAMPATHKUMAR, M.CALDAS: On supra α open sets and Sα-continuous functions, General Mathematics, 16(2) (2008), 77–84.
- [2] J.DONTCHEV: Contra-continuous functions and strongly S-closed spaces, Int. J. Math. and Math. Sci., 19(2) (1996), 303–310.
- [3] M. KAMARAJ, G. RAMKUMAR, O. RAVI: Supra sg-closed sets and supra gs-closed sets, International Journal of Mathematical Archive, **2**(11) (2011), 2413–2419.
- [4] V.KOKILAVANI, N.R.BHUVANESWARI: On $g^{\#}\alpha$ -Closed Sets In Supra Topological Spaces, International Journal of Research and Analytical Reviews, **6**(2) (2019), 806–810.
- [5] A.S.MASHHOUR, A.A.ALLAM, F.S.MOHAMOUD, F.H.KHEDR: On supra topological spaces, Indian J. Pure and Appl. Math., **14**(4) (1983), 502–510.

2 N. R. BHUVANESWARI AND V. KOKILAVANI

[6] G.RAMKUMAR, O.RAVI, M. J. ISRAEL: Supra g[#]-closed set and its related maps, Mathematical sciences International research journal, 5 (2016), 71–75.

DEPARTMENT OF MATHEMATICS SNS COLLEGE OF TECHNOLOGY COIMBATORE, (TN), INDIA *E-mail address*: ramg.phd@gmail.com

DEPARTMENT OF MATHEMATICS KONGUNADU ARTS AND SCIENCE COLLEGE COIMBATORE, (TN), INDIA

2852